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SUMMARY

Shifting from chemical to biotechnological processes is one of the
cornerstones of 21st century industry. The production of a great
range of chemicals via biotechnological means is a key challenge
on the way toward a bio-based economy. However, this shift is
occurring at a pace slower than initially expected. The develop-
ment of efficient cell factories that allow for competitive produc-
tion yields is of paramount importance for this leap to happen.
Constraint-based models of metabolism, together with in silico
strain design algorithms, promise to reveal insights into the best
genetic design strategies, a step further toward achieving that goal.
In this work, a thorough analysis of the main in silico constraint-
based strain design strategies and algorithms is presented, their
application in real-world case studies is analyzed, and a path for
the future is discussed.

INTRODUCTION

Since the early 1970s, modern biotechnology has started to
emerge as a competitor of the chemical industry toward the

production of chemicals, although it remains at a great disadvan-
tage. However, the scenario is rapidly changing, given the increas-
ing need for sustainable manufacturing processes. This context
has given industrial biotechnology a new breath, boosting its use
in the production of a number of valuable products, such as phar-
maceuticals, fuels, and food ingredients. The Organization for
Economic Cooperation and Development (OECD) predicts that
by 2030, 35% of chemicals and other industrial products will be
largely supported by industrial biotechnology (1).

In parallel, the development of industrial biotechnology is

deeply intertwined with the recent evolution of molecular biology
and genomics technologies. Two important technological ad-
vances must be emphasized, given their relevance to the field. In
the early 1970s, the development of recombinant DNA technology
(2–4) fostered efforts in genetic engineering and, eventually, gave
rise to modern biotechnology. A few years later, in the mid-1970s,
the development of the Sanger sequencing technique (5, 6) pro-
vided another boost, starting a real revolution in genome sequenc-
ing technologies. Indeed, the first automated sequencer was devel-
oped in the late 1980s, and in 1995, the first complete genome of a
microbe, that of Haemophilus influenzae, was finished and pub-
lished (7), followed by many others.

The importance of these technologies for industry is due to an
obvious observation: since microbes have evolved according to
their own intrinsic objectives, their metabolism needs to be ma-
nipulated to comply with industrial purposes. Indeed, a sustain-
able, environmentally friendly, and economically viable bio-based
industry requires the use of cell factories tailored to deliver near-
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optimal yields of substrate-to-product conversion, as well as high
titers and productivities.

The concept of metabolic pathway manipulation toward desir-
able behavior is an old one, with notable examples coming from
the production of amino acids, vitamins, or antibiotics (8). These
early methods relied mostly on the use of mating, hybridization,
mutagenesis, and creative strain selection techniques (9, 10). As
these traditional approaches for microbial improvement started
to struggle to keep up with industrial requirements, it became
necessary to resort to more rational approaches. Genetic engineer-
ing provides the way to more precisely modify specific genes/
enzymes to create desirable strains (11).

In 1991, Bailey coined the term “metabolic engineering” (ME)
to denote the use of recombinant DNA technology for the purpose
of improving cellular activities via manipulation of enzymatic,
transport, and regulatory functions of the cell (12). In contrast
with previous experiences in genetic engineering, he envisioned a
much more direct, target-oriented, and mechanistic approach. In
parallel, Stephanopoulos and Vallino were applying branch point
analysis techniques to promote the overproduction of specific me-
tabolites (13), which would be evolved and applied in further en-
deavors (14, 15). Moreover, the introduction of already available
mathematical frameworks, such as metabolic control analysis,
into the ME arena only reinforced Bailey’s views (16, 17). ME was
also more attractive to the industry and led to less reluctance to
deal with complementary approaches, like the ones provided by
fields such as systems biology, since it was thought from the be-
ginning to embrace knowledge from multiple disciplines.

The remarkable advances in genome sequencing technologies
have played a decisive role in the change of perception regarding
the genotype-phenotype relationship, which had been based
mostly on qualitative analysis. With the recent developments in
genome sequencing technologies, culminating in the surge of the
so-called next-generation sequencing technologies (18) as well as
semiautomated annotation techniques, an increasingly large
number of fully annotated microbial genomes are being made
available.

These full genome sequences provide comprehensive informa-
tion about the genetic elements that compose an organism, which,
when combined with the understanding of cellular processes such
as metabolism, results in structured knowledge that can be math-
ematically represented. This knowledge explosion promoted the
reconstruction of genome-scale metabolic networks for a large
number of organisms (19). Although not directly usable for per-
forming simulations, metabolic reconstructions can be combined
with constraint-based modeling (CBM) methods for predicting
the behavior of microbial strains and thus can support rational
ME efforts.

CBM has been applied to the analysis of biochemical reaction
networks for over 25 years (20). One of the major outcomes of this
research has been the development of phenotype prediction
methods supporting distinct genetic and environmental condi-
tions, including the well-known flux balance analysis (FBA) (21–
23). Based on these efforts, the time for the development of strain
design methods had come, where bioengineering objectives could
be rationally addressed. In 2003, Burgard and coworkers devel-
oped OptKnock (24), which would become the basis for a large
portion of the constraint-based strain design methods for the fol-
lowing decade. Such in silico ME approaches are able to propose
genetic changes (gene deletions in the case of OptKnock) based

on computational simulation and mathematical optimization
methods.

However, while this last decade has witnessed a rapid prolifer-
ation of strain optimization methods, mostly based on CBM ap-
proaches, in vivo proofs of concept are lagging far behind, as well
as rigorous analyses of the predictive power of both simulation
and design methods. Moreover, the concomitant proliferation of
genome-scale metabolic models (GSMMs), often of organisms
poorly characterized in physiological terms, adds a new layer of
uncertainty to in silico predictions that also needs to be considered
when designing novel and improved strains. In fact, most patho-
gens have few physiological data available, due to difficulties in
performing controlled cultivations or even understanding nutri-
tional requirements (25–28), but organisms commonly used in
industry, such as the yeast Kluyveromyces lactis, also have very few
data available that could be used for model construction and val-
idation (29).

While recent reviews have discussed computational strain op-
timization methods (CSOMs), they either are not focused exclu-
sively on this topic (30) or do not provide details about each
method (31). Moreover, a rigorous assessment of the degree of in
vivo validation of these methods has also been missing in previous
surveys. Here, we aim to provide an in-depth and critical review of
the currently available CBM-based strain optimization methods,
including their strengths and limitations, as well as to discuss fu-
ture trends in the field. The importance of these methods for ME
and their relevance to boost modern industrial biotechnology ef-
forts will be discussed, as well as the need for large-scale in vivo
validation of rational-design-related methods.

We start by putting forward the main concepts and methods
within CBM, which will serve as the context and support for strain
optimization methods. We then cover in detail the main tasks in
strain design and propose a novel taxonomy of the main strain
optimization methods. These are presented in detail, their features
and limitations are explored, and the connections among different
methods are highlighted. That section closes with a global discus-
sion on the merits and limitations of the distinct methods.

We then follow with an overview of selected practical applica-
tions of strain design in general and the contributions of the re-
viewed optimization methods in particular, focusing on experi-
mentally and industrially validated applications. Successes and
limitations of the approaches are discussed. We close with a dis-
cussion around the future challenges of ME and strain design and
their relevance for a sustained bio-based economy over the com-
ing years.

CONSTRAINT-BASED MODELING: CONCEPTS AND METHODS

Constraint-Based Models

Cellular functions are dependent on a series of intertwined mech-
anisms, such as metabolism or transcriptional regulation, which
can be affected by a multitude of factors. Understanding the rela-
tionships between these mechanisms and the environment is key
in developing correct and predictive models. Based on biochemi-
cal knowledge, classical kinetic models provide detailed dynamic
and quantitative descriptions of the systems. However, they de-
pend on many, usually difficult-to-measure, parameters and are
also computationally expensive to solve in a genome-scale context
(32–34). Indeed, to date, there are no dynamic genome-scale
models of metabolism that can be used effectively in ME efforts,
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mainly because of the difficulty in obtaining the relevant kinetic
data (35, 36). For several metabolic network analysis or metabolic
engineering tasks, a simpler approach might be sufficient to ob-
tain useful results. For these purposes, certain realistic assump-
tions can be adopted, avoiding the burden of determining kinetic
rate equations and their parameters (33).

Since metabolic transients are usually faster than both micro-
bial growth rates and dynamic environmental changes, internal
metabolite concentrations can often be assumed to be in a quasi-
steady state. This assumption is at the core of constraint-based
metabolic modeling approaches, and its derived consequence is
that all the metabolic fluxes leading to formation or degradation
of any intracellular metabolite are mass balanced (37). This as-
sumption can be represented in the form

S · v � 0 (1)

where S is an m � n matrix of stoichiometric coefficients, for a set
of m metabolites and a set of n reactions, and v is the vector of n
reaction rates (fluxes) (Fig. 1B). For each reaction, maximum and
minimum flux values can also be imposed to define the thermo-
dynamic feasibility (directionality) and flux capacity of the reac-
tions, as follows:

0 � vi � �i, ∀ i � Nirrev

�i � vi � �i, ∀ i � Nrev
(2)

where vi is the flux carried over reaction i, Nrev and Nirrev are
subsets of N composed of all reversible and irreversible reactions,
respectively, and �i and �i are the lower and upper bounds for the
flux over reaction i. For most GSMMs, the number of reactions

surpasses the number of compounds; therefore, there are more
variables than equations in the system defined by equation 1,
which originates an infinite number of possible solutions leading
to an underdetermined system.

Further details, such as gene-protein-reaction (GPR) associa-
tions, are also typically included in the models (38). This addi-
tional knowledge enables the development of more realistic phe-
notype prediction and strain design methods. The representation
of GPR associations usually resorts to Boolean logic, where the
relationships between reactions and their encoding genes are
modeled as logical “and/or” operations representing, among oth-
ers, cases of protein complexes and isoenzymes, thus allowing, for
instance, determination of the reactions inactivated after a set of
gene deletions (Fig. 1C). While this is a useful approach, it is
merely a functional representation of the connection between
genes and reactions and does not provide a meaningful quantifi-
cation of the relationship between transcripts and metabolic
fluxes. Indeed, this typically depends on more complex interac-
tions not depicted by the GPRs, regarding both the still poorly
understood relationship between amounts of mRNA and proteins
(39) and the highly nonlinear relationships between enzyme
amounts and flux values (40).

Parallel efforts focused on the use of Boolean approaches to
represent models of transcriptional regulation. By considering
that each node in the network is in a binary state (active/inactive),
Boolean networks try to approximate the dynamics of regulatory
systems. For each node (representing a gene), a Boolean update
rule is defined, which depends on the values of other nodes. No-

FIG 1 Diagram of the various components commonly found in constraint-based metabolic (and integrated metabolic/regulatory) genome-scale models. The
example includes a sample network composed of 10 reactions, 6 metabolites, 8 genes, and 2 transcription factors (A), the corresponding stoichiometric matrix
(B), and the corresponding gene-protein-reaction and transcriptional regulation rules (C).
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table applications of Boolean networks include the elucidation of
regulatory interactions (41, 42) and the simulation of system be-
havior under various genetic/environmental conditions (43). De-
spite the known fact that the expression of metabolic genes is
affected by a plethora of different stimuli through regulatory
mechanisms, few studies have focused on the integration of these
approaches into GSMMs. The main efforts have been the inclu-
sion of transcriptional regulation Boolean constraints, first by Co-
vert and collaborators over an Escherichia coli GSMM (44) and
more recently and in a more general way within the TIGER frame-
work (45), as well as the inclusion of the transcriptional and trans-
lational machinery into the GSMMs of E. coli by Thiele et al. (46).

Reconstruction of GSMMs has skyrocketed in the last decade,
with dozens of these models currently available for organisms
from all the domains of life, including recent efforts to model
complex eukaryotes, as is the case with human models. Recent
reviews provide an historical perspective and analysis on the evo-
lution of GSMMs and are readily available (47, 48). Moreover,
several websites provide download access to GSMMs in standard
formats (47; http://systemsbiology.ucsd.edu/InSilicoOrganisms
/OtherOrganisms, http://darwin.di.uminho.pt/models). When
used to support phenotype prediction and strain design methods
(see below), GSMMs are a powerful tool to aid in various meta-
bolic engineering tasks (49).

Constraint-Based Phenotype Prediction

Phenotypic behavior can be predicted using a number of con-
straint-based approaches over the information kept in metabolic
models. The intersection of the available biological constraints
(e.g., steady state, reversibility, and flux capacity) defines the flux
hypercone of admissible flux distributions (50) (Fig. 2A), repre-
senting the typical underdetermined nature of the system. Given
that experimental measurements of internal fluxes are difficult to
obtain, the usual approach to solve this underdetermined system
is to transform it into an optimization problem (Fig. 2B). For this
purpose, biological assumptions are usually adopted in the form
of an objective function. One common approach is to rely on the
rationale that organisms have been evolutionarily shaped toward
metabolic operations that favor particular objectives. Extra con-
straints are commonly employed by many methods, which further

reduce the flux cone, eventually changing the optimal solution
(Fig. 2C).

In flux balance analysis (FBA) (21–23), these assumptions are
modeled using linear objective functions, usually maximizing a
given reaction rate (flux) and minimizing the global energy expen-
ditures of the cell, or a panoply of other ones (51). With a linear
objective function subjected to linear constraints, the problem is
conveniently translated into a readily solvable linear program-
ming (LP) problem. The most commonly used assumption is that
microorganisms are evolutionarily adapted to maximize growth
(52–54), which is modeled as a linear objective function (an arti-
ficially defined flux) that maximizes biomass formation.

Despite its utility, classical FBA is still fairly limited due to its
obliviousness of several biological phenomena. As an example, the
effects of regulatory constraints under certain medium/environ-
mental conditions are not accounted for. For this purpose, spe-
cialized methods such as regulatory FBA (rFBA) (55) or steady-
state regulatory FBA (SR-FBA) (56) have been developed. Both
methods rely on additional information, such as transcriptional
regulation constraints (44), being integrated in the models.

Regulatory FBA forecasts dynamic flux profiles in changing en-
vironments by predicting regulatory and metabolic steady states
for short successive time intervals, while ensuring consistency
with the previous state in each step. Alternatively, SR-FBA simu-
lates an ensemble metabolic-regulatory steady state, under the as-
sumption of a maximal biomass production rate satisfying both
metabolic and regulatory constraints. A mixed-integer linear pro-
gramming (MILP) problem is yielded by the superimposition of
the regulatory constraints and GPRs as linear functions in the
model. Although both these methods have provided interesting
results in certain contexts, the Boolean nature of the representa-
tion used, together with the consideration of a limited domain
of the full set of the regulatory interactions (only a limited set
of transcriptional regulation is usually used), added to the lack of
models containing this information, has severely limited the use of
such methods.

While the assumption of maximal growth is acceptable under
natural (wild-type) conditions, it is heavily disputed when the
organism is subjected to genetic perturbations, for instance, when

FIG 2 The flux cone. In the example, the admissible flux space is defined by the steady-state and reversibility constraints (A), an objective function defining an
optimization problem is imposed (subjected to the previous constraints) (B), and further constraints are imposed to redirect the flux to a desired region of the
flux cone (C).
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simulating the phenotypes of gene deletion mutant strains. To
account for the burden of shifting from one operating region to
another, Segrè and coworkers introduced the minimization of
metabolic adjustment (MOMA) method (52). In contrast to FBA,
MOMA is not growth coupled, meaning that the optimal flux
distribution for a given set of conditions is not assumed to be
dependent on the maximization of the organism’s biomass pro-
duction rate. Instead, it minimizes the sum of the squared differ-
ences between the wild type (typically calculated with FBA or
given as a reference flux distribution) and the mutant flux distri-
butions, thus defining a quadratic objective function, which trans-
lates into a quadratic programming (QP) problem.

With a similar purpose, Shlomi and coworkers developed the
regulatory on/off minimization (ROOM) (57) algorithm, which
minimizes the number of significantly changed fluxes, relative to
the original flux distribution, after genetic perturbations. This ap-
proach requires the introduction of binary variables in the objec-
tive function, thus converting the LP problem into a MILP one,
increasing its complexity. Both MOMA and ROOM formulations
rely on the assumption that after genetic perturbations, the orga-
nism’s metabolic and regulatory responses favor a new steady state
close to the original operating region, rather than maximizing
cellular growth.

More recently, Brochado and coworkers developed the minimi-
zation of metabolites balance (MiMBl) (58) as an alternative to
MOMA, aiming at addressing some of its limitations. Instead of
tackling the problem by finding linear combinations of fluxes,
MiMBl resorts to metabolite turnovers, thus eliminating prob-
lems related to the sensitivity of the solutions to the stoichiometric
representations, which can greatly affect phenotype predictions.

A panoply of methods have been proposed to improve pheno-
type predictions by taking into account complementary data,
namely, different types of omics data with emphasis on gene ex-
pression data. Prominent examples are iMAT (59), GIMME (60),
and RELATCH (61), which provide alternative objective func-
tions and optimization approaches, combining the principles of
constraint-based modeling with the consistency of fluxes with
known data. In a recent study (62), these methods have been
systematically evaluated, and the results obtained have been far
from the ones expected, thus shedding some doubts on their
applicability.

The previous methods, and more notably FBA, have an impor-
tant limitation, since while they provide a solution with a unique
optimal value for the objective function, a large number of flux
distributions that lead to this value may exist; i.e., multiple optima
may exist. One proposed way to address this issue was by the
parsimonious enzyme usage FBA (63) algorithm, which chooses a
particular flux distribution (or a smaller set of flux distributions)
from these multiple optima by performing a second LP optimiza-
tion that minimizes the sum of the flux values, while keeping the
biomass flux (or another objective function) at an optimum level.

Flux variability analysis (FVA) (64) provides a distinct ap-
proach that aims to characterize the space of possible variation of
specific fluxes, given a set of constraints. It can be used to define
tight bounds for the fluxes in a GSMM if no further constraints are
defined or to check the possible variation of a given flux in optimal
or suboptimal solutions if a constraint over the objective function
is defined. For instance, FVA is quite useful in checking if a flux
can vary in optimal FBA solutions by setting a constraint that
requires the biomass flux to be equal to its optimal value. Among

other applications, FVA is used to assess the robustness of a flux
distribution, for instance, in a mutant strain simulation, regarding
its capability for production of a certain compound. FVA is typi-
cally applied to a given reaction flux by solving a pair of LP prob-
lems that maximize and minimize the target flux, obeying the set
of defined constraints.

Unbiased Characterization of the Flux Cone by Pathway
Analysis

Any attempt to enumerate all the possible flux steady-state distri-
butions lies within the realm of the intangible for typical GSMMs
with large numbers of reactions and metabolites, since their com-
plexity scales exponentially with the size of the models (65, 66).
This fact is the main driving force behind the development of the
methods described in the previous section.

Still, within the field of pathway analysis, a number of methods
have been put forward toward this purpose, even if currently these
are mostly applicable to small- or medium-scale models. The two
best known approaches for the enumeration of the possible flux
distributions are elementary flux modes (EFMs) (67) and extreme
pathways (ExPas) (66). Both these methods describe minimal
(nondecomposable) subnetworks of the system that operate at
steady state, defining the edges of a convex polyhedral hypercone
(the flux hypercone [Fig. 2B]). In turn, linear combinations of the
vectors representing these minimal subnetworks yield the totality
of the solution space (all feasible flux distributions).

EFMs obey the following set of conditions (67).

1. Steady state: all elementary modes obey equation 1.

2. Feasibility: all irreversible reactions proceed in the forward
direction; i.e., EFMs are thermodynamically feasible, obey-
ing equation 2.

3. Nondecomposability: EFMs represent the minimal func-
tional units in the network; therefore, no reaction can be
removed from an EFM without violating either equation 1,
equation 2, or both.

Moreover, these particular conditions yield some important
properties.

• Property 1: there is a unique set of EFMs for a given meta-
bolic network.

• Property 2: all the feasible steady-state flux distributions
satisfying equations 1 and 2 are a nonnegative superimpo-
sition of the set of EFMs in the network.

• Property 3: when a reaction is removed from the network,
the set of EFMs for the new network is equal to the one from
the original network, but removing all the EFMs that in-
clude the removed reaction.

These properties render these approaches extremely interesting
for metabolic engineering purposes (among others), since they
describe the complete portfolio of steady-state phenotypes and are
conveniently presented as minimal metabolic functions.

While the two methods are conceptually close to each other, the
fact that ExPas resort to the decoupling of reversible reactions into
equivalent forward and backward reactions translates into a non-
complete overlap of their corresponding enumerations in many
cases. In fact, ExPas are a subset of EFMs, and in some cases the
two sets coincide, namely, when the network is composed solely of
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irreversible reactions or, in most realistic cases, where only revers-
ible exchange reactions occur (68).

Given that the previously mentioned enumerations, for ge-
nome-scale metabolic networks, are computationally unattain-
able, alternative methods based on random sampling of the flux
space, such as a Monte Carlo Markov chain (MCMC) (69) or
adapted canonical basis (70) approach, have been developed to
circumvent this limitation. Moreover, alternative methods fo-
cused on achieving particular biological functions or searching a
subset of the flux space (71, 72) are also suitable ways of exploiting
this class of methods. The inclusion of GPR information as a
means to omit biologically unfeasible solutions has allowed Jun-
greuthmayer and colleagues to significantly decrease computation
times for the enumeration of EFMs (73). In this work, a maximum
of 223 million EFMs were computed for the E. coli core model
(74). Another recent effort by Hunt and coworkers tackled the
problem by iteratively splitting the network into subnetworks and
enumerating their EFMs in powerful computational clusters (75).
This approach has allowed the full enumeration of EFMs (�2.2
billion) for a Phaeodactylum tricornutum genome-scale model
comprised of 318 reactions and 335 metabolites, the largest to
date.

Finally, Bordbar and associates recently proposed the MinSpan
algorithm (76), an alternative MILP formulation capable of com-
puting a minimal set of pathways which are representative of the
totality of the steady-state phenotypes. Unlike the previously
stated convex analysis approaches, MinSpan is computationally
tractable even for large genome-scale metabolic networks.

COMPUTATIONAL STRAIN OPTIMIZATION METHODS

Before a formal classification for computational strain optimiza-
tion methods (CSOMs) is presented, our vision of what a CSOM is
must be clarified. Computer-aided strain design efforts cover a
broad range of applications and techniques, which leads some
authors to mix together optimization approaches with others that
can be considered phenotype prediction methods or even strain
design algorithms that do not explicitly use any type of optimiza-
tion algorithm. To clarify our approach to the classification of
these methods and as a justification for the inclusion or absence of
some well-known (and, nonetheless, very useful) approaches in
this section, some rules have been drafted for whether or not to
consider a method a CSOM.

1. A CSOM must (try to) provide an answer to a specific top-
level question, in the form “Which set of perturbations ap-
plied to the model (organism) favors a desired engineering
goal?”

2. The exhaustive enumeration of all possible solutions (de-
signs), albeit highly desirable, is not considered a CSOM
since it is considered a trivial approach (usually not attain-
able). Rather, an optimization algorithm that defines a
strategy to sample the solution space must be defined to
warrant the inclusion of the method below.

3. The algorithms covered in this review are solely the ones
based on constraint-based approaches, following the
framework highlighted in the previous section. We will not
cover here other approaches, for instance, those based on
graphs or hypergraphs and their underlying algorithms or
any approach based on the use of dynamic models.

Computational Strain Optimization Tasks

CSOMs can be thought of as procedures which try to answer a
practical question (or set of questions) relevant for strain design.
These questions can be translated into mathematical formalisms
and addressed by distinct optimization methods. Powered by phe-
notype prediction methods and guided by GSMMs, these meth-
ods automatically or semiautomatically search for answers to
questions such as which genes should be deleted from the model
to couple the production of compound X to growth or which
foreign pathways must be added to acquire a desirable function-
ality in a given host. In fact, the latter question was probably the
first one to arise when molecular biologists realized the inner po-
tential of recombinant DNA technology.

The most common tasks undertaken by CSOMs are gene dele-
tion, gene over- or underexpression, heterologous insertion, and,
more recently, cofactor specificity swapping. Some methods also
attempt combinations of these tasks to find better phenotypes.

Gene deletion. The suppression of a given metabolic function
can be accomplished in vivo by disrupting the functioning of spe-
cific genes by targeted modifications through homologous recom-
bination (77) or intron introduction (78). In silico CSOMs that
account for gene deletion (Fig. 3A) usually search for combina-
tions of metabolic function suppressions yielding desirable phe-
notypes. This task is commonly accomplished by imposing con-
straints that force the flux of the disabled reactions to zero,
deterring the occurrence of flux over those reactions, followed by
the evaluation of the effect of that perturbation.

Some recent methods take advantage of the GPR information
contained in the model and search for combinations of gene de-
letions (instead of searching for reaction suppressions) which
more closely represent the in vivo scenario, since they inherently
account for the occurrence of multifunctional and multimeric
proteins, as well as isoenzymes (49).

Heterologous insertion. Analogously, the inclusion of nonna-
tive functionalities, via gene or pathway addition, might broaden
the metabolic capabilities of desirable hosts, either by boosting the
yields of native compounds or by allowing the production of en-
tirely new ones (Fig. 3B). Typically, algorithms with this kind of
capability will sort through databases of balanced reactions for the
desired functionality and try to reconcile them with the original
network. The augmented network can, afterwards, be engineered
by other CSOMs to redirect flux in the desired directions. Most
algorithms that are specialized only in the first task, that is, the
sorting of heterologous enzymes and subsequent reconciliation
with a target host, are not considered in this work since they are
typically not constraint-based approaches. Examples of the afore-
said methods include DESHARKY (79), BioPathwayPredictor
(80), or FindPath (81).

Gene over- or underexpression. The up- or downregulation of
gene expression has considerable importance in the ME commu-
nity (82, 83). Gene over- or underexpression concerns the fine-
tuning of enzyme levels and corresponding flux rates, which can
be accomplished by using promoter libraries (84–86) or synthetic
biology tools (87). This approach can be useful in situations where
a gene deletion is lethal whereas downregulation is not and also
can be a solution to overcome flux bottlenecks in certain steps
toward a desired biological function (Fig. 3C). These tasks are
usually undertaken through the addition of extra constraints on
the fluxes, forcing them to operate closer to their maximal or
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minimal theoretical bounds. This task imposes some challenges
given the fact that stoichiometric models often do not have capac-
ity constraints for the majority of the fluxes, and thus wild-type
simulations will determine a flux distribution that may already
violate in vivo capacity constraints. Moreover, most methods sim-
ulate the effect of gene overexpression by imposing a flux through
specific reactions, disregarding whether those reactions had zero
flux in the wild type, thus artificially forcing flux distributions.
Finally, a more fundamental question is related to the often non-

linear nature of the relationships between gene abundance and
fluxes, which has been mentioned above.

Modulation of cofactor binding specificity. A distinct ap-
proach is to tackle the scarcity of some cofactors required for
essential steps of some ME efforts by modulating the cofactor
binding specificities. A typical example is the modulation of
NAD(H) or NADP(H) availability, due to their importance in the
catabolic and anabolic processes. By manipulating the cofactor
binding specificities, it is possible to establish driving forces in

FIG 3 Computational strain optimization tasks. In the example, 3 gene deletions force the flux through reactions producing the desired compounds (A), the
inclusion of two heterologous genes allow the production of an intermediary compound and subsequent excretion of the desired product (B), the overexpression
of two enzymes allow the excess formation of compound B, which is subsequently excreted (C), and the enzyme catalyzing the transport reaction R3 is swapped
by an heterologous enzyme using NADH (D). The deletion of a membrane oxidoreductase enzyme creates an excess of NADH that can be used by the new
transport reaction to excrete compound F.
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target pathways that require, for example, the regeneration of one
particular cofactor (88). In vivo modulation of cofactor specifici-
ties has via protein engineering (89, 90) or by replacing native
enzymes with heterologous ones with different cofactor specifici-
ties (91) been reported. This approach can be computationally
simulated by swapping the cofactor specificities of some reactions
in the network, followed by use of a phenotype prediction method
to evaluate the effects of the perturbations (Fig. 3D).

A Taxonomy for Computational Strain Optimization
Methods

The set of CSOMs reviewed in this work has been organized and
classified according to several aspects, including the strain design
task(s) addressed, the optimization algorithm, the mathematical
formulation, the method’s scalability, the validation case studies,
and the availability of the method in a software implementation.
This information is provided in Table S1 in the supplemental ma-
terial, with the methods sorted chronologically.

A classification (or “taxonomy”) for CSOMs is proposed in this
work based on the features of each method. An obvious classifica-
tion would be to group them based on the tasks they try to accom-
plish, as explained in the previous section. While keeping this also
in mind, we prefer to analyze them based primarily on their opti-
mization frameworks and mathematical formulations. Following
this principle, three main branches emerged in our analysis: bi-
level mixed-integer programming (MIP)-, metaheuristics-, and
elementary-mode analysis (EMA)-based methods.

Bilevel mixed-integer programming methods. In 2003, Costas
Maranas’ group reported a specialized method to pursue produc-
tive gene deletion strain designs coupled to cellular growth. This
method, OptKnock (24), proposed a bilevel framework, where
two competing objective functions were simultaneously ac-
counted for. The inner problem concerned the biological objec-
tive of the organism, in this case maximization of cellular growth,
while the outer problem focused on the engineering goal, the over-
production of a desired compound. The method suggested reac-
tion deletions, which were imposed as constraints for the inner
problem. This elegantly formulated mathematical framework
profited from the strong duality property, which states that if the
primal and the dual optimal solutions are bounded, then at opti-
mality, the gap between the objective function values must be zero
(92). This property allows the bilevel formulation of OptKnock to
be transformed into a single-level MILP by setting the primal and
dual objectives equal to one another and accumulating their re-
spective constraints. OptKnock represented a breakthrough in the
field, establishing the framework used by many of the developed
CSOMs until the present. Figure 4 summarizes the main proper-
ties of the bilevel formulation and its conversion to a single-level
MILP, as introduced by OptKnock, which establishes the distinct
characteristics of this category of CSOMs.

One of the properties of OptKnock solutions is that they are
mathematically guaranteed to be optimal, given the defined task
and objective function. However, they can often be considered
overly optimistic in real-world scenarios. In fact, OptKnock se-
lects the “best” solution, the one with highest product yield given
a predefined minimum biomass flux value and a maximum num-
ber of reaction deletions, but is not able to account for competing
pathways that might redirect the flux, lowering or even bringing to
zero the expected product yield under the same biomass values.

To address this issue, Tepper and Shlomi (93) suggested the

RobustKnock method, a reformulation of the OptKnock proce-
dure that optimizes the worst-case scenario for product formation
coupled to cellular growth, that is, the lower bound for the ex-
pected growth coupled to product formation. The maximum-
minimum formulation of RobustKnock yields a triple-level prob-
lem, an outer maximum-minimum problem that searches for a set
of knockouts maximizing the minimal production rate of the tar-
get compound (a bilevel problem) and an inner problem similar
to that of OptKnock, searching for a feasible flux distribution
maximizing biomass. The outer problem is transformed into a
standard maximum-minimum problem using a procedure simi-
lar to that used in OptKnock and, subsequently, transforming it
into a standard MILP problem.

Shortly after, Feist and coworkers, as an alternative approach
to address the robustness issues brought up by OptKnock, intro-
duced objective function tilting (94). Although not a CSOM by
itself, objective function tilting represents a valid, computation-
ally lighter alternative to RobustKnock, since it involves only small
changes in the objective function of OptKnock (and also of Opt-
Gene, referred to in the next section) without increasing its com-
putational complexity. In OptKnock, this approach involves add-
ing the negative of the desired product yield multiplied by a very
small weight to the inner problem’s objective function. This forces
the algorithm to identify the solution with the highest minimum
production rate among the ones with optimal value for the inner
problem.

More recently, Kim and coworkers introduced BiMOMA as an
alternative to OptKnock (95). BiMOMA is a new bilevel CSOM
for the design of gene deletion strategies. It is formulated as a
mixed-integer quadratic constrained programming (MIQCP)
problem, which uses MOMA as the inner phenotype evaluation
method (as opposed to OptKnock’s FBA). In their work, several
techniques to reduce the scalability problems traditionally associ-
ated with MIP formulations were also suggested. These techniques
include the tightening of the bounds of the dual variables using a
sampling technique, the application of penalties for genetic per-
turbations (favoring smaller designs), reduction of the search
space, and finally, the use of iterative methods as a way to improve
the performance of the solvers. The applicability of BiMOMA was
demonstrated for the production of glutamate and pyruvate in E.
coli.

A similar approach was suggested by Ren and coworkers (96)
with MOMAKnock. The adoption of MOMA to the inner prob-
lem once again yielded a mixed-integer bilevel quadratic pro-
gramming (MIBQP) formulation, but, in contrast to BiMOMA, it
was not converted to an MIQCP. Due to the heavy computational
burden caused by the MIQCP formulation, the authors proposed
the use of an adaptive piecewise linearized inner problem to ap-
proximate the quadratic objective function of MOMA. The pro-
posed formulation was benchmarked against OptKnock results in
the search for succinate productive E. coli strain designs.

Very recently, researchers from the Chinese Academy of Sci-
ences questioned the validity of the duality theory transformation
employed by OptKnock (97). They argued that by not including
the lower-level primal variables in the dual objective, the single-
level MILP problem on which OptKnock relies was erroneously
derived. More explicitly, they argue that if the problem had been
correctly formulated, a mixed-integer nonlinear programming
(MINLP) problem would emerge instead of an MILP. Subse-
quently, they suggested a method based on the Karush-Kuhn-
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Tucker (KKT) technique (98) to reformulate mixed-integer bi-
level linear problems (MIBLPs) as single-level MILPs (applicable
only when the inner problem is continuous) and proposed Reac-
Knock as a more reliable alternative to OptKnock. However, more
recently Chowdhury and coworkers released a new work (99) in
which the details of the OptKnock formulation are more thor-
oughly explained. In particular, they elaborated on the application
of the complementary slackness conditions to justify the absence
of some of the lower-level primal variables in the dual-objective

function, thus restating the formulation of OptKnock as com-
pletely valid.

The optimization of reaction deletions was not the only task
addressed by this class of methods. Shortly after the publication
of OptKnock, Maranas and coworkers extended the developed
framework to support enhancing a desired host with nonnative
functionalities via heterologous enzyme additions. This method
was termed OptStrain (100) and was implemented as a multistep
approach, using MILP formulations in the different steps. Profit-

FIG 4 Simplified example of the coupling strategy introduced by OptKnock, allowing the transformation of a bilevel MILP into a single-level one. The top region
depicts the bilevel MILP problem (left) and the dual problem of the inner layer (right). For each constraint in the primal objective, there are one or more dual
equivalents. Using strong duality theory and accumulation of constraints, the single-level MILP formulation is attained (bottom).
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ing from the myriad of biological data sources available, such as
KEGG (101, 102), MetaCyc (103), or BRENDA (104), the authors
created a universal reaction database which OptStrain used as a
core for finding the reactions that can be added to the host GSMM.
With this knowledge base in place, the OptStrain procedure com-
putes the maximum theoretical product yields for a given sub-
strate, considering both native (from the GSMM) and nonnative
(from the database) reactions. Afterwards, the minimal number of
nonnative functionalities yielding balanced pathways is sought
and included in the original stoichiometric model. Finally, the
OptKnock framework is employed to find additional knockouts
that further increase the yields. The OptStrain framework was
used to identify metabolic engineering strategies for the produc-
tion of hydrogen and vanillin in Clostridium acetobutylicum and E.
coli, respectively.

In 2011, Kim and coworkers revisited and improved the Opt-
Strain framework by considering both gene deletions and heter-
ologous insertions simultaneously (95). This method, SimOpt-
Strain, is aware of GPR relationships, which potentially allows for
more biologically feasible designs. The new method was demon-
strated in the design of succinate- and glycerol-productive strains
of E. coli.

Yet, the portfolio of possible genetic manipulations was not
complete with the development of OptKnock, OptStrain, and re-
lated methods. As stated above, the tuning of gene expression and
related enzyme levels is another important task in strain optimi-
zation. The OptReg framework (105) was the first CSOM to allow
searching for optimal gene expression levels, together with gene
deletions as provided by OptKnock. In this MILP formulation,
additional binary variables referring to up- and downregulations
and knockouts were considered: yj

d � 0 if reaction j is downregu-
lated and 1 otherwise; yj

u � 0 if reaction j is upregulated and 1
otherwise. These act as switches that restrict the flux in response to
the respective perturbation (over- or underexpression) based on
the supplementary constraints

vj
min � vj � �vj,L

0 · �1 � C� � vj
min · C� · �1 � yj

d�
� vj

max · yj
d , ∀ j � N (3)

for downregulation and

�vj,U
0 · �1 � C� � vj

max · C� · �1 � yj
u� � vj

min · yj
u � vj

� vj
max , ∀ j � N (4)

for upregulation, where vj
min and vj

max are the lower and upper
limits of flux j defined in the GSMM, vj,U

0 and vj,L
0 are the lower

and upper limits of flux j determined by flux variability analysis
(FVA) (106) and C is the regulation strength parameter consid-
ered in the interval [0, 1]. Higher values of C correspond to stron-
ger regulation. Furthermore, constraints stating that a reaction
can be subjected to only one manipulation (knockout, downregu-
lation, or upregulation), constraints limiting the maximum num-
ber of manipulations allowed, and constraints forcing the mutual
knockout of the two directions of reversible reactions are also
taken into account. OptReg was illustrated with the determination
of engineering strategies for the production of ethanol in E. coli.

Subsequently, Ranganathan and colleagues published an alter-
native method named OptForce (107), which was supported by a
different but rather insightful concept. The workflow is initiated
by a characterization of the wild-type strain, using FVA to deter-
mine the lower and upper bounds of each flux (this task can be
aided by experimental data if available). By iteratively considering

sets of reactions (pairs, triples, etc.), OptForce generates a set of
those that are required to change to achieve a user-defined pro-
duction yield (termed the MUST set). From this set, a new step
proceeds to characterize the minimal set of reactions that need to
be forced via genetic manipulation (termed the FORCE set). The
proof of concept was performed in the production of succinate in
E. coli. Posterior experimental validation led to interesting results
for other targets in E. coli (108, 109) (further details are in the next
section).

A similar approach, termed CosMos, was recently proposed by
Cotten and Reed (110); it incorporates flux up- and downregula-
tion in a more flexible manner than OptForce, since changes to
bounds do not rely on previously calculated fluxes (as is the case
with OptForce) but instead are subjected to continuous modifica-
tions. This MILP formulation was compared to OptForce, with
additional solutions reported in a case study for succinate produc-
tion with E. coli.

With the scalability problems of traditional MIP formulations
in mind (94), Mahadevan and coworkers proposed the EMILIO
(enhancing metabolism with iterative linear optimization) ap-
proach (111). The foundational framework employed by EMILIO
is very similar to that of OptReg, with the exception that the inner
problem’s objective function enforces the maximization of a min-
imal production rate, thus addressing the concerns first raised by
Tepper and Shlomi (93). The bilevel problem is reformulated into
a nonconvex single-level mathematical program with comple-
mentary constraints (MPCC), which is solved using a three-step
approach. First, iterative linear programming (ILP) is applied to
establish the set of active constraints (flux bounds), followed by a
recursive LP-based pruning method that identifies subsets of ac-
tive constraints required to achieve a user-specified fraction of the
maximum production rate. In the final step, for each subset, an
MILP procedure similar to OptReg is employed to minimize the
number of reaction modifications required to satisfy the user-
specified fraction of the maximum production rate. EMILIO was
demonstrated in the design of various deletion and over- or un-
derexpression E. coli mutants for the production of succinate, L-
glutamate, and L-serine.

A distinct method is OptORF, released in 2010 by Kim and
Reed (112), which was the first to address strain optimization
using metabolic-regulatory integrated models. Similarly to previ-
ous approaches, OptORF was formulated as a bilevel MILP prob-
lem, capable of suggesting metabolic engineering growth-coupled
production designs. Uniquely, though, OptORF designs consisted
of both metabolic and regulatory gene deletions, as well as meta-
bolic gene overexpressions. These make use of Boolean rules de-
fining the relations between reaction and metabolic genes (GPRs),
as well as rules that define transcriptional regulation. Both are
transformed into linear constraints. The applicability of this
method was, however, limited by the scarcity of available inte-
grated metabolic/regulatory models to profit from all its features.
OptORF has been applied in the design of ethanol-, isobutanol-,
and 2-phenylethanol-producing E. coli strains.

Complementary to the various described approaches for gene
deletion, gene over- and underexpression, and heterologous in-
sertion, some alternative CSOMs with unique characteristics have
also been proposed.

An exquisite new method, OptSwap, was very recently pro-
posed by King and Feist (88). OptSwap was the first and is so far
the only method to consider cofactor binding specificities of en-
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zymes as possible targets for computational strain optimization.
More specifically, OptSwap focuses on oxidoreductase enzymes
and their binding specificity for either NAD(H) or NADP(H).
However, the authors state that the principles and framework can
be extended to other specific sets of interest. A pool of swap can-
didate oxidoreductase enzymes is selected, based on literature and
in silico limitations. The problem is formulated as an MILP, sim-
ilarly to RobustKnock but including additional constraints to en-
force swaps of the cofactor specificities of the previously selected
reactions. This is accomplished by extending the model with a set
of reactions with distinct cofactor specificity to the ones in the
pool. Extra constraints are added to force the knockout of either
the native or the swapped reaction and to limit the numbers of
both swaps and deletions. The OptSwap procedure was used to
identify nonintuitive designs for several end products in E. coli,
some of which were not possible by gene deletions alone.

The most recent effort in MIP-based CSOMs combines the
kinetic descriptions of metabolic steps with traditional stoichio-
metric models to improve their predictive power and suggest
more accurate designs (113). By bridging the gap between stoichi-
ometric- and kinetic-based models (114), k-OptForce may repre-
sent a game changer and a new chassis for future CSOM develop-
ment efforts. In contrast to most CSOMs, k-OptForce does not
rely on assumptions such as the maximization of biomass or min-
imization of metabolic adjustments as a fitness function but rather
makes use of available kinetic rate laws to predict flux distribu-
tions. To meet this end, the reactions in the metabolic network are
split into two sets, one containing reactions for which kinetic in-
formation is available (Nkin) and another for the reactions with
only stoichiometric information (Nstoic). While the reactions in
Nstoic are constrained by mass balances and thermodynamics, the
ones in Nkin are subjected to enzyme kinetics, metabolite concen-
trations, and kinetic parameter values. Consequently, the Nkin

part of the network is represented as a system of nonlinear ordi-
nary differential equations (ODEs).

The k-OptForce procedure is subsequently solved in two steps.
First, a characterization of the wild type is done by solving the
system of ODEs to obtain a steady-state flux distribution for Nkin

and by using FVA for the Nstoic reactions. Similarly, the character-
ization of the overproducing strain is performed subject to the
kinetic and concentration constraints, where available. Finally,
the computation of MUST and FORCE sets from OptForce (107)
is reformulated to account for the newly introduced kinetic layer.
The introduction of nonlinear kinetics into the formulation trans-
lates into a single-level mixed-integer nonlinear optimization
problem (MINLP), which needs to be addressed using to NLP
solvers. The k-OptForce formulation was contrasted with the
original OptForce for the prediction of L-serine and triacetic acid
lactone mutants of E. coli and Saccharomyces cerevisiae, respec-
tively.

Overall, the class of methods described in this section presents
numerous advantages and has led to several successful applica-
tions that will be covered below. Yet, although the formulation of
strain optimization problems on the OptKnock framework yields
exact solutions for the defined formulations, the methods have
problems with the underlying computational complexity. This
constrains, for instance, OptKnock and related methods to a rel-
atively low maximum number of allowed transformations, as the
consideration of higher numbers would make the methods hard
to apply in current GSMMs. Also, the MIP framework restricts

these methods to the use of linear objective functions that do not
necessarily express the complexity of the bioengineering objec-
tives. Lastly, these methods rely on a tight coupling of the two
levels, the phenotype simulation and the strain optimization lay-
ers, which also reduces their flexibility. This is clearly illustrated by
the fact that there is a need to define a new method when an
optimization approach developed for a specific simulation
method is to be applied to another one, such as changing from
FBA to MOMA.

Metaheuristic CSOMs. The problems associated with the pre-
vious methods stated above motivated the development of a sep-
arate class of approaches, supported on a more heuristic rationale.
Heuristic methods are usually computationally less expensive ap-
proaches for a myriad of optimization problems. Although, due to
their nature, they do not guarantee that the overall optimal solu-
tions are found, they allow the definition of optimization frame-
works with an enriched set of objective functions, fostering a
clearer separation of the strain optimization from the phenotype
simulation methods, while allowing optimization over larger
search spaces (e.g., a higher number of gene deletions or other
modifications). In Fig. 5, a generic workflow for a typical meta-
heuristic CSOM is presented.

The first effort to move in this direction was OptGene (115),
presented by Patil and coworkers, which appeared shortly after the
publication of OptKnock and OptStrain. Inspired by the Darwin-
ian natural evolution theory, OptGene formulates a bilevel de-
coupled approach, supported by the use of a genetic algorithm
(116). The idea is to encode solutions as individuals in an evolving
population. Here, each solution is represented as a set of integer
values encoding reaction deletions. The algorithm starts by the
random generation of an initial set of candidate solutions (the
initial population), and each is decoded into a set of reaction de-
letions, which are translated into constraints, which are flux dis-
tributions predicted using FBA. A fitness value is then assigned to
each solution by a user-defined objective function, which can be
nonlinear. Subsequently, the algorithm enters an iterative stage,
starting with a selection step which chooses solutions as primary
candidates for reproduction in a stochastic way that depends on
their assigned fitness (fitter individuals have a higher probability
of generating offspring solutions). Finally, by combining these
individuals via crossover or mutation operators, a new population
is attained and reevaluated. This cycle is repeated until a desired
phenotype is achieved or another user-defined termination crite-
rion is met (typically, a defined maximum number of generations
or solutions evaluated).

Although these methods, like the previous ones, still follow a
bilevel design, in this case the bioengineering and the biological
optimization tasks are clearly decoupled and are performed inde-
pendently. This decoupling of the outer and inner optimization
problems is translated into some very powerful properties. For
example, the inner phenotype evaluation method can easily be
swapped among FBA, MOMA, ROOM, or any other phenotype
simulation method, including the ones using regulatory con-
straints (such as rFBA or SR-FBA). Another important advantage
is the flexibility in the definition of the objective function in the
outer problem, which is here not bounded by linearity. Nonlinear
objective functions (even discontinuous) can easily be included, as
is the case with the biomass-product coupled yield (BPCY), which
resembles productivity (115), allowing definition of more mean-
ingful and powerful functions. The flexibility gained by the decou-
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pling of the two layers also allows the easier switch of the opti-
mization heuristic used to search for metabolic engineering
strategies and allows the different optimization tasks to be ad-
dressed with a similar framework.

In the original publication, the OptGene method was first used
to suggest S. cerevisiae designs for the production of vanillin, glyc-
erol, and succinate. Since then, taking advantage of the flexibility
provided by this approach, the framework has been thoroughly
extended to support additional features and algorithms. Rocha
and coworkers provided a reformulation of OptGene where set-
based evolutionary algorithms (SEAs) and simulated annealing
(SA) algorithms were used in the outer optimization problem
(117), enabling a more compact representation and the simulta-
neous optimization of the number of knockouts. Also, extensions
were proposed where metabolic engineering strategies consider
both metabolic and regulatory genes as targets (118), gene over- or
underexpression (119), and multiobjective optimization prob-
lems (120).

A very similar method, cipher of evolutionary design (CiED)
(121), was also developed and experimentally validated in E. coli
for the increased production of malonyl coenzyme A (malonyl-
CoA).

More recently, Constanza et al. analyzed robustness issues in-
volved in suggested genetic interventions (122). The proposed
genetic design through multiobjective optimization (GDMO) is
inspired by the nondominated sorting genetic algorithm II
(NSGA-II) (123), a multiobjective evolutionary algorithm (MOEA)
which uses the Pareto optimality principle to find the optimal (or
near optimal) trade-off solutions in a multiobjective optimization

problem. The procedure begins with the preprocessing stage,
where a sensitivity analysis on the model ranks the various path-
ways according to their influence on the outputs. Subsequently,
the MOEA searches for both gene deletions and nutrients in the
medium, as specified by the defined objective functions. Finally, a
robustness analysis task selects the most robust designs as ideal
candidates for implementation by applying a random-noise func-
tion that causes small perturbations in the upper and lower
bounds of the fluxes. The process is repeated for T trials, and the
robustness of the design is defined as the number of robust trials
with respect to the total number of trials. A design is considered
robust if it still maintains the expected outcome after the pertur-
bation. This procedure was applied in E. coli for the production of
succinate and acetate, and its results were compared with those of
OptGene, SEAs/SA algorithms, and OptKnock.

The genetic design through local search (GDLS) method (124)
embraced the problem from a different perspective. By using iter-
ative local search steps, building on previous solutions, GDLS is
capable of suggesting efficient strain designs, involving a larger
number of genetic interventions (both gene deletions and over-
and underexpressions). However, as later pointed out (111), the
complexity still increased exponentially with larger scopes of each
local search. GDLS proof of concept was established by suggesting
acetate- and succinate-productive E. coli strains.

Later, part of the GDLS team also participated in the develop-
ment of the genetic design through branch and bound (GDBB)
approach (125). GDBB uses a truncated branch and bound tech-
nique to tackle the scalability problems associated with the bilevel
MILP problem introduced by OptKnock. The formulation, simi-

FIG 5 Workflow of generic metaheuristic CSOM. The separation of the several layers (model/phenotype prediction/strain optimization) is easily visible.
Typically, an iterative procedure generates or modifies candidate solutions, which are translated into perturbations to the original network. Afterwards, the
phenotype of the perturbed network is simulated and evaluated. The method stops when a desired phenotype or other termination criterion is attained.
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lar to that of OptKnock, makes use of the Gurobi solver (Gurobi
Optimization, Houston, TX, USA) implementation of the trun-
cated branch and bound algorithm and exploits its optimality and
feasibility configuration options to fine-tune the truncation pro-
cess. By not allowing the solver to reach optimality, but rather
forcing it to stop at near-optimal solutions (considered sufficient
for practical purposes), the performance of the method was im-
proved significantly compared to that of previous approaches.
Such a technique is readily applicable to any method whose foun-
dational framework is a bilevel MIP for which a single-level MIP
equivalent is attainable.

More recently, Rockwell and coworkers presented the Redirec-
tor approach (126). This method is based on the iterative local
search technique used by GDLS but introduces a novel objective
function reconstruction cycle in the iterative procedure. This
novel cycle is composed of two steps: the first one, called “objec-
tive control,” finds metabolic engineering targets and adds them
to the objective function, while the second one, designated “pro-
gressive target discovery,” iteratively adjusts the contribution of
growth to the objective function, redirecting resources to the op-
timization of the target compound. Important in this method is
the idea of simulating over- and underexpression of enzymes by
including the fluxes in the objective function with positive and
negative coefficients, respectively. This approach was applied to
the discovery of novel E. coli designs for the production of fatty
acids.

One of the latest noteworthy heuristic CSOMs presented is
FastPros (127), an efficient screening procedure based on shadow
price analysis. By relaxing or strengthening a given constraint in
an LP problem, it is possible to measure the change in the value of
the objective function, a variable which is termed the shadow price
of the constraint. This algorithm introduces a novel score for
knockout screening (�target) which corresponds to the shadow
price of the constraint associated with the excretion reaction for
the compound of interest (for an FBA problem maximizing bio-
mass production rate). This new score represents the potential for
target production and is calculated by the relationship �target �
�vgrowth/�vtarget, where �vgrowth is the variation in the biomass
production caused by an increase of �vtarget from zero flux. A
positive value of �target represents growth-coupled production of
the target compound. The procedure begins with the computa-
tion of every double-knockout strategy and corresponding �target

values, from which a set of P parent sets is selected with regard to
that score. At this point, the iterative procedure begins, consisting
of the generation of knockout sets by adding every possible single
knockout to every parent set in P (yielding P � N sets), recalcu-
lating the �vtarget values, and reinitializing the procedure with the
new set of P parents. However, the value of �vtarget is related only
to the benefit toward growth, rendering the iterative procedure
insufficient for the purpose of finding high-productivity strain
designs. For this purpose, the authors proposed a modification of
the OptKnock procedure, where the candidates for reaction
knockouts are limited to those selected by FastPros, which yielded
very positive results. The FastPros procedure was used in the
screening of geranyl diphosphate- and L-phenylalanine-produc-
ing E. coli designs.

EMA-based methods. The final group of methods includes the
CSOMs that use elementary-mode analysis (EMA) as their foun-
dational framework.

Klamt and Gilles introduced the concept of minimal cut sets

(MCSs) in 2004 (128), representing the first draft of what an
EMA-based framework for strain optimization could look like. A
minimal cut set describes an irreducible group of reactions re-
quired to disrupt a given network function (a targeted reaction,
robj), and thus, in a certain way, MCSs are the opposite of EFMs,
which describe the minimal functional modes. Similarly to EFMs,
the set of MCSs in a network is also unique. As a limitation, the
computation of the EFMs of the network is required a priori,
which has limited the uses of MCSs to small to medium-size net-
works. After the computation of the EFMs is performed, the EFM
set is divided in two subsets, one containing all the EFMs that
involve the target reaction robj (the target modes, Et) and another
containing all the EFMs that do not involve the target reaction (the
nontarget modes, Ent). By ensuring that all the target modes be-
come inactive after the removal of a set C of reactions, only non-
target modes will be left; hence, by the definition of EFMs, it is no
longer possible to find a feasible flux distribution involving robj.
An MCS “hitting” all target modes is termed a minimal hitting set,
and the computation of the minimal hitting sets from the set of
target modes can be performed using the Berge algorithm (129).
In this work, several possible applications MCS were discussed,
including target identification and repression of cellular func-
tions, network verification and mutant phenotype predictions,
and structural fragility and robustness analyses. Later, the concept
of MCSs was refined and generalized to multiple targets, and its
duality properties with EFMs were studied in more detail (130).

The main limitation of the MCS approach is that by being
focused on a target functionality to be disrupted, it is rendered
oblivious to possible side effects over other desired functionalities.
To tackle this limitation, Hädicke and Klamt developed a gener-
alized approach of MCSs termed constrained minimal cut sets
(cMCSs), allowing for the inclusion of side constraints (131). A
cMCS C is now admissible if it hits all target modes but also main-
tains a minimum number n of desired EFMs. It is not expected
that this set (D) will keep all the desired modes, meaning that it is
possible that some of the desired modes will also be hit by some
MCSs. However, the set of desired modes not hit by any MCS (DC)
is bounded by |DC| � n. The introduction of these constraints
indicated an adaptation of the Berge algorithm. This approach has
been demonstrated for the production of ethanol in E. coli. The
inclusion of regulatory constraints into cMCSs was later done by
Jungreuthmaye and Zanghellini, who devised the regulatory con-
strained MCSs (rcMCSs) (132).

Concurrently, Srienc and collaborators presented another
EMA-based approach, named minimal metabolic functionality
(MMF) (133). This approach iteratively searches for all the com-
binations of gene deletions that will eliminate all undesired EFMs
while keeping a set of optimal or near-optimal ones intact. Simi-
larly to other approaches, coupling of biomass and product syn-
thesis can be enforced by the selected knockout strategies. The
application of MMF yields a network containing only its most
efficient pathways, and its applicability was verified experimen-
tally for the production of several secondary metabolites in E. coli.

The first EMA-based approach to consider other types of met-
abolic engineering interventions besides knockouts was Flux-
Design (134). This procedure first computes the set of EFMs by
using the EFMTool (135), followed by a normalization step that
for a given EFM calculates the relative flux for each of its reactions,
normalized to the substrate uptake. Finally, to decide whether or
not a given reaction r represents a potential intervention target, a
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chosen set of EFMs is searched for (statistically) significant corre-
lations between the flux through the objective reaction and the
flux through reaction r. This strategy yields targets for both
amplification (upregulation) and attenuation (downregula-
tion). FluxDesign was demonstrated for lysine and enzyme pro-
duction in Corynebacterium glutamicum and Aspergillus niger, re-
spectively.

Another approach for suggesting multiple types of genetic in-
terventions came from Hädicke and Klamt (136). The proposed
computational approach for strain optimization aimed at high
productivity (CASOP) is based on reaction importance measures,
where their relative contributions to yield and flux capacity are
taken into account. With the purpose of finding growth-coupled
high-productivity strain designs for a target product P, the proce-
dure begins by considering an artificial external metabolite (V),
which is produced from biomass and the target product by the
reaction (here simplified) Rv: (1 	 
)BM � 
P(ext) ¡ V, 
 �
[0,1], with 
 representing the relative production of P(ext) with
respect to biomass (BM) synthesis. By iteratively increasing the
parameter 
, computing the set of EFMs for the new scenario, and
recalculating the EFM weights and reaction importance measures,
the procedure yields a set of candidates for knockouts and over-
expressions. Succinate-overproductive E. coli strain designs were
suggested to demonstrate the applicability of this approach.

More recently, Trinh and coworkers presented the systematic
multiple-enzyme targeting approach (SMET) (137). This method
uses cMCS to find the set of modes maximizing a desired product
yield and ensemble metabolic modeling (EMM) to generate en-
semble models representing the steady-state phenotype of the
wild-type strain. Afterwards, SMET is used to systematically iden-
tify sets of enzyme targets to engineer the wild-type strain to reach
the desirable phenotype. The SMET approach is capable of sug-
gesting designs based on deletions or over- or underexpressions
and has been validated in the production of aromatic amino acids
in E. coli.

An alternative method was suggested by Soons and coworkers
(138), which combines both objective function-centered and
pathway enumeration-centered approaches to achieve productive
strain designs coupled to biomass growth. Their proposed
method, iStruF, introduces the notion of structural fluxes, which
are derived from the pathway enumeration of a metabolic net-
work. The method is demonstrated for the production of ethanol
and succinate in a medium-scale S. cerevisiae metabolic network.

Until recently, the use of EMA-based methods, including ap-
plication to strain optimization, was limited to small- to medium-
scale metabolic networks, as the number of possible EFMs in-
creases exponentially with the network size. Indeed, all previously
mentioned validation examples do not use GSMMs but rather use
small or medium-size models with selected pathways.

Some approaches to circumvent this issue have been suggested
in the past (139, 140) but have limited applicability in this con-
text. A big step forward into bringing EMA-based CSOMs to
the genomic scale was taken by de Figueiredo and collabora-
tors, with the publication of a method to generate the shortest
EFMs in a genome-scale metabolic network (141). While not
being able to find all EFMs for the network, this method allows
iterative calculation of sets of EFMs of interest for a given ME
task (e.g., those achieving a given chemical transformation or a
set of chemical transformations). As an illustration, the

method has been employed within CASOP to extend it to ge-
nome-scale metabolic models via a heuristic approach named
CASOP-GS (142).

Even more noteworthy is the latest work by von Kamp and
Klamt, MCSEnumerator, published in early 2014 (145). The
method begins by converting the original network and interven-
tion objective to its dual form, following the approach of Baller-
stein et al. (143), and then enumerates the k shortest EFMs in the
dual network using a modified version of the approach of de
Figueiredo et al. (141). The EFMs in the dual network correspond
to the MCSs in the primal network, and thus the shortest EFMs in
the dual network will correspond to the smallest MCSs in the
primal network. The framework is formulated as an MILP prob-
lem, elegantly extended to represent sets. In their paper, MCS-
Enumerator is demonstrated first by enumerating all the synthetic
lethal mutations up to 5 knockouts in a GSMM of E. coli (144) and
then enumerating of all the cMCSs up to 7 reactions leading to
growth-coupled ethanol production in the same model.

Comparative analysis of the different classes of CSOMs. After
reviewing all the relevant methods, it is important to provide an
overall discussion of their merits and limitations. Figure 6 sup-
ports this discussion by organizing the most relevant methods
according to several criteria, including scalability, ability to gen-
erate exact optimal solutions, and year of development. Also,
other aspects related to the optimization task, experimental vali-
dation, and patent applications are also represented. Importantly,
in Fig. 6, the links represent an attempt to define the methods’
phylogeny, i.e., to identify methods that are extensions of or at
least are strongly based on previous ones.

One important trend that is clear from Fig. 6, looking at the
dates of development, is the growing number of published meth-
ods over the last few years. This indicates the relevance of the
problem and the growing need for efficient strain optimization
methods. Another observable conclusion is the clear trade-off be-
tween scalability and the guarantee to reach the global optimal
solution. The formulations of most MIP- and EMA-based meth-
ods guarantee that, for the implemented objective function, the
global optimal solution is always found. To do this, the complexity
of the mathematical formulations is usually incremented in such a
way that, for larger models or for a higher number of tested per-
turbations, they usually do not scale well. Some authors addressed
these scalability problems by suggesting ways to simplify the prob-
lems in MIP-based methods (95, 111) or by computing subsets of
the solution space in EMA-based approaches (145). The recent
developments from Klamt and coworkers (145) hold the promise
to scale up EMA-based strain optimization and boost their utility
in real-world applications.

Another approach is the use of metaheuristic CSOMs, which
usually scale well with larger models or higher numbers of tested
perturbations. However, there is no guarantee that the global op-
tima will be found. When the solution space is large enough, they
will usually reach optimal or near-optimal solutions faster than
MIP- or EMA-based methods. However, even if they often per-
form better than these methods in large-scale problems, since fur-
ther increasing the number of allowed perturbations will cause the
solution space to grow exponentially, this might make it hard even
for metaheuristic methods to find good solutions.

Metaheuristic methods are also more flexible when it comes
to the specification of objective functions, since they are not
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bounded by linearity. For most MIP-based methods, the intro-
duction of a nonlinear objective function will yield computation-
ally very expensive MINLP problems.

The inclusion of support for gene-based intervention strate-
gies, through GPR information, within the strain design methods
is another trend adopted by several authors along the years. Al-

though this increases the complexity of the overall approach, most
solutions reached when only reactions are accounted for will be
unfeasible once the GPR relationships are scrutinized. Common
problems in this context are related to the existence of isoenzymes
and, more importantly, to the fact that the same gene might be
associated with several reactions, some of which can be essential

FIG 6 Properties of CSOMs and their relationships. The target plot is sectioned into 4 discrete quadrants regarding scalability and exactness. Methods in the
upper region are considered more scalable, while methods in the bottom region are considered less scalable. Similarly, the methods located in the right region of
the figure guarantee that, if it exists, the optimal solution for the specified objective function is always found, while the methods in the left region, being inherently
heuristic, do not. Other features are indicated on the figure.
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for biomass growth and others important targets for redirecting
the metabolic flux when removed.

One important aspect of the applicability of the discussed
methods is how easily they can be accessed and used. Although
descriptive formulations for most of the methods are provided in
their respective publications, their implementations are generally
not available. The methods from the OptGene family (EAs/SAs)
and OptKnock can be readily accessed through the OptFlux work-
bench (146), and all the code is available under a GPL open-source
license. The COBRA toolbox (147) also provides open-source im-
plementations for some of these methods, such as OptKnock,
OptGene, and GDLS; however, it depends on the commercial soft-
ware MATLAB (The MathWorks, Inc., USA). Moreover, access to
most of the methods from the Klamt group, such as CASOP and
cMCS, is provided via CellNetAnalyzer (148), but the source code
is not disclosed. Complete information regarding the availability
of the discussed methods has been included in the Table S1 in the
supplemental material, where the available methods are charac-
terized by a set of features related to their aims, formulations,
availability, and validation.

APPLICATIONS AND DISCUSSION

GSMM reconstructions and related querying methods have been
employed as guiding tools for the development and optimization
of bioprocesses for a wide range of industrially relevant chemicals,
such as lycopene (149, 150), malate and succinate (151, 152),
L-threonine (153), L-valine (154), and diapolycopendioic acid
(155). Other applications include biofuels, such as bioethanol
(156) or biohydrogen (157), and drug target discovery (158, 159).
Recent reviews discussing the various applications of GSMMs are
available (20, 48, 160–162).

Despite the positive results accomplished by employing
GSMMs and related querying methods, elaborate strategies such

as amplification/attenuation of gene expressions or strategies re-
quiring multiple types of interventions are attainable neither by
simple network inspection nor by exhaustive/iterative strategies
(163). For these complex and nonintuitive strategies, the use of
CSOMs is put forward. Academic researchers have concentrated
some efforts on the validation of such methods; however, it is still
not clear whether the application of CSOMs in guiding ME appli-
cations is already being used by the industry or whether it is lim-
ited only to the academic spectrum. Since CSOMs are centerpiece
of this review, in the following discussion we focus mainly on
applications where at least one of the discussed methods has been
employed. To support this discussion, Table 1 provides a sum-
mary of the main experimental validations performed for CSOMs
results, and Table 2 lists some industrial patents and patent appli-
cations referring to the use of at least one CSOM.

Two years after the publication of OptKnock, Fong and co-
workers implemented the predicted gene deletions for growth-
coupled lactate production in E. coli and performed the first ex-
perimental validation of a CSOM (164). They concluded not only
that the constructed strains were overproducing lactate but that
this production was indeed coupled to growth, according to Opt-
Knock predictions. Notwithstanding this positive confirmation,
some discrepancies between the computationally predicted and
experimentally observed growth rates were also reported. Since
then, OptKnock has been employed in several other efforts, in-
cluding increasing the respiratory rate in Geobacter sulfurreducens
(165) and the production of 1,4-butanediol (166) and 2,3-butane-
diol (167) in E. coli and S. cerevisiae, respectively. More recently,
particularly through the hands of Genomatica, Inc., several patent
applications referring to the use of OptKnock have been filed,
related to the development of microorganisms for the production
of adipic acid (168), 1,4-butanediol (169, 170), and the polyester
precursor cyclohexanedimethanol (171). Another patent applica-

TABLE 1 Experimental validation of CSOMs found in the literature

Organism (model) Application Yr Method(s) Results Reference

E. coli (iJR904) Lactate 2005 OptKnock 25% increase in pta-adhE strains, 73% increase in pta-pfk
strains, 55% increase in pta-adhE-pfl-glk strains

164

G. sulfurreducens (iRM588) Respiratory rate 2008 OptKnock Higher respiratory rate and increased electron transfer;
expected decrease in growth

165

E. coli (iJR904) Malonyl-CoA 2009 CiED Specific flavone yields increased by over 600% 121
S. cerevisiae (iFF708) Sesquiterpene 2009 OptGene, MOMA 85% increase in titer 173
E. coli (EcoMBEL979) Lycopene 2010 FSEOF Maximum 3.2-fold increase in lycopene 178
E. coli (iJR904) NADPH availability 2010 CiED, MOMA 4-fold increase in leucolyanidin, 2-fold increase in catechin 177
S. cerevisiae (iFF708) Vanillin 2010 OptGene, MOMA,

FVA, MMTa

5-fold increase compared to results in reference 174 189

C. glutamicum (ATCC 13032) L-Lysine 2011 FluxDesign, EMA Nearly 2-fold yield increase compared to results in
reference 179

190

E. coli (iJR904) 1,4-Butanediol 2011 OptKnock Over 3-fold increase in titer 166
E. coli (iJR904) Malonyl-CoA 2011 OptForce 4-fold increase in intracellular levels of malonyl-CoA;

highest yield of naringenin in a lab-scale fermentation
ever achieved

108

E. coli (iAF1260) Fatty acids 2012 OptForce Over 20% yield increase among all tested strains 109
B. subtilis (iYO844) Isobutanol 2012 FluxDesign, EMA 61% of maximum theoretical yield, a 2.3-fold increase 191
S. cerevisiae (iMM904) 2,3-Butanediol 2012 OptKnock 2,3-Butanediol titer of 2.29 g/liter and yield of 0.113 g/g

under anaerobic conditions
167

S. cerevisiae (iMM904) Succinate 2013 OptGene 30-fold improvement in succinate titer and 43-fold
improvement in succinate yield compared to the
reference strain

175

a MMT, minimization of metabolite turnover (described in the supplemental material of reference 189).
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tion mentioning OptKnock and OptStrain in the engineering of
primary alcohol producing microbes has also been filed (172).

Subsequently, the usefulness of some heuristic CSOMs was
also gradually asserted. Asadollahi and coworkers used OptGene
to find S. cerevisiae sesquiterpene-producing mutants with an 85%
increase in titer (173). Here, the flexibility of the decoupled bilevel
heuristics became evident, since the authors employed MOMA as
the phenotype simulation method. A year later, Brochado and
colleagues revisited S. cerevisiae, this time for the overproduction
of vanillin, using OptGene as the strain design method, which
resulted in a 5-fold increase compared to previously reported pro-
duction (189). Discrepancies between the predicted results and
the batch cultivations were attributed to the lack of kinetic and
regulatory information, reinforcing the need to invest in the inte-
gration of such information with GSMMs and in the development
of simulation and optimization methods that take this informa-
tion into account. More recently, Otero and coworkers employed
OptGene in the design of an S. cerevisiae strain which improved
succinate yield on biomass by 43-fold in comparison with the
reference strain (175). Moreover, in 2013, Invista (Invista North
America S.A.R.L. USA) filed patent applications referring to the
use of OptFlux (146), whose implemented strain optimization
methods are direct descendants of OptGene, describing a method
for producing 6-carbon chemicals (176).

Other heuristic approaches were also experimentally validated
by Fowler and coworkers for the overproduction of malonyl-CoA
(121) and by Chemler and colleagues (177) for the increased avail-
ability of NADPH, both in E. coli. The work of Fowler et al. cul-
minated in flavone yields increased by over 600%, while that of
Chemler et al. translated into a 4-fold increase in leucocyanidin
and a 2-fold increase in catechin.

Naturally, validations of gene deletions suggested by CSOMs
were the first to be performed, and they were indeed successful to
a certain degree. However, other, more elaborate strategies are not
so easy to attain. An obvious example is the identification of gene
amplification/attenuation targets, which are not necessarily re-
flected by an increase in the metabolic flux, due to the complexity
of the regulatory machinery. Despite the efforts directed to this

subject, quantitative predictions of the flux distribution following
this type of intervention are still in their infancy. OptReg was
specifically designed for this purpose but has never been experi-
mentally validated.

In fact, the first validation of a method suggesting over- or
underexpression of genes was performed by Choi et al. for flux
scanning based on enforced objective flux (FSEOF) (178), revisit-
ing lycopene overproduction in E. coli. The FSEOF procedure
consists of changing the objective function of the classic biomass
maximization FBA problem by considering an additional con-
straint enforcing the production of the desired target. The iterative
procedure progressively increases the enforced minimum value of
the product while scanning the remaining flux distribution for
relevant flux changes (relative to the wild type). The most com-
monly changing fluxes are considered preferential targets for ma-
nipulation. The best strain achieved in this work resulted in a
3.2-fold lycopene increase in comparison with that of the control
strain and a titer slightly in excess of that reported by Alper and
coworkers (150).

Another such method is OptForce, which was promptly vali-
dated in E. coli for the production of malonyl-CoA (108). Opt-
Force application was translated into a 4-fold increase in intracel-
lular levels of malonyl-CoA and the highest yield of naringenin in
a lab-scale fermentation reported. OptForce was also successfully
applied in the E. coli overproduction of fatty acids (109), with an
overall 20% increase among all the strains.

The last class of methods discussed in this review, EMA-based
CSOMs, has only one member for which experimental validation
was performed. FluxDesign was validated first for the production
of L-lysine in C. glutamicum, where a 2-fold increase in yield was
achieved in comparison with an existing strain (179), and later for
the production of isobutanol, where a strain operating at 61% of
the maximum theoretical yield was engineered.

Although no academic validation has been performed for
CASOP, it has recently been cited in a patent application by Adis-
seo (Adisseo France S.A.S., France) describing a method for the
preparation of 2,4-dihydroxubutyrate (180) and another by the

TABLE 2 Industrial patent application/grants for microorganisms, products, or processes referencing the use of at least one CSOM

Description Patent no. Yr Assignee CSOM Reference

Microorganisms for production of adipic acid and
other compounds

U.S. 7,799,545 B2 2010 Genomatica, Inc. OptKnock 168

Microorganisms for production of 1,4-butanediol,
4-hydroxybutanal, 4-hydroxybutyryl-CoA,
putrescine and related compounds, and
methods related thereto

U.S. 20,110,229,946 A1 2011 Genomatica, Inc. OptKnock 169

Primary alcohol-producing organisms U.S. 7,977,084 B2 2011 Genomatica, Inc. OptKnock OptStrain 172
Microorganisms and methods for production of

1,4-cyclohexanedimethanol
U.S. 20,120,156,740 A1 2012 Genomatica, Inc. OptKnock 171

Cytosolic isobutanol pathway localization for
production of isobutanol

U.S. 8,232,089 B2 2012 Gevo, Inc. OptORF 192

Microorganisms for production of 1,4-butanediol
and related methods

US8129169 B2 2012 Genomatica, Inc. OptKnock 170

Methods of producing 6-carbon chemicals via
CoA-dependent carbon chain elongation
associated with carbon storage

U.S. 20,130,183,728 A1 2013 Invista North America
S.A R.L.

OptFlux (EA/SA) 176

Method for prepn of 2,4-dihydroxybutyrate WO2014009435 A1 2014 Adisseo France S.A.S. CASOP 180
Microorganism modified for production of

1,3-propanediol
WO2014009432 A2 2014 Institut National des

Sciences Appliquées
CASOP 181
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Institut National Des Sciences Appliquées (France) for the engi-
neering of a 1,3-propanediol-producing microorganism (181).

Until recently, EMA-based approaches were limited to small to
medium networks, which forced its application to be subjected to
a biased selection process for the most promising pathway(s),
which ultimately hinders the holistic vision characteristic of sys-
tems biology applications.

Overall, however, and despite these successful in vivo applica-
tions, the obtained improvements in yields, productivities, and
titers are still far from the ones obtained with nonrational tradi-
tional approaches such as random mutagenesis. In fact, as an il-
lustrative example, over 1,000-fold increase in the amount of pen-
icillin produced in Fleming’s original culture of Penicillium
chrysogenum by the use of X rays, UV rays, or other mutagens since
the 1950s has been reported (182). Although this time span is
not compatible with the needs of modern biotechnology, this
scale of improvement is clearly currently unattainable with ra-
tional methods.

One of the reasons for this is clearly the lack of relevant infor-
mation in the models used, but it is also difficult to assess where
additional developments should be focused, i.e., whether in the
development of better models, in simulation methods, or in opti-
mization tools, since most validation efforts are not exploited in
sufficient detail. For example, there is a clear lack of studies that
include more than one round of in silico design in in vivo imple-
mentation and where advanced omics data-based tools are used to
characterize the developed strains, feeding and improving the in
silico predictions. In the future, studies focusing on characterizing
in detail the strains constructed from rational approaches, report-
ing failed efforts and several cycles of intervention, are necessary to
assess where the main bottlenecks are. In fact, since most of the
few reported validation efforts have been associated with specific
CSOMs, which would be the final layer of an in silico approach, it
is often impossible to decouple the effects of model predictions
from the CSOM results themselves. More studies that would allow
separation of the validation of GSMMs, simulation tools, and
CSOMs are thus needed. To mention only an extreme example,
the validation of simulation methods such as FBA, MOMA, or
ROOM on a large scale has never been performed apart from the
examples used when the methods have been developed or im-
proved (52, 53, 57), a gap attributable in part to the scarcity of flux
distribution experimental data.

Other studies that are lacking include the systematic utilization
of the vast amount of information on strains developed using
nonrational approaches to understand if the existing models/sim-
ulation/optimization tools allow reproducing the successful ap-
proaches and what can be learned from those strains.

In summary, although improvements are clearly needed in the
development of novel CSOM methods that were very scarce until
recently, it is probably also important to focus research efforts on
the experimental validation of in silico approaches to foster the
adoption of rational tools in industrial biotechnology.

CONCLUDING REMARKS

The shift from traditional chemical synthesis processes to biotech-
nological ones holds the promise to reshape the industrial land-
scape in the 21st century. Essentially driven by energy security and
climate changes, the road toward a bio-based economy still faces
several barriers. The investment in high-risk research-and-devel-
opment infrastructure to support it and guarantees of a steady and

controlled supply of raw materials (mostly agricultural products
or by-products) are among the most sensitive issues to be ad-
dressed. Another barrier is the public perception of some biotech-
nologies, such as the use of genetically modified microorganisms
(GMOs) in agriculture and food processing. Moreover, the use of
farmable land for nonfood crops in a growing world population
raises ethical concerns that must be properly addressed (183).
Current worldwide revenue estimates for biotechnology-derived
goods reach around EUR 60 billion, while some predictions for
2030 place this value at nearly EUR 300 billion (183). The adop-
tion of these knowledge-based approaches is dependent on global
policies supporting the improvement, validation, and scaling up
of these technologies, reducing their risk and making them more
attractive to the industry. In fact, both the United States, with the
National Bioeconomy Blueprint (184), and Europe, with the
Knowledge-Based Bio-Economy (KBBE) programs (185), are set-
ting clear objectives and allocating public resources for these
matters.

While the development and validation of rational approaches
focused on the development of microorganisms for the produc-
tion of biofuels and other bio-based chemicals are evolving
steadily, the same cannot be said regarding agricultural efforts. A
clear indicator of this gap is the relative scarcity of GSMMs in the
plant kingdom, with reconstructions for only four higher plants
available (186). The rational engineering of plants for both food
crops and biomass (for other purposes, such as biofuels) will re-
quire a stronger investment at both the economic and at policy-
making levels.

In the various research fronts toward a bio-based economy, the
development of reliable GSMMs, robust phenotype prediction
methods, and efficient strain optimization algorithms will in-
creasingly become more relevant. GSMMs and phenotype predic-
tion methods are already used to some extent to guide and evalu-
ate rational engineering efforts (187), although, as mentioned
above, further validation efforts are necessary on both fronts.

Specific limitations regarding the scalability of exact strain op-
timization methods, such as the ones supported by MIP-based or
EMA-based implementations, are gradually being dealt with or
circumvented by various researchers. More recently, these limita-
tions are becoming more tractable, and a convergence between
EMA-based and MIP-based approaches is to be expected. In fact,
Hädicke and Klamt describe how both the OptKnock and Robust-
Knock methods can be reformulated as corresponding cMCS
problems (131).

Another limitation affecting the precision and feasibility of the
metabolic engineering strategies is intimately connected with the
lack of kinetic and regulatory information available and consid-
ered in the discussed approaches. The recently proposed k-Opt-
Force from Chowdhury and coworkers (113) is a step in this di-
rection. While acquiring kinetic data will remain a difficult
problem, already well-known phenomena and parameters can be
exploited by this approach in tandem with the more commonly
used stoichiometric representations of metabolism, improving
the predictive capabilities of previous methods.

While improvements in scalability of MIP-based and EMA-
based methods are gradually being made, these authors believe
that the space for metaheuristic methods for strain optimization is
not exhausted. The intrinsic simplicity, the flexibility allowed in
the definition of (multi)objective functions, and the lack of com-
plex implementation constraints allow these methods to be easily
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adapted to different tasks, as well as to efficiently inspect the search
space, thus providing quick and useful solutions to problems of
various dimensions and addressing distinct design aims.

As stated above, a large panoply of methods proposing the
integration of omics data within constraint-based metabolic mod-
els and phenotype simulation methods have been proposed. How-
ever, their results are still not convincing (62), and probably for
that reason the number of CSOMs exploring these capabilities is
still scarce, leaving room for the emergence of new branches from
previously proposed CSOMs or even entirely new ones.

In this review, we have presented a highlight of the main com-
putational strain optimization methods. These methods were seg-
mented into three distinct categories, and their functionalities and
main applications were analyzed. As the number of genome-scale
reconstructions increases each year and the complexity of these
models is able to capture more and more information (188), new
methods capable of exploring this information to generate new
knowledge are expected to arise, holding the promise of finally
bridging the gap between the academic-grade efforts and the in-
dustry-grade standards required for a full adoption of CSOMs as a
standard tool for guiding metabolic engineering efforts. Neverthe-
less, this adoption is possible only if underlying tools such as mod-
eling and simulation are also further developed and validated.
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