Skip to main content
. 2016 Jan 8;77(1):68–76. doi: 10.15288/jsad.2016.77.68

Table 3.

Hierarchical Bayesian Poisson models for counts of alcohol outlets in census block groups (n = 8,877) nested in 50 cities, with random effects for cities

graphic file with name jsad.2016.77.68tbl3.jpg

Variable Model 1a: All outlets IRR [95% CI] Model 2a: Bars IRR [95% CI] Model 3a: Restaurants IRR [95% CI] Model 4a: Off premise IRR [95% CI]
Area (ln) Incomea 1.523 [1.458, 1.592] 1.442 [1.350, 1.541] 1.644 [1.555, 1.737] 1.358 [1.316, 1.402]
 Local 0.801 [0.781, 0.821] 0.774 [0.740, 0.811] 0.792 [0.769, 0.816] 0.835 [0.817, 0.853]
 Lagged 0.854 [0.823, 0.886] 0.844 [0.791, 0.901] 0.852 [0.806, 0.898] 0.877 [0.851, 0.905]
 City 1.326 [1.258, 1.399] 1.336 [1.214, 1.482] 1.494 [1.339, 1.634] 1.190 [1.111, 1.275]
Market potential
 Localb 1.010 [1.006, 1.015] 1.004 [0.996, 1.011] 1.010 [1.004, 1.015] 1.011 [1.007, 1.014]
 Laggedc 1.059 [1.046, 1.072] 1.042 [1.021, 1.062] 1.077 [1.062, 1.094] 1.046 [1.036, 1.056]
 Cityd 1.004 [0.995, 1.013] 1.004 [0.991, 1.017] 1.003 [0.990, 1.016] 0.999 [0.990, 1.008]
Moranʼs I for CAR term Proportion of variance explained by: 0.207 0.311 0.240 0.260
City random effect 0.060 [0.040, 0.086] 0.091 [0.054, 0.136] 0.070 [0.055, 0.089] 0.117 [0.089, 0.150]
CAR random effect 0.226 [0.179, 0.273] 0.163 [0.079, 0.266] 0.419 [0.356, 0.488] 0.048 [0.016, 0.092]

Notes: Bold indicates CI does not include null value of IRR = 1.000. IRR = incidence rate ratio; CI = credible interval; CAR = conditional autoregressive.

a

Per $10,000 increase;

b

per 10,000 unit increase;

c

per 100,000 unit increase;

d

per 1,000,000 unit increase.