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The interplay between the central nervous system and cardiac 

electrophysiology is fundamental, and becomes obvious each time 

one’s pulse quickens in response to stress. Normally, cardiac 

neurohormonal regulation is accomplished through the balanced 

effects of sympathetic and parasympathetic autonomic stimulation, 

along with the hormonal regulation of the renin-angiotensin-

aldosterone system (RAAS). Autonomic and hormonal input modulate 

multiple facets of cellular electrophysiology – action potential 

duration, ion channel kinetics and intracellular calcium dynamics (just 

to name a few) – which translate into macroscopic manifestations of 

autonomic modulation such as heart rate variability, atrioventricular 

(AV) conduction time and QT interval variability.1 Therefore, it is no 

surprise that neurohormonal regulation of cardiac electrophysiology is 

an area of active investigation for its potential antiarrhythmic effects. 

Recent reviews have focused on the efficacy of neurohormonal 

modulation, via non-pharmacological methods, to enhance heart 

failure treatment.2,3 

This review will attempt to provide a state-of-the-art on the potential 

antiarrhythmic efficacy of renal artery denervation, spinal cord 

stimulation and direct vagal stimulation.

Neurohormonal Control in the Normal and 
Failing Heart
Autonomic control of cardiac physiology is often conceptualised 

as parasympathetic (cholinergic) and sympathetic (adrenergic) 

innervation existing in a ‘yin and yang’ balance under normal 

circumstances; however, this concept may be over-simplified.4 In 

reality, the intrinsic cardiac nervous system, composed of several 

ganglia located primarily posterior to the atria, likely acts as a ‘little 

brain’ of the heart – it provides efferent input to the myocardium, 

collects afferent signals on a beat-to-beat basis and performs some 

integrative functions on its own, all under the tonic modulation of 

extrinsic sympathetic and parasympathetic input (see Figure 1).4–8 

The ganglia are predominantly composed of cholinergic neurons; 

however, sympathetic efferent neurons are also present. Due 

to the complex interconnectivity between the ganglia, afferent 

mechanosensory, nociceptive and chemosensory signals from all four 

chambers of the heart may be processed within a single ganglion.4 

Such interconnectivity implies that predicting the effect of stimulation 

or ablation of a particular ganglion may be difficult, because each 

ganglion performs multiple functions.7,9
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The intrinsic cardiac nervous system is constantly modulated by 

central autonomic tone via the extrinsic cardiac nervous system.10 

Cardiac sympathetic innervation arises from the superior cervical 

ganglion, stellate ganglion and thoracic ganglia, which communicate 

with C1–3, C7–T2 and T1–T5, respectively.4,11,12 Preganglionic 

parasympathetic innervation exits the medulla via the vagus nerve, 

which then provides several small branches to the intrinsic cardiac 

nervous system. Parasympathetic innervation is concentrated around 

the sinoatrial (SA) and AV nodes, with greater vagal innervation of the 

atria than the ventricles. 

In heart failure, the balance of cardiac parasympathetic and sympathetic 

tone is significantly altered leading to sympathetic hyperactivity.13 

Decreased cardiac output and myocardial ischaemia stimulate the 

arterial baroreflex, arterial chemoreflex and the cardiac sympathetic 

afferent reflex while attenuating afferent cardiac vagal reflexes leading 

to an overall increased sympathetic tone, peripheral vasoconstriction 

and sodium retention.14–18 Over time, chronic sympathetic hyperactivity 

is maladaptive in the heart, leading to decreased contractility through 

beta-receptor downregulation, increased cardiomyocyte apoptosis and 

myocardial fibrosis.14 Current cornerstones of pharmacological heart 

failure management are based on neurohormonal blockade, with a 

mortality benefit conveyed by beta-blockers,19–21 angiotensin-converting 

enzyme (ACE) inhibitors22 and aldosterone antagonists.23 

Due to the growing need to improve heart failure therapies, 

there are now non-pharmacological approaches to re-establish 

autonomic balance that are currently under investigation, such 

as vagal stimulation and spinal cord stimulation.3 Similarly, renal 

denervation is an emerging technique to treat resistant hypertension, 

and may have a role in treating heart failure as well. Arrhythmias 

are common co-morbidities in patients with heart failure and 

resistant hypertension, therefore trials designed to investigate  

non-pharmacological autonomic modulation in these populations 

will likely provide significant insight into the possibility of employing 

autonomic modulation as an antiarrhythmic strategy. 

Device-Based Approaches to Modulate the 
Autonomic Nervous System
Renal Denervation 
Renal Denervation and Atrial Electrophysiology
Recently, renal denervation (RDN) has become an increasingly studied 

method to control resistant hypertension.24 RDN is performed through 

endovascular ablation of several locations within the renal arteries, 

disrupting sympathetic renal efferent innervation. Reducing renal 

efferent input also decreases renal afferent output and is associated 

with reduced serum norepinephrine levels25–27 and decreased central 

sympathetic tone.28 Therefore, RDN is likely to influence cardiac 

electrophysiology through modulation of central adrenergic tone, and 

may have a role in antiarrhythmic therapy.29,30 

Preclinical work in dogs and pigs have indicated that RDN affects heart 

rate variability,26 resting heart rate, heart rate during atrial fibrillation 

(AF), AV conduction time, and decreases AF incidence in a model of 

obstructive sleep apnoea.31,32 RDN does not appear to effect the atrial 

refractory period.33 RDN has also been shown to prevent structural and 

electrical remodeling in a canine model of chronic rapid atrial pacing.34

In humans, resting heart rate was decreased, and the PR interval was 

increased following RDN;35 indicating that RDN can affect autonomic 

modulation of cardiac conduction in patients. The direct effect of 

RDN on atrial arrhythmias was recently investigated in a small trial  

of patients with a history of drug resistant hypertension and 

paroxysmal AF that were randomised to either pulmonary vein 

isolation (PVI) or PVI with RDN.36 In the RDN group, both the systolic 

and diastolic blood pressures were significantly decreased as 

compared with the PVI group. Echocardiographic data also revealed 

a decrease in left ventricular (LV) thickness – substantiated in other 

studies as well.37,38 In this setting, the freedom from AF was 69  % 

at one-year in the RDN group, versus 29  % in the PVI only group.36 

However, because there was also a substantial decrease in blood 

pressure in the denervation group, these results beg the question: did 

blood pressure control alone account for the decrease in AF, or was 

it also influenced by decreased afferent renal sympathetic output? 

Hypertension alone has been shown to cause atrial remodeling and 

is a significant reversible risk factor for AF.39 Therefore, removing the 

hypertensive stimulus for remodeling may be responsible for the 

decrease in AF, and not necessarily autonomic modulation. However, if 

it were solely the effect of hypertension, similar improvement in AF rates 

would have presumably been seen in prior large trials of hypertension 

treatment.40 While the blood pressure decrease seen in recent RDN 

trials has been larger than seen previously in trials of drug therapy for 

hypertension (which may potentiate its effect on AF), the true efficacy 

of RDN for hypertension management has been brought into question 

with the recent announcement that the Renal Denervation in Patients 

With Uncontrolled Hypertension (Symplicity HTN-3) trial (clinicaltrials.

gov; Identifier: NCT01418261) did not meet its primary efficacy endpoint. 

Once published, the data from this trial will have to be examined 

Figure 1: Schematic of Cardiovascular Autonomic Control

Parasympathetic innervation exits the medullary centres via the vagus nerve, which then 
synapses with the intracardiac nervous system before providing post-ganglionic fibres to the 
myocardium. Sympathetic innervation exits the medulla and enters the spinal cord before 
exiting and traveling to the ganglia within the sympathetic chain. Post-ganglionic fibres travel 
along the major vessels prior to entering the myocardium. Sympathetic innervation also 
continues along the major vessels to the kidneys, supplying renal sympathetic innervation. 
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carefully to determine if RDN affected the rates of atrial arrhythmias in 

the absence of a significant decrease in blood pressure.

Renal Denervation and Ventricular Electrophysiology
Thus far, less is known about the impact of RDN on ventricular 

arrhythmias. Adrenergic stimulation is arrhythmogenic in the 

ventricles, with cardiac sympathetic denervation used as a possible 

treatment for refractory ventricular arrhythmias.41 RDN has been 

shown to decrease serum norepinephrine, aldosterone and central 

sympathetic tone.28 Therefore it is certainly possible that RDN may 

also reduce ventricular ectopy and arrhythmias through its ability 

to decrease central sympathetic tone. Recently a small study of 

RDN coupled with myocardial ischaemia demonstrated that RDN in 

pigs reduced premature ventricular contraction (PVC) burden and 

ventricular fibrillation (VF) induced by ischaemia.42

In humans, case reports of RDN used in patients with  

ventricular tachycardia (VT) storm, demonstrated a decrease  

in ventricular arrhythmias.43–45 Presumably, the mechanism is via 

decreased sympathetic tone; however, the true mechanisms will 

have to be elucidated in larger studies. Importantly, large clinical 

trials have demonstrated that aldosterone blockade is associated with 

decreased rates of sudden cardiac death after myocardial infarction 

(MI).23,46 Therefore, it may be that decreased renin and aldosterone 

secretion after RDN34,47 may influence its antiarrhythmic effect instead 

of (or in addition to) any change it causes in adrenergic activation. 

Potential Adverse Effects of Renal Denervation
The number of studies investigating RDN is increasing significantly. 

Thus far, there have not been significant complications reported. 

In a three-year follow-up of the Renal Denervation in Patients with 

Refractory Hypertension (Symplicity HTN-1) trial, one patient was 

noted to develop renal artery stenosis.48 At one-year, patients in 

the Renal Denervation in Patients With Uncontrolled Hypertension 

(Symplicity HTN-2) trial had stable renal function and only one renal 

artery dissection was reported at the time of denervation.49 There has 

also been concern about the possibility of RDN causing orthostatic 

hypotension. This was investigated in a small study of 36 patients who 

had undergone RDN, where no increase in orthostasis or syncope was 

found with tilt table testing.50 Recently, announcements regarding the 

Symplicity HTN-3 trial indicated that the trial met its safety endpoint 

and did not raise any significant safety concerns. 

Spinal Cord Stimulation
Spinal Cord Stimulation and Atrial Electrophysiology
Spinal cord stimulation (SCS) has been used for decades in the 

treatment of refractory angina, epilepsy and for chronic pain.51 

The precise mechanism underlying its beneficial effect in angina 

is debated; however, experimental studies suggest that spinal 

cord stimulation likely modulates preganglionic sympathetic input  

to the intrinsic cardiac nervous system, decreases afferent sensory 

output from intrinsic cardiac nerves during ischaemia, and stabilises 

the activity of the intrinsic cardiac nervous system during an 

ischaemic challenge.3,4,52,53

SCS may have an antiarrhythmic role as well. SCS in dogs applied at 

the T1–T2 level prolonged sinus cycle length and increased AH interval 

conduction time, which was abolished by vagotomy, suggesting 

that SCS at T1–T2 has a predominantly vagal effect.54 However, a 

recent study by Bernstein et al.55 applied SCS to a canine model of 

AF induced by rapid atrial pacing, and showed that SCS prolonged 

the atrial effective refractory periods in both atria and reduced AF 

inducibility if SCS was applied at the time that rapid atrial pacing 

began. These changes would suggest a predominantly sympathetic 

effect of SCS in the atria. However, one important difference in this 

study as compared with the Olgin et al.54 study is that Bernstein 

et al.55 applied SCS from T1–T5 whereas Olgin et al. applied SCS to  

T1–T2. Therefore, it is possible that different populations of nerves 

were recruited with SCS in the two studies, which could have 

influenced the net effect of SCS stimulation. Nevertheless, their 

results suggest that spinal cord stimulation reduced the burden of 

AF and may be a useful strategy in the treatment of AF. Similarly, 

Cardinal et al.56 demonstrated that brady- and tachy-arrhythmias that 

were induced by excessive activation of the intrinsic cardiac nervous 

system were reduced by SCS. 

Spinal Cord Stimulation and Ventricular Electrophysiology
The beneficial effect of SCS on refractory angina and its predominantly 

sympatholytic effect54 suggests the possibility that SCS may decrease 

ventricular arrhythmias as well.57 Issa et al.58 observed a significant 

decrease in VT and VF in a canine heart failure model that was exposed 

to transient ischaemia. In this model, SCS reduced VT/VF incidence 

from 59 % to 23 % in the setting of acute ischaemia. Similarly, in a pig 

model of acute ischaemia, Odenstedt et al.59 observed a significant 

decrease in sustained and non-sustained VT in pigs receiving SCS. 

This study also demonstrated a reduction in spatial repolarization 

gradients with SCS. Similar effects were observed following chronic 

SCS by Lopshire et al.,60 in which case chronic SCS not only improved 

LV function in a canine model of ischaemic cardiomyopathy, but also 

decreased ventricular tachyarrhythmias, over and above the effect 

seen from standard medical therapy for heart failure. 

The mechanism behind the antiarrhythmic effect of SCS is not 

completely understood and is likely multifactorial, involving modulation 

of the activity within the intrinsic cardiac nervous system, as well 

as altering the sympathetic and vagal efferents to the heart.53,60 In 

addition, inhibition of the cardiocardiac reflex may also contribute to 

the antiarrhythmic effect of SCS. In the setting of ischaemia, Foreman 

et al.53 demonstrated that SCS decreased afferent output from the 

intrinsic cardiac nervous system. In rats, disrupting the T1–T5 dorsal 

root ganglia to interrupt this reflex arc decreased the time to onset 

of ventricular arrhythmias.61 Clinically, disrupting cardiac sympathetic 

innervation either through epidural anaesthesia or through cardiac 

sympathetic denervation has been used to treat patients with 

refractory ventricular arrhythmias.62

Myocardial infarction interrupts autonomic innervation in the area 

of the infarct, with the subsequent development of sympathetic 

hypersensitivity, nerve sprouting and heterogeneous gradients of 

sympathetic innervation around the infarct.57,63 Interestingly, Zhou et al.64 

demonstrated that in ambulatory dogs with ischaemic cardiomyopathy, 

ventricular tachyarrhythmias were predominantly preceded by bursts of 

sympathetic nerve activity in the stellate ganglia. Therefore, it is plausible 

that sympathetic input enhances the heterogeneity of conduction in the 

diseased myocardium due to gradients in sympathetic innervation 

creating a ventricular substrate that is more arrhythmogenic. SCS may 

mitigate this effect by decreasing sympathetic efferent signaling to the 

myocardium, thereby preventing the enhancement of heterogeneous 

conduction and decreasing the likelihood for a ventricular arrhythmia 

to arise. In support of this hypothesis, a report of three patients that 
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received an implantable cardioverter defibrillator (ICD) and a spinal 

stimulator demonstrated a reduction in T-wave alternans when SCS 

was active, suggesting that SCS may reduce temporal repolarization 

gradients and stabilise the ventricular electrical substrate.65

Based largely on the data from dog models, there are clinical trials 

now enrolling patients to investigate the possible role of SCS in heart 

failure. The Determining the Feasibility of Spinal Cord Neuromodulation 

for the Treatment of Chronic Heart Failure (DEFEAT HF) trial, sponsored 

by Medtronic Inc., hopes to enrol 250 patients in a phase II study 

designed to measure changes in LV volume and exercise capacity in 

a population with systolic heart failure (ClinicalTrials.gov; Identifier: 

NCT01112579). Similarly, the Spinal Cord Stimulation For Heart Failure 

(SCS HEART) study is a small phase II study sponsored by St. Jude 

Medical that aims to enrol 20 patients in a trial designed to assess 

safety and develop efficacy parameters of spinal cord stimulation 

in patients with systolic heart failure (ClinicalTrials.gov; Identifier: 

NCT01362725). Neither of these trials have mentioned investigating 

arrhythmias in this population; however, it will be intriguing to see 

if there is any observed decrease in ventricular arrhythmias in this 

population, which is clearly at risk.

 

Potential Adverse Effects of Spinal Cord Stimulation
The safety of SCS has been evaluated in trials using SCS for the 

treatment of angina. Large trials are lacking in this field; however, most 

studies indicate that the procedure is safe, with device-related infections 

and catheter dislodgements as the most common complications of the 

procedure.51 There was concern in the angina trials that SCS may mask 

a true MI; however, evaluation of patients with electrocardiogram 

(ECG) evidence of an MI occurring after implantation of the spinal cord 

stimulator demonstrated that they were aware when their MI occurred.66 

Therefore, use of SCS for either heart failure treatment or possibly for 

arrhythmia control is unlikely to mask significant ischaemic pain. More 

safety information about the procedure will be obtained in the trials that 

are currently enrolling patients. 

Vagal Stimulation
Vagal Stimulation and Atrial Electrophysiology
In the atria, parasympathetic stimulation can be proarrhythmic. It 

shortens atrial myocyte action potential duration (APD) and reduces 

atrial effective refractory period (ERP),67 thereby shortening the atrial 

re-entrant wavelength (the product of ERP and conduction velocity) 

enhancing the possibility of re-entry.68,69 It also depresses intra-atrial 

conduction, and can induce re-entrant atrial arrhythmias.70 In addition, 

cholinergic stimulation produces atrial ERP heterogeneity, likely due 

to heterogeneous distribution of vagal innervation.71 There is a direct 

relationship between the intensity of parasympathetic stimulation, the 

spatial disparity of refractory periods and AF inducibility.72 

As a result of its profound effect on atrial conduction, intracardiac 

vagal stimulation and ablation of intracardiac ganglia (predominantly 

cholinergic neurons) has been considered in the diagnosis and 

treatment of atrial arrhythmias. However, the results of this strategy 

have been mixed.73–79 Choi et al. recently demonstrated that in 

ambulatory dogs, all episodes of atrial tachyarrhythmias were 

preceded by bursts of autonomic activity (both parasympathetic and 

sympathetic),6 suggesting that vagal activity alone may not explain 

arrhythmogenesis in the atria. Additionally, intracardiac ganglia 

not only provide some parasympathetic and sympathetic efferent 

innervation of the atria, they also process afferent information as 

well.4 Therefore, predicting the outcome of ganglion ablation may 

be difficult and unpredictable because it may tip the balance of 

parasympathetic and sympathetic innervation in one direction or 

another, producing contradictory results among patients. 

Extrinsic to the heart, vagal nerve stimulation (VNS) may also have a role 

in atrial arrhythmia management. Despite the fact that vagal stimulation 

has been used for years as a method to induce AF, recent experimental 

studies in dogs have demonstrated that low level VNS (below the 

threshold needed to reduce heart rate) may be antiarrhythmic in 

the atrium. Shen et al.80 demonstrated that left-sided low-level vagal 

stimulation decreased left-sided stellate ganglion activity, decreased 

the incidence of AF and atrial tachycardia, and decreased sympathetic 

innervation within the stellate ganglion.80 Similarly, Sha et al.,81 in a 

study of acute, right-sided, low-level vagal stimulation, found that 

the threshold to induce AF was higher in the VNS group, and the 

response of heart rate to direct sympathetic and parasympathetic 

stimulation was blunted in the setting of low level vagal stimulation. In 

addition, neural activity in a ganglion of the intrinsic cardiac nervous 

system was reduced with low level VNS, which may be the basis for 

its antiarrhythmic effect.80 Clearly more studies are needed to further 

explore the possibilities of low level VNS for arrhythmia management; 

however, these experimental results are intriguing.12

		

Vagal Stimulation and Ventricular Electrophysiology
In the ventricle, parasympathetic stimulation is thought to be 

cardioprotective as decreased vagal activity after myocardial infarction 

is associated with a higher risk of ventricular arrhythmias.1,6,82,83 It is 

generally accepted that VNS and cholinergic agonists prolong the 

ventricular effective refractory period in vivo, in animals.84–86 In patients, 

reflex vagal stimulation causes a small but significant prolongation 

of right ventricular refractoriness. Finally, VNS can influence the 

vulnerability to VF. In contrast to sympathetic stimulation, VNS 

decreased the maximum slope of APD restitution, attenuated electrical 

alternans, and increased ventricular ERP and VF thresholds.87

Waxman et al. provided early clinical evidence, which demonstrated 

that VTs could respond to vagal activation, contrary to traditional 

belief,88,89 and that ventricular automaticity was decreased by vagal 

activity.90 Subsequently, experimental animal data in conscious dogs 

clearly demonstrated that increasing vagal tone by means of right 

vagus nerve stimulation can prevent ventricular tachyarrhythmias in 

a model with healed myocardial infarction, evaluated with exercise 

testing and intermittent ischaemia.91 Interestingly, the observed 

antifibrillatory effect was independent from heart rate reduction. In 

the setting of heart failure, the Autonomic Tone and Reflexes After 

Myocardial Infarction (ATRAMI) study92 and the Cardiac Insufficiency 

Bisoprolol Study II (CIBIS II)93 demonstrated that diminished cardiac 

vagal activity and increased heart rate were powerful predictors of 

increased mortality in heart failure. Therefore, significant clinical 

evidence exists that vagal tone may be cardioprotective.

More recent investigations have focused on the possibility that vagal 

stimulation may be a treatment modality for heart failure. De Ferrari 

et al.94 reported the first proof of concept trial using VNS in patients 

with class II–IV heart failure (n=32 patients), which demonstrated 

significant improvement in functional ability and ejection fraction 

with VNS. From the arrhythmia perspective, three patients developed 

AF during the study, and two patients were reported to receive 

multiple ICD shocks, which resolved with medication changes and 
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