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Arrhythmia Mechanisms

Atrial fibrillation (AF) is a highly prevalent arrhythmia that represents 

an important burden on healthcare systems. The presence of AF is 

associated with an increased risk of conditions such stroke, heart 

failure and dementia. Further, AF is associated with increased 

mortality. Over the past half century, significant advances have been 

made in understanding the pathobiology of AF. Important among 

these have been the demonstration that AF is a heritable disease 

and the identification of genetic variants underlying AF. The following 

review provides an overview of research in AF genetics followed by 

a discussion on the potential applicability of AF genetics research to 

clinical practice. The literature review was conducted in the PubMed 

database between January 1940 and January 2014.

Historical Perspective
The first reports suggesting a genetic basis of AF emerged in the 

1940s when Wolff described an AF pedigree with a number of affected 

siblings.1 In the ensuing decades, multiple rare AF pedigrees with 

monogenic patterns of inheritance were described. However, it was not 

until 2003 that the first mutation in an AF family was reported. Using 

classic genetic techniques, such as linkage analysis and candidate 

gene screening, Chen et al. identified a potassium channel mutation 

in a four-generation pedigree with autosomal dominant AF. Over the 

next few years, much of the research in AF genetics focused on familial 

forms of the arrhythmia and led to the identification of additional 

genetic mutations (discussed in more detail in the next section).2–31 

Around the same time as the first reports of causative mutations in 

AF pedigrees, epidemiological studies began to emerge suggesting 

that the form of AF encountered in everyday clinical practice also 

has a significant genetic component. The first large population-based 

study to report familial clustering of AF came from investigators 

at the Framingham Heart Study. They reported that more than a 

third of AF cases in the general population have a relative with the 

arrhythmia.32 Two subsequent studies from Iceland and the US also 

reported familial aggregation in cohorts of lone AF patients.33,34 More 

recently, a Danish study involving more than 9,000 lone AF patients 

demonstrated a strong familial component to the arrhythmia.35

While familial AF is caused by single gene mutations, the form of AF 

encountered in everyday clinical practice is likely to be a more complex 

trait, which is caused by multiple genetic variants interacting with 

environmental factors. The identification of the genetic architecture 

underlying the common form of AF has represented a challenging 

task. Candidate gene association studies have attempted to identify 

common variants underlying AF with limited success. 

The recent emergence of next-generation sequencing (NGS) 

technology has enhanced the ability of researchers to identify 

genetic variants underlying complex traits. Since 2007, genome-wide 

association studies (GWAS) have used NGS technology to identify 

multiple variants underlying AF. NGS technology has also led to the 

development of exome sequencing and whole genome sequencing, 

which allow simultaneous sequencing of the entire protein coding 

region or the whole genome, respectively. These are promising 

techniques for the identification of causative variants in AF pedigrees 

as well as AF populations. However, as yet, they have not been widely 

applied to AF genetics research.

Rare Mutations in Familial Atrial Fibrillation
Linkage analysis and candidate-gene sequencing have identified 

multiple mutations in monogenic AF families and isolated AF cases.2–31 

Linkage analysis involves performing genotyping of markers distributed 
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throughout the genome and investigating the transmission of these 

markers with disease within a pedigree.36 Markers that transmit closely 

with disease lie in proximity to the disease-causing mutation. Therefore, 

identifying a series of markers that transmit closely with disease narrows 

the search space for the disease-causing variant to a defined sub-

segment of the genome. The genes within the sub-segment can then 

be screened to identify a causative mutation. However, conventional 

genotyping techniques are often time consuming and demanding.

The majority of reported mutations for familial forms of AF are located 

in genes that encode ion channel subunits (see Figure 1 and Table 

1). The identification of these mutations led researchers to question 

whether single-gene mutations in ion channel genes also contribute 

to the heritability of the common form of AF in the general population. 

Early reports from candidate-gene screening studies suggest that 

these mutations are not prevalent in the general population.11,13,30,37–41 

Of note, however, the genes identified in AF pedigrees are significantly 

more likely to harbour rare variants in cohorts of lone AF patients 

compared with control populations.42

While the mutations identified in monogenic AF pedigrees are 

rare, their identification has provided interesting insights into the 

pathogenic basis of AF. Both gain-of-function and loss-of-function 

mutations in genes encoding potassium and sodium channel subunits 

have been reported to underlie familial AF.2–9,11–13,25,26,29–31,43 Gain-of-

function potassium channel mutations are predicted to influence AF 

by shortening the atrial effective refractory period, an effect that would 

be predicted to promote atrial re-entry.44 Loss-of-function potassium 

channel mutations are predicted to promote triggered activity in the 

atrium, which is also an important contributor to the genesis of AF.8 

Gain-of-function sodium channel mutations are predicted to promote 

triggered activity.25 Loss-of-function sodium channel mutations are 

predicted to shorten the wavelength of an impulse circulating around 

Figure 1: Monogenic Mutations Implicated in  
Atrial Fibrillation

Table 1: Summary of Monogenic Mutations Associated with Atrial Fibrillation

 

Gene	 Gene Product	 Functional Effect of Mutations	 Mutations	 Associated Conditions	 Reference

KCNQ1	 α subunit of Iks channel	 Gain-of-function (increased Iks)	 S140G, V141M, S209P		  2–4

KCNE1	 β subunit of Iks channel	 Gain-of-function (increased Iks)	 G25V, G60D		  30

KCNE2	 β subunit of Iks channel	 Gain-of-function (increased Iks)	 R27C		  5

KCNE5	 β subunit of Iks channel	 Gain-of-function (increased Iks)	 L65F		  6

KCNJ2	 Kir 2.1 channel	 Gain-of-function (increased IK1)	 V93I		  7

KCNA5	 Kv1.5 channel	 Loss-of-function (reduced Ikur) 	 E375X, T527M, A576V, E610K		  8,106,107 

				   Y155C, D469E, P488S		

KCNA5	 Kv1.5 channel	 Gain-of-function (increased Ikur) 	 E48G, A305T, D322H		  107

KCND3	 α subunit of Ito channel 	 Gain-of-function (increased Ito)	 A545P		  29

KCNE3	 β subunit of Ito, IKr channel	 Gain-of-function (increased Ito, IKr)	 V17M		  31

ABCC9	 SUR2a subunit IKATP channel	 Loss-of-function (reduced IKATP)	 T1547I		  26

SCN5A	 α subunit of INa channel	 Predicted loss-of-function	 D1275N	 DCM, abnormal conduction	 10 

			  (reduced INa)

SCN5A	 α subunit of INa channel	 Loss-of-function (reduced INa)	 N1986K		  11

SCN5A	 α subunit of INa channel	 Gain-of-function (increased INa)	 M1875T, K1493R, R340Q, R1626H, 	 R340Q, D1819N, V1951M.	 12, 25, 108 

				   D1819N, R1897W, V1951M	 associated with LQTS	

SCN1B	 β subunit of INa channel	 Loss-of-function (reduced INa)	 R85H, D153N		  13

SCN2B	 β subunit of INa channel	 Loss-of-function (reduced INa)	 R28Q, R28W		  13

SCN3B	 β subunit of INa channel	 Loss-of-function (reduced INa)	 R6K, L10P, M161T		  109

NUP155	 Nucleoporin	 Reduced nuclear membrane 	 R391H		  110 

			  permeability		

GJA5	 Connexin-40	 Impaired intercellular	 P88S, M163V, G113N, I75F, V85I, 		  14, 111–114 

			  electrical coupling 	 L221I, L229M, Q49X, A96S		

NPPA	 ANP	 Elevated levels of mutant ANP	 c.456-457delAA		  15

RYR2	 Ryanodine receptor 2	 Gain-of-function (increased 	 S4153R	 CPVT	 28 

			  Ca2+ leak from SR)	

JPH2	 Junctophilin-2	 Loss-of-function (increased	 E169K	 HCM	 27 

			  Ca2+ leak from SR)

TBX5	 T-box transcription factor	 Gain-of-function 	 G125R	 Holt-Oram Syndrome	 16

GATA4	 GATA transcription factor	 Loss-of-function	 S70T, S160T, Y38D, P103A, 		  17–19, 24 

				   G16C, H28D, M247T		

GATA5	 GATA transcription factor	 Loss-of-function	 W200G, Y138F, C210G		  20, 21

GATA6	 GATA transcription factor	 Loss-of-function	 G469V, Y235S		  22, 23

DCM = dilated cardiomyopathy; HCM = hypertrophic cardiomyopathy; Ca2+ = calcium; LQTS = long-QT syndrome; SR = sarcoplasmic reticulum.
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Illustration demonstrating monogenic mutations that have been identified using classical 
genetic studies.
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a re-entry circuit.45 The potential mechanistic links between non-ion 

channel mutations and AF pathogenesis are less clearly understood.

Common Genetic Variants and Atrial  
Fibrillation in the General Population
Identifying the genetic basis of the common form of AF in the general 

population is a more challenging task. Genetic association studies 

are valuable tools in this context. In contrast to family-based studies, 

which investigate co-segregation of genetic variants, population-based  

association studies investigate the co-occurrence of genetic variants 

in affected individuals. It is important to emphasise that in contrast 

to family-based studies, in which the reported mutations have 

large effect sizes and are directly responsible for causing the trait, 

association studies identify variants with small effect sizes that confer 

an increased risk of disease. Functional validation of the role of these 

variants in disease pathogenesis is typically more difficult.

The majority of early association studies in AF were candidate-

gene association studies.40,46–58 Candidate gene studies focus on 

specific genes that are selected based on a priori knowledge of 

their function, and compare the frequency of the variants between 

cohorts of individuals with and without disease.59 To date, a number of 

candidate-gene association studies have identified common variants 

that are more prevalent in AF populations compared with control 

populations.40,46–58 Often, the candidate genes have been selected 

based on results of studies in familial AF. As summarised in Table 2, a 

Table 2: Summary of Results from Candidate-gene Association Studies in Atrial Fibrillation Cohorts

Gene	 Gene Product	 Polymorphism	 Comment	 Odds Ratio of Association	 Reference
KCNE1 	 β subunit of Iks channel	 38G		  1.73, 1.80, 1.90	 46, 48, 115

KCNE5	 β subunit of Iks channel	 97T		  0.52	 49

KCNH2	 α subunit of IKr channel	 K897T		  1.25	 47

SCN5A	 α subunit of INa channel	 H558R		  1.6	 40

GNB3	 β3-subunit of heterotrimeric G protein	 C825T		  0.46	 50

eNOS	 Endothelial nitric oxide synthase	 2786C		  1.50	 46

eNOS	 Endothelial nitric oxide synthase	 G894T		  3.2	 55

GJA5	 Connexin-40	 –44AA/+71GG		  1.51	 52

GJA5	 Connexin-40	 A/G	 Associated with Cx40 mRNA 	 1.18, 1.30	 114, 116 

			   expression in atrial tissue	

AGT	 Angiotensinogen	 M235T		  2.5	 117

AGT	 Angiotensinogen	 G-6A		  3.3	 117

AGT	 Angiotensinogen	 G-217A		  2.0	 117

AGT	 Angiotensinogen	 T174M		  1.2	 54

AGT	 Angiotensinogen	 20C/C		  1.5	 54

ACE	 Angiotensin I converting enzyme	 D/D		  1.5	 55

ACE	 Angiotensin I converting enzyme	 D/D		  1.89	 56

MMP2	 Matrix metalloproteinase-2	 C1306T		  8.1	 57

IL10	 Interleukin 10	 A-592C		  0.32	 57

IL6	 Interleukin 6	 G-174C		  3.25	 58

SLN	 Sarcolipin	 C-65G		  1.98	 51
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Illustration demonstrating genes implicated in genome-wide association studies.

Figure 2: Genetic Variants Identified by Genome-wide Association Studies
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range of common variants in ion channel and non-ion channel genes 

have been associated with AF. Overall, however, candidate-gene 

association studies have been associated with limited success due 

to a low pre-test probability of the selected variants being involved in 

disease pathogenesis and poor reproducibility.59

The recent advent of GWAS has led to significant progress in our 

understanding of the genetic basis of AF. GWAS involve genotyping up to 

a million common variants, or single nucleotide polymorphisms (SNPs), 

distributed throughout the genome and comparing their frequency 

between AF and control cohorts.60 As opposed to candidate gene 

studies, GWAS are unbiased and therefore may identify previously 

unsuspected genes that play an important role in disease pathogenesis. 

Four large GWAS have been performed in AF cohorts to date.61–64 The 

results of these studies are summarised in Figure 2 and Table 3. The 

common variants identified by GWAS are located either within or in 

proximity to compelling candidate genes for AF. The ion channel genes, 

KCNN3 and HCN4, have been identified at two of the GWAS loci for 

AF.63,64 KCNN3 encodes a calcium-activated potassium channel (SK3 

channel), which is abundantly expressed in the atrium.65 HCN4 encodes 

the hyperpolarisation-activated, cyclic nucleotide-gated cation channel 

4, which underlies the pacemaker potential.66 Two of the GWAS loci for 

AF harbour the cardiac transcription factor genes PITX2 and PRRX1. 

These homeobox transcription factors are critical mediators of cardiac 

development. PITX2 mediates asymetrical development of the heart and 

inhibits left-sided pacemaker specification.67–69 PRRX1 has been implicated 

as a mediator of development of the pulmonary veins.70 SYNPO2L, 

MYOZ1 and CAV1 also represent potentially interesting genes at GWAS 

loci. SYNPO2L and MYOZ1 encode signalling proteins that localise to  

the Z-disc and modulate cardiac sarcomeric function.71,72 CAV1 is an 

important membrane protein, which plays a role in cellular signalling, 

and has been demonstrated to interact with ion channels, including 

HCN4 and KCNN3.73–76

In addition to the variants identified in the aforementioned GWAS for 

AF, common variants that have previously been implicated in GWAS  

for Brugada syndrome have also been demonstrated to influence 

risk in AF. AF is commonly observed as a co-existing condition 

in pedigrees with Brugada syndrome.77,78 Paradoxically, variants 

that have been demonstrated to confer increased risk of Brugada 

syndrome have a protective effect in AF patients.79 Further functional 

studies are necessary to determine the mechanisms underlying 

these observations.

While compelling candidate genes have been identified at GWAS loci, 

it is important to note that the mechanistic link between the GWAS 

variants and the function of these genes represents a challenge. This 

point is underscored by the fact that, to date, more than 1,000 GWAS 

risk variants have been identified for a range of diseases, while only 

a handful have been comprehensively functionally validated.80 GWAS 

rarely identify causative genetic variants directly. Rather, the variants 

identified by GWAS typically act as markers that point to a disease 

causing variant.60 The prevailing theory regarding the mechanistic link 

between the causative variants at GWAS loci and disease pathogenesis 

is that these variants alter the quantity of target gene expression, 

possibly through altered function of transcription regulatory elements.81 

Interestingly, researchers have recently demonstrated that the rare 

variants identified in population-based genetic studies may contribute 

to variable penetrance of causal mutations in familial forms of AF. In a 

study involving 11 AF pedigrees, in whom the causative mutation was 

known, Ritchie et al. demonstrated that the presence of the risk variants 

at the 4q25 locus predicted whether mutation carriers developed AF.82 

As discussed above, variants at the 4q25/PITX2 locus have consistently 

been demonstrated to influence AF in multiple population-based 

studies. These findings suggest that the heritability of AF is influenced 

by complex interactions between common and rare variants.

Clinical Relevance
The identification of genetic variants that contribute to AF susceptibility 

has potentially important implications for management of the 

arrhythmia. On the one hand, these variants could be of value for 

determining risk of future AF in asymptomatic individuals. On the other, 

they could uncover novel molecular targets for pharmacotherapy 

and potentially be of use in predicting response to therapy in AF 

patients. The following section discusses the potential utility of genetic 

information for management of AF patients.

Risk Stratification for Atrial Fibrillation
The identification of asymptomatic individuals who are at high risk 

of developing AF is an important public health concern. Current 

risk-stratification strategies, which are based mainly on conventional 

risk factors, are associated with significant limitations.83–86 Following 

the success of GWAS, the potential use of genotype-based risk 

stratification for AF has received significant interest. Initial attempts 

at using GWAS risk variants to predict risk have been associated with 

limited success. For instance, Smith et al. demonstrated that when 

considered in combination with conventional risk factors, genotype 

Table 3: Summary of Results from Genome-wide Association Studies in Atrial Fibrillation Cohorts

 

Locus	 Marker SNP	 Nearest	 Gene Product	 Location of SNP Relative	 Reference
		  Gene		  to the Nearest Gene
4q25	 rs2200733	 PITX2	 Paired-like homeodomain 2 transcription factor	 150 kb upstream	 61, 62, 64, 118–120

16q22	 rs2106261	 ZFHX3	 Zinc finger homeobox 3 transcription factor	 Intronic	 62, 121

1q21	 rs13376333	 KCNN3	 Small conductance calcium-activated potassium channel, 	 Intronic	 63, 64 

			   (subtype 3)

1q24	 rs3903239	 PRRX1	 Paired related homeobox 1 transcription factor	 46 kb upstream	 64

7q31	 rs3807989	 CAV1	 Caveolin 1 	 Intronic	 64

9q22	 rs10821415	 C9orf3	 Chromosome 9 open reading frame 3	 Intronic	 64

10q22	 rs10824026	 SYNPO2L	 Synaptopodin 2-like actin associated protein	 5 kb upstream	 64

14q23	 rs1152591	 SYNE2	 Spectrin repeat containing, nuclear envelope 2	 Intronic	 64

15q24	 rs7164883	 HCN4	 Hyperpolarization activated cyclic nucleotide-gated potassium	 Intronic	 64 

			   channel 4

SNP = single nucleotide polymorphism.
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information from two AF GWAS loci (chromosome 4 and 16) did 

not have an impact on risk stratification.87 Similarly, Everett et al. 

reported that the inclusion of 12 risk variants at nine GWAS loci did 

not significantly enhance risk stratification.88 However, more recently, 

encouraging results have emerged from a study by Lubitz et al. who 

demonstrated that when considered in combination, four risk variants 

at the 4q25/PITX2 locus and eight variants at other loci resulted in a 

fivefold gradient in AF risk.89 The results were consistent in cohorts of 

European and Japanese descent.

It is important to note that the variants identified to date are associated 

with modest effect sizes and collectively account for only a proportion 

of the heritability estimated for AF. Before clinically applicable risk 

stratification algorithms can be developed for AF, a significant 

proportion of the ‘missing heritability‘ of AF needs to be uncovered. 

The identification of the missing heritability of complex phenotypes like 

AF represents a major hurdle. Some of the missing heritability may be 

accounted for by additional common variants. GWAS are designed to 

identify common variants; however, some common variants may have 

been overlooked as current thresholds for statistical significance are 

high. Potential strategies for the identification of additional common 

variants include performing GWAS in larger cohorts and cohorts from 

different ethnic backgrounds.90

A significant proportion of the missing heritability of AF is likely 

to be accounted for by rare variants and structural variants in the 

genome.90 Examples of structural variation in the genome include tandem 

repeat sequences, insertions and deletions, copy number variants, 

translocations and inversions. GWAS are not designed to identify rare 

variants or structural variants. As discussed previously, a number of 

novel genotyping technologies have emerged since GWAS, including 

exome sequencing and whole genome sequencing. These represent 

promising techniques for the identification of rare variants underlying 

complex traits at a population level. While genotyping techniques for the 

identification of structural variants are currently less effective, they are 

constantly evolving.

Identification of Novel Therapeutic Targets for  
Atrial Fibrillation
The identification of the genetic architecture underlying AF has the 

potential to uncover novel therapeutic targets for the arrhythmia. 

GWAS are of particular interest in this context as they are agnostic 

and therefore commonly identify previously unsuspected genes 

underlying complex traits. As discussed previously, GWAS have 

identified a number of compelling candidate genes at the AF risk loci. 

These findings have spawned additional functional studies that have 

focused on candidate genes and have demonstrated that genes such 

as KCNN3 and PITX2 influence AF susceptibility.91–96

It is important to note that while the aforementioned studies suggest 

that candidate genes at GWAS loci potentially influence AF susceptibility, 

focusing drug development efforts on these candidate genes would 

be premature. Before GWAS findings can be translated to drug 

development, more comprehensive functional validation is necessary. 

GWAS typically characterise the association between marker variants 

and AF. The aims of post-GWAS analysis include identification of 

the causative variants at the GWAS loci and characterisation of the 

mechanistic link between these variants and target genes. A detailed 

discussion of post-GWAS functional analysis is beyond the scope of 

this review and has previously been reviewed extensively.81

In addition to GWAS, exome sequencing and whole genome 

sequencing could potentially identify important therapeutic targets 

for AF. Population-based exome sequencing projects are already 

currently under way in AF cohorts and promise to identify multiple 

additional candidate genes. As is the case with GWAS however,  

these genes will have to be comprehensively functionally validated. 

Overall, while findings from population-based genetic studies are 

promising, it may take more than a decade of research from the discovery 

of a novel gene to the development of a drug that can be used in  

clinical practice.97 

Genotype-based Prediction of Response to Atrial 
Fibrillation Therapies
In addition to uncovering novel therapeutic targets for AF, information 

from genetic studies could potentially be of value in predicting 

responses to established therapies. The influence of genotype  

on response to antiarrhythmic drugs has been investigated in two 

recent studies. In a relatively small cohort of AF patients, Parvez 

et al. demonstrated that the GWAS risk variants at the 4q25 locus 

independently predict successful rhythm control with antiarrhythmic 

therapy.98 The same group also demonstrated that variants in the gene 

encoding the β1-adrenergic receptor (β1-AR) predict response to rate 

control therapy with beta blockers.99 

Multiple studies have reported that genotype also influences 

response to anticoagulant therapy. Variants in genes such as 

VKORC1, CYP2C9 and CYP4F2 have been identified as potential 

mediators of response to warfarin therapy.100,101 These genes encode 

proteins that are either involved in the vitamin K pathway or in 

warfarin metabolism.102 Attempts have been made to incorporate 

these genes into algorithms designed to predict warfarin response. 

While some studies have suggested potential clinical utility of these 

algorithms, the results have not been consistent.102 A more detailed 

discussion on pharmacogenomics of warfarin therapy is beyond the 

scope of this review.

The role of genotype-based prediction of therapeutic response 

has also been investigated for non-pharmacological interventions. 

Husser et al. demonstrated that the variants at the 4q25 locus predict 

response to catheter ablation for AF. Specifically the presence of 

the risk variants predicted both early and late recurrences of AF 

following pulmonary vein isolation.103 Further evidence linking SNPs 

at the 4q25 locus and response to catheter ablation came from 

a more recent study from Shoemaker et al.104 Finally, Parvez et 

al. reported that SNPs at 4q25 predict recurrence of AF following 

successful direct current cardioversion.105

Overall, the above studies have demonstrated promising results 

suggesting that genotypic data can be of value in to predicting 

response to both pharmacological and non-pharmacological 

therapies. However, most of these studies have been limited to small 

numbers of patients and have focused on small numbers of variants. 

Further research with large, prospective randomised studies that 

include multiple genetic variants is currently needed to more clearly 

define the role of genetic data in predicting response. 

Conclusions
In recent years, research into the genetic basis of AF has undergone 

a revolution. Significant progress has been made in identifying the 

genetic substrate underlying the common form of AF encountered 
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