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A tuneable repetition rate extreme ultraviolet source (Harmonium) for time

resolved photoelectron spectroscopy of liquids is presented. High harmonic

generation produces 30–110 eV photons, with fluxes ranging from �2� 1011

photons/s at 36 eV to �2� 108 photons/s at 100 eV. Four different gratings in a

time-preserving grating monochromator provide either high energy resolution

(0.2 eV) or high temporal resolution (40 fs) between 30 and 110 eV. Laser assisted

photoemission was used to measure the temporal response of the system.

Vibrational progressions in gas phase water were measured demonstrating the

�0.2 eV energy resolution. VC 2015 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4933008]

I. INTRODUCTION

Photoelectron spectroscopy (PS) of liquids was first introduced by Siegbahn and co-

workers in the early 1970s,1 then further developed by Faubel and co-workers.2,3 By directly

collecting photoemitted electrons from a region of laminar flow of a liquid microjet in vacuum,

the electronic structure of the solvent and solute can be determined. Liquid PS has been devel-

oped using a variety of photon sources ranging from laboratory-based ultraviolet (UV) and

extreme ultraviolet (EUV)4 to synchrotron X-ray sources, enabling ultraviolet (UPS) and X-ray

photoelectron spectroscopy (XPS).5–7

Pushing PS of liquids into the ultrafast time domain was pioneered by Suzuki and co-work-

ers,8,9 and L€ubcke and co-workers,10 using UV (<6 eV) pulses, and by Abel, Faubel, and co-

workers using EUV pulses.11,12 Time-resolved PS allows mapping the evolving electronic struc-

ture of the photoexcited solute by the time delayed UV or EUV pulse. This evolution may

occur as a result of electronic relaxation cascades, changes of oxidation state (e.g., in charge

transfer processes) or structural modifications.

The photon energy used as a probe determines the type of the information collected in liq-

uid PS namely if the measurement is bulk or surface (or near surface) sensitive. Furthermore,

UV photon energies access valence orbitals and some excited states delocalised over the mole-

cule, while higher photon energies in the EUV can also access core level orbitals: providing

element specific structural information. For photon energies of interest here, the penetration

depth (or information depth) of the measurement is limited by the attenuation and inelastic scat-

tering of the emitted electron traveling out of the liquid. Recent measurements by Suzuki and
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co-workers13 have shown that for electron kinetic energies between 1 and 100 eV, the effective

measurement depth is near constant at �2 nm with steep increase at higher and lower electron

kinetic energies.

High harmonic generation (HHG) has emerged as the ideal laboratory based source of fem-

tosecond EUV pulses from 10 s to 100 s eV.14 However, the intrinsic spectrum of harmonics

generated by HHG requires monochromatization in order for it to be used as a photon source

for PS. Several approaches have previously been employed to this aim: dielectric mirrors,15–18

single gratings in conventional geometry,19–23 single grating in off-plane geometry,23–25 double

gratings in an off-plane geometry,26,27 and Fresnel zone plates.28,29 Here, we present a new set

up (Harmonium) for ultrafast EUV PS of liquids developed at the Lausanne Centre for

Ultrafast Science (LACUS), which is based on a single grating monochromator in the off-plane

geometry, with a choice of four different gratings that can provide either high temporal resolu-

tion (40 fs) or high energy resolution (0.2 eV) between 30 and 110 eV. The use of an ellipsoidal

mirror in 4:1 focusing geometry is shown to produce a �30 lm focal spot of the monochro-

matic source at the target plane.

The paper layout is as follows. The HHG source, monochromator design, and specifications

are described in Section II. The performances of Harmonium: photon flux, temporal resolution

(measured by laser assisted photoemission), and energy resolution are reported in Section III

for all gratings in the energy range of 30–110 eV.

II. BEAMLINE

A simplified diagram of Harmonium is shown in Figure 1. The femtosecond laser system

comprises of a Ti:sapphire oscillator at 80 MHz seeding a chirped-pulse regenerative amplifier.

Stable operation of the latter with pulse-to-pulse intensity fluctuations smaller than 0.4% RMS

has been demonstrated in the range of 3–15 kHz with an average power of up to 15 W and a

pulse duration of �45 fs.

For HHG, the full-width half maximum (FWHM) diameter of the fundamental laser beam

is �5 mm. A 400-mm focal-length spherical Ag mirror is used for focusing it onto the

continuous-flow target, which is a 4-mm-diameter capped cylindrical cell with two diametri-

cally opposite 0.5-mm apertures for the beam to pass through. The FWHM diameter of the IR

focal spot is �90 lm. Phased-matched short-trajectory high harmonics are produced with the

target located approximately 5 mm downstream from the focal plane. A high-precision needle

valve is used to adjust the target gas pressure from the backing 1-bar value down to about 2 �
10�3 mbar for HHG in Ar and 4 � 10�3 mbar for HHG in Ne, in the HHG chamber. Differential

pumping is installed between the latter and the monochromator chamber by placing a 3-mm-di-

ameter aperture about 20 mm after the HHG gas target. This way, the pressure in the monochro-

mator can be kept stable, on the order of 10�7 mbar.

FIG. 1. Schematic (top-view) of the time resolved Harmonium beamline for PS of liquids at the Lausanne Centre for

Ultrafast Science (LACUS). TP: turbomolecular pump, MCP: microchannel plate detector, WP: half-wave plate and t. mir-

ror: toroidal mirror. Measurement of the EUV photon flux after the ellipsoidal focusing is done at the sample position by

means of a NIST-calibrated Al2O3 photodiode. Photoelectron collection is carried out by a time-of-flight (TOF) electron

spectrometer and a time-to-digital (TDC) convertor card.30
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The monochromator is of similar design to Reference 25 using a single grating with the

grating grooves running parallel to the grazing-incident EUV (off-plane geometry). The en-

trance slit of the monochromator is the EUV source which is collimated by a toroidal mirror,

followed by an off-plane mounted grating with a final toroidal mirror focusing the monochro-

mated beam to an exit slit. Details of these elements are provided in the following paragraphs.

The first toroidal mirror has an effective focal length of f¼ 650 mm and collimates the

EUV beam diverging from the HHG source. A copper spatial filter is placed before this toroidal

mirror to reduce the IR intensity on the optics. The divergence of the generated high harmonics

depends strongly on the IR focusing geometry. Harmonic divergences smaller than 1 mrad have

been achieved by using loose focusing geometries, i.e., f � 1 m.31 For HHG in Ar, the EUV

divergence has been measured to be half that of the focusing IR.32 With our geometry, the IR

focusing at the HHG target has a half-width beam divergence of �6 mrad, so that a divergence

of H=2 � 3 mrad is a reasonable assumption for the EUV. The first order diffraction of the gra-

ting suffers from a delay of one wavelength for rays diffracted by two adjacent grooves, so that

the temporal dispersion of the pulse after diffraction increases with the number of illuminated

grooves.25 Therefore, the groove density r is a critical parameter. One of four Au-coated gra-

tings with different geometries and an Au flat mirror can be selected in the monochromator, ei-

ther for high-temporal or high-energy resolution or transmission of the full spectrum.

In Table I, the parameters and the most efficiently diffracted harmonic by the different gra-

tings are shown. The diffraction efficiency determines the percentage of incident intensity that

is diffracted to the first order and is therefore an important parameter for the transmission of

the monochromator. For each grating, the temporal dispersion Dt has been calculated by ray

tracing; the corresponding energy dispersion values DE have been obtained by using equation25

DE eV½ � � 1240 � Dk nm½ �
k0 nm½ �ð Þ2

; (1)

where

Dk ¼ DS

rq
; (2)

under the approximation Dk2=ð2k0Þ2 	 1. In Equation (2), DS � 100 lm is the entrance slit of

the monochromator (in our case the EUV source focus), q¼ 650 mm is the entrance arm length,

and r [gr/mm] is the groove density. As can be seen from the previous equations, the wave-

length dispersion depends only on grating parameters and for each grating is constant in wave-

length while for the energy dispersion there is a non-linear dependence.

After diffraction by the grating, the beam passes through a beam dump for the zero order.

The combination of the spatial filter before the first toroidal mirror and this beam dump

TABLE I. Grating parameters. High Harmonic efficiency (HHeff ) is determined by the geometrical parameters of the gra-

ting and represents the most efficiently diffracted harmonic in the first order, with its equivalent energy in brackets assum-

ing a 790 nm fundamental wavelength. r is the number of grooves per millimeter. Dt is the temporal dispersion for two

particular energy values calculated by ray tracing, and DE is the energy dispersion, obtained using Equations (1) and (2).

r (gr/mm) blaze angle (deg) HHeff E (eV) Dt (fs) DE (eV)

200 4.2 15th (23.5 eV) 30 54 0.6

… … … 40 40 1.0

600 3.4 55th (86.3 eV) 80 60 1.3

… … … 100 50 2.1

900 14.3 21st (32.9 eV) 30 240 0.1

… … … 40 180 0.2

1200 6.9 55th (86.3 eV) 80 120 0.7

… … … 100 100 1.0
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effectively blocks all the residual IR, such that none is measured further down the beamline on

the photodiode used to measure the EUV flux.

A toroidal mirror (identical to the first to reduce aberrations,25 f¼ 650 mm) focuses the

monochromatic EUV radiation onto the variable-width exit slit, allowing a single harmonic to

be selected. The monochromatic EUV radiation at the slit is imaged on the target plane in a 4:1

geometry using an Au-coated ellipsoidal mirror. As specified by the manufacturer (Zeiss AG),

the geometrical parameters of the mirror are: dimensions¼ 126� 30� 25 mm3, clear aperture

¼ 116� 20 mm2, semi-axis A¼ 1250 mm, semi-axis B¼ 104.5 mm, and off-axis position Xp ¼
752:6 mm. The mirror is mounted on a high-spatial-resolution robotic mount (Space Fab, from

PI Micos) with 6 axes of motion.

The focal spot size in the target plane (entrance of the TOF photoelectron spectrometer)

was measured using a HeNe laser and a �100 lm pinhole placed in the HHG source plane. A

value of �35� 32 lm2 FWHM was obtained and the beam profile is shown in Figure 2. The

ellipsoidal-mirror mount allows precise alignment of the beam in front of the electron spectrom-

eter entrance. The beam can be steered in an area of � 500� 500 lm2 without significant focal

distortion (i.e., diameter increase by �5 lm). The sub 40 lm size of the focal spot is corrobo-

rated by photoelectron measurements. When the liquid jet is moved across the EUV beam along

the TOF axis, the liquid phase spectrum is only observed in a 30 lm window.

Imaging the EUV focus in front of the electron spectrometer is carried out on a daily basis

for alignment purposes by means of an insertable YAG:Ce scintillator crystal.

III. BEAMLINE PERFORMANCE

In this section, we present the monochromatic photon flux and both the temporal and

energy resolution of Harmonium.

FIG. 2. (a) Focal spot in the target plane (in front of the electron spectrometer), measured using a HeNe laser. (b)

Photoelectron counts in the 1b1 liquid peak of water as the jet was translated across the focus. The FWHM of the fitted

Gaussian is 22 lm. (c) Measured HeNe focal spot profiles FWHMhoriz � 35lm, FWHMvert � 32lm.
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A. Photon flux

The monochromatic EUV photon flux was measured using a calibrated Al2O3 photodiode

(NIST) after the ellipsoidal mirror. The EUV flux (photons/second) was measured from 30 to

110 eV as shown (Figures 3 and 4), for HHG in Ar and Ne, for different repetition rates and

energies per pulse. No residual IR after monochromatization was detected on the photodiode.

Table II compares the reported typical EUV photon fluxes of HHG beamlines coupled to a

single-grating EUV monochromator. All the reported fluxes are for s-polarized EUV, with the

exception of Refs. 25 and 21, in which the polarization is not indicated. Care has to be taken

when comparing flux, since, from all the reported works, only Refs. 20 and 21 measure the flux

of the focused beam, as required for PS in liquids. The system presented here uses an ellipsoi-

dal EUV focusing element while conventional beamlines use a toroidal focusing geome-

try20,21,23,25 or no focusing at all.22 The previously reported flux at the highest photon energy is

2:8 � 109 photons/s at 79 eV and 5 kHz in Ref. 23, while �1:5 � 108 photons/s at 102 eV and

3 kHz can be achieved with our system (Figure 4).

B. Temporal response

The temporal response of the monochromator was characterized by laser assisted photoem-

ission (LAPE) in an atomic gas. The EUV pulse exiting the monochromator was temporally

FIG. 3. s-polarized EUV photon flux measured at the target plane for HHG generation in Ar at two different repetition

rates/pulse energies. The 900 gr/mm grating is used in both cases. The IR central wavelength is 785 nm.

FIG. 4. s-polarized EUV photon flux measured at the target plane for HHG generation in Ne, two different repetition rates/

pulse energies, and with different gratings. The IR central wavelength is 793 nm.
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and spatially overlapped with the fundamental IR pulse in a neon gas target in front of the elec-

tron time-of-flight spectrometer.30 Photoelectron spectra were recorded as a function of time

delay between both pulses for selected EUV energies and for each of the four gratings.

Around the single-peak neon 2p band, sidebands separated by one IR photon energy (�1.6 eV)

appear when the two pulses are overlapped in time. They originate from the free-free transition

experienced by the EUV released electron when absorbing or emitting one IR photon.33–35 The side-

bands provide a cross-correlation signal of the temporal profiles of the EUV and IR pulses, so that

the pulse duration of the EUV can be retrieved when the IR pulse duration is known. An example of

a time resolved LAPE measurement in neon is shown in Figure 5(a). The EUV photon energy was

30.6 eV (HHG in argon), groove density was 200 gr/mm, acquisition time for each time step was 20

s, and the step size was 10 fs. Both the EUV and IR were p polarised.

Assuming a Gaussian shape for all the temporal profiles, the FWHM of the EUV pulse du-

ration is given by the equation

Ds ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2ðc2

sb � c2
pumpÞ

q
; (3)

where c2
sb is the variance of the sideband Gaussian profile and c2

pump is the variance of the IR

pump Gaussian temporal profile. For the measurement in Figure 5, the FWHM of the cross cor-

relation signal was 73.6 fs which by Equation (3) gives an EUV FWHM pulse duration of 42.6

fs assuming an IR FWHM pulse duration of 60 fs. Several time resolved LAPE measurements

were recorded using different gratings for a selected harmonic range.

The temporal profile of the high energy sideband (lower background counts) was measured

as the integral of all counts in a 1.5 eV wide window centered on the sideband, i.e., one IR pho-

ton energy above the 2p ionization peak. The IR pulse duration was measured with a FROG,

and a FWHM between 50–70 fs was used for the different measurements. The longer pulse du-

ration is a result of optimising the laser compression for HHG and not including additional

compression in the dressing field arm further down the beamline. The results are shown in

Figure 6 for all measurements. Ray tracing was used to calculate the temporal response of each

grating. Retrieved EUV pulse durations from the LAPE measurements are shown as open

circles, with error bars given by the uncertainly in the IR pulse duration. A good agreement

between the measured and calculated EUV temporal response is observed, with a slight overes-

timate in the calculated compared to the measured value. This is most likely due to a lower

EUV divergence than assumed (3 mrad).

Figure 6 illustrates the trade-off between time and energy resolution mentioned earlier.

Two gratings designed for maximum diffraction efficiency in the low energy part of the spec-

trum (E � 40 eV) and two gratings with maximum efficiency on the higher energy side

(E � 60 eV) provide two possibilities depending on the desired performance, either high energy

or high temporal resolution modes. The energy resolution of the system is discussed in more

detail in Section III C.

TABLE II. Reported photon fluxes for single-grating HHG monochromators. a.m. and a.f. refer to the position of flux mea-

surement, i.e., measured after monochromatization and after a focusing element, respectively.

Laser frequency (kHz) Energy (eV) Flux (photon/s)

Ref. 20 [a.f.] 1 23.6 1 � 1010

Ref. 21 [a.f.] 10 35.6 3:6 � 107

Ref. 22 [a.m.] 4000 20 2 � 103

Ref. 23 [a.m.] 5 35 5:5 � 1011

5 79 2:8 � 109

Ref. 25 [a.m.] 1 32.5 1:6 � 1010

This work [a.f.] 6 36.3 2:3 � 1011

3 102 1:5 � 108
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C. Energy resolution

The ultimate energy resolution of the system is dependent on several factors: the entrance

slit of the monochromator (taken as the EUV source point), the grating, the exit slit of the

monochromator, and finally the electron spectrometer. The effective entrance slit is a parameter

which will change considerable during HHG optimisation and will depend amongst other things

FIG. 5. (a) Photoelectron spectra of the LAPE response in Ne as a function of the delay between the 23rd harmonic and the

�790 nm fundamental with a saturated color scale. (b) Photoelectron spectra at 0 fs (blue) and �120 fs (red). (c) Integrated

intensity of the 1st order sideband centered at 10.5 eV. Red circles: measured intensity, black curve: fitted Gaussian of the

cross correlation signal with a FWHM of 73.6 fs.

FIG. 6. Time response and energy bandwidth of the four different gratings in the monochromator. Colors correspond to dif-

ferent groove densities, which are shown in the legend. Solid lines, left vertical axis: calculated temporal response by ray-

tracing. Dashed lines, right vertical axis: FWHM energy dispersion calculated by using Equations (1) and (2) assuming an

EUV source spot size of 100 lm. Open circles: retrieved EUV pulse duration by LAPE measurements. The error bars in the

retrieved temporal response are from the uncertainly in the IR pulse duration.
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on the IR beam profile, IR pulse intensity, target gas density, and phase matching conditions.

As such, the energy resolution will change according to the experimental environment.

To confirm the validity of Equations (1) and (2), photoelectron spectra of neon were col-

lected. The FWHM of the 2p ionization peak was measured for harmonics produced in neon

gas for gratings with a groove density of 600 gr/mm and 1200 gr/mm. EUV produced in neon

was used as the lower flux and hence fewer photoelectrons created reduces any influence of

space charge or electron-electron repulsion distorting photoelectron measurements. The meas-

ured FWHM are plotted in Figure 7. The curves are a fit of Equations (1) and (2) to the data

with DS (the EUV source spot size) as the fitting parameter.

The retrieved values of DS were 57 lm for the grating with 600 grooves/mm (measure-

ments from 45–70 eV) and 139 lm for the grating with 1200 grooves/mm (measurements from

45–86 eV). The harmonic generation conditions were changed for each grating, namely, the

closing of an iris before the generation chamber. It is likely this change accounts for the differ-

ence in the EUV source spot size. The good fit of the measured FWHM and the curve demon-

strates the validity of Equations (1) and (2).

FIG. 7. Crosses: measured FWHM of 2p ionisation peak of neon. Dashed curves: fit of Equations (1) and (2) with DS as

the fitting parameter (DS¼ 57 lm for 600 grooves/mm and DS¼ 139 lm for 1200 grooves/mm).

FIG. 8. Water gas and liquid phase photoelectron spectra taken with p-polarized 39.2 EUV photon energy and using the

900 gr/mm grating. For the liquid phase, the EUV beam is focused onto the bulk and contributions from the surrounding

gas-phase molecules are also present. For recording the gas phase spectrum only, the liquid microjet was moved �40 lm

from the EUV focus away from the TOF entrance.
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The energy resolution of the system was also demonstrated by measuring the valence-band

photoelectron spectra of gas and liquid phase water (Figure 8). To suppress electrokinetic

charging,36–38 NaCl was added to the water to form a 25 mM solution. The 25th harmonic of the

fundamental 790 nm produced by HHG in Ar at 6 kHz was monochromatized by the 900 gr/mm

grating, giving 39.2 eV EUV photons. For this harmonic, the expected grating energy resolution is

�200 meV (Table I).

A close examination of the gas phase spectrum in Figure 8 reveals a modulation on top of

the bands which arises from the vibrational structure in the ionic states of the water cation.39–42

In Figure 9, the progressions are assigned as combinations of the stretch and bending modes of

water. The experimental energy resolution is estimated as �200 meV as progressions separated

by the bend mode (�2 ¼ 1645 cm�1 ¼ 0:204 eV) are clearly resolved. This is also the limit of

the energy resolution of the electron spectrometer used.30 To our knowledge, this is the first

time such progressions have been resolved using a HHG source of EUV radiation.

Figure 10 shows the full valence band water spectrum, measured for the first time using

HHG as the EUV source. The laser repetition rate was 3 kHz, and the 600 gr/mm grating was

used for monochromating the 89.6 eV harmonic. The secondary electron background has been

corrected using the Shirley algorithm.43

FIG. 9. Photoelectron spectrum of the first three valence orbitals of gas phase water, measured with 39.2 eV EUV. A: loga-

rithmic plot with vibrational progression assignment for the 1b1 orbital. B: Plot of first three orbitals—insert, assignment of

vibrational progression for 1b2 (logarithmic plot).

FIG. 10. Water gas and liquid phase photoelectron spectrum taken with p-polarized 89.6 EUV photon energy and using the

600 gr/mm grating.
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IV. CONCLUSION

A versatile set-up to conduct ultrafast EUV photoelectron spectroscopy has been described.

Using a single grating monochromator in a time-preserving fashion, either high energy resolu-

tion (�0.2 eV) or high temporal resolution (�40 fs) can be achieved between 30 and 110 eV.

This flexibility in energy range and resolution allows for both the electronic and structural

dynamics to be followed in a large variety of systems. The application of the set-up to the liq-

uid phase has been demonstrated, and the use of an ellipsoidal mirror produced a �35 lm focal

spot to match the dimensions of liquid microjets.

The high EUV photon flux reported (1011 photon/s at 36 eV and 108 photon/s at 100 eV),

coupled with repetition rate control of the laser, makes the system suitable to study different

states of matter other than liquids. To this end, a molecular beam and an angle-resolved photo-

emission spectroscopy (ARPES) end stations are under construction.
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