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Arrhythmia Mechanisms

In the United States, atrial fibrillation (AF) is the most common 

sustained cardiac arrhythmia affecting approximately six million 

patients and contributing to a greatly increased risk of stroke, heart 

failure (HF) and overall morbidity and mortality.1,2 The prevalence of AF 

is increasing as the average age of the population increases.3,4

Currently available therapies for AF are suboptimal. Therapeutic 

options include sinus rhythm restoration and/or ventricular rate 

control. Both are achieved by pharmacological or ablation therapy. 

Efficacy is limited, and the risk of adverse effects to therapy is increased 

in patients with long-standing persistent AF and comorbidities 

that commonly accompany AF, such as HF or lung disease.5 

Antiarrhythmic drug use has potential risks such as pro-arrhythmia  

and non-cardiovascular toxicities.6–8 AF ablation therapy has become 

increasingly popular, but efficacy is limited, with high recurrence rates 

requiring repeated procedures.9,10 Severe complications (including 

mortality of 0.1  % in a recent survey) remain a persistent problem 

for AF ablation.11 Limitations in currently available therapies dictate a 

need for novel and more effective therapies. 

Cardiovascular gene therapy has the potential to expand treatment 

options for AF. Recent improvements in gene transfer vectors 

and delivery methods and a deeper understanding of molecular 

mechanisms of AF increase the probability that gene therapy will 

successfully translate to a clinically viable therapy over the next few 

years. In this review, we will analyse the available vectors and delivery 

methods for myocardial gene therapy and evaluate the current state-

of-the-art for AF gene therapy.

General Principles of Myocardial Gene Transfer
Gene therapy is the delivery of functional genes into a target cell 

or tissue for the treatment or prevention of disease. Three major 

components for successful gene therapy are the selection of a gene 

transfer vector, a delivery method and a therapeutic gene target. 

Vectors
Generally, vectors for gene delivery fall into one of two different 

kinds: viral or nonviral vectors. Nonviral vectors are DNA plasmids, 

alone or in combination with adjuncts that improve delivery.12,13 The 

advantage of naked DNA (plasmid with no complexing agent) is its 
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Clinical Perspective

•	 	At	the	current	time,	gene	transfer	in	several	preclinical	

models has been shown to successfully control ventricular 

rate or restored sinus rhythm during atrial fibrillation (AF), 

strengthening the rationale for future use of gene therapy to 

treat atrial fibrillation.

•	 	Continuing	 advances	 in	 vector	 technology	 with	 clinically	

favourable attributes, development of minimally invasive gene 

delivery methods, and novel gene therapy targets increases the 

likelihood of successful, future translation of AF gene therapy to 

the clinic. 

•	 	Gene	 therapy	 for	AF	has	 the	potential	 for	 tremendous	patient	

benefit, but it is not without potential risks. Formal preclinical 

testing and well thought out clinical trials are prerequisite 

before clinical release of a gene therapeutic.
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inherent simplicity. DNA in the form of a plasmid is relatively easy to 

grow, purify and use, and it has documented acceptance by regulatory 

bodies. The major problem with nonviral vectors is inadequate 

transfection efficiency.14 Most studies that have assessed in vivo 

gene delivery with nonviral vectors have shown very limited uptake 

by target cells, with at most a few percent of target cells expressing 

the transgene. Complexing agents (lipid, carbohydrate or protein 

coatings) increase delivery to a limited degree, but these agents also 

increase toxicity. Some physical methods (electroporation, ultrasound 

disruption of microbubbles) have been developed to enhance gene 

transfer, but the efficiency in vivo still remains low.14–18

Viral vectors are more frequently used for cardiovascular diseases 

due to their superior efficiency in cellular uptake and gene expression 

compared with nonviral vectors. The viral vector genome is altered 

by removing genes essential for virus replication so that viral vectors 

can only grow under special, supported circumstances and not in the 

target tissue (except conditionally replicating adenoviruses used in 

cancer gene therapy that are not relevant to this AF discussion). The 

three most commonly used viruses for cardiovascular applications are 

adenoviruses (Ad), adeno-associated viruses (AAV) and lentiviruses. 

Ad are double-stranded DNA viruses with a 35  kb genome. First 

generation Ad have deletions of a limited number of viral genes, 

preventing virus replication and creating space for gene insertions up 

to 10 kb. Helper-dependent Ad vectors have the entire viral genome 

removed. Ad vectors have been widely used in the myocardial gene 

transfer literature, mainly due to their high transduction efficiency in 

cardiac myocytes and capability of generating peak expression over 

a short time period. The main disadvantage of Ad is the ability to 

elicit a profound immune response from the recipient. This immune 

Figure 1: Gene Delivery Methods for Therapeutic Targets 
Relevant To Atrial Fibrillation

Table 1: Gene Therapy Targets and Strategies for Ablation of Atrial Fibrillation

 

Study Type of Transgene or Findings Species Vector Delivery Method 
 Strategy Target

Rhythm Control

Kikuchi et al. 200533 Reentry-disrupting  Human  Atrial APD prolongation. No ventricular Swine Ad Epicardial painting 

  interventions by  KCNH2-G628S effects. Arrhythmia suppression not tested. 

  prolongation   Atrial APD prolongation eliminated burst Swine Ad Epicardial painting 

  of APD  pacing-induced AF 

Amit et al.201063  Canine  Swine Ad Myocardial injection 

Soucek et al.201246  KCNH2-G627S     and electroporation 

Igarashi et al. 201264 Reentry-disrupting  GJA1, GJA5 Improved atrial conduction and prevented AF Swine Ad Epicardial painting 

Bikou et al. 201134 interventions by  GJA1  Swine Ad Myocardial injection 

  improvement of atrial     and electroporation 

  conduction velocity    

Liu et al. 200873  HDAC class I  HDAC inhibition reduced atrial arrhythmia Transgenic NA 

   and II inhibitor inducibility and atrial fibrosis mice  

Trappe et al. 201347  CASP3 inhibitor Knockdown of caspase 3 suppressed or  Swine Ad Myocardial injection 

    delayed sustained AF by reducing atrial    and electroporation 

    cardiomyocyte apoptosis  

Li et al. 201276 Trigger-disruption by  CAMK2D inhibitor Inhibition of CaMKII phosphorylation of Transgenic  NA 

and 201493 preventing Ca2+   RyR2 prevented AF induction  mice 

  leak from SR   

Rate Control

Donahue Modification GNAI2 Suppressed AV conduction and reduced  Swine Ad Intracoronary 

et al. 200031 of AV node  ventricular rate by 20 % in anesthetised    perfusion and 

    animals   catheterisation  

Bauer  GNAI2-Q205L Suppressed AV conduction and reduced  Swine Ad Intracoronary 

et al. 200480   ventricular rate ~20 % in alert animals   perfusion and  

       catheterisation

Lugenbiel Modification of  GNAS siRNA Suppression of Gαs protein expression Swine Ad Myocardial injection 

et al. 201282 SA node  reduced ventricular rate by 8–17 % during SR   and electroporation, 

Murata Suppress L-type  GEM Gem gene transfer to AV node reduced the Swine Ad Intracoronary 

et al. 200481 Calcium channel  heart rate by 20 % during AF   catheterisation 

AF = atrial fibrillation; SR = sinus rhythm, Ad = Adenovirus; AV = atrioventricular; APD = action potential duration; NA = not available.

Gene delivery to right 
and left atrium for sinus 
rhythm restoration:
1. Local myocardial 
 injection with 
 or without 
 electroporation
2. Epicardial gene 
 painting

Gene delivery to 
atrioventricular node 
for rate control:
1. Intracoronary 
 perfusion and 
 catheterisation
2. Myocardial injection 
 with or without 
 electroporation
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response limits duration of gene expression to 2–4 weeks in vivo, 

depending on the target organ and transgene.19 Immune responses to 

Ad can cause organ damage and systemic inflammatory responses.20 

Ad vectors have been used in a number of myocardial gene therapy 

clinical trials that have not yet shown efficacy (due in large part  

to limitations in delivery) but that also have not shown any  

detectable toxicity.21–23

AAV is a small virus with a linear 5 kb single-stranded DNA genome 

containing two genes: rep and cap.24 Recombinant AAVs have many 

desirable properties for cardiac gene transfer, including long-term 

(potentially permanent) gene expression and a relatively limited 

immune or inflammatory response by the host organism.25 Among 

the reported AAV serotypes, AAV1, 6, 8 and 9 are most commonly 

used for cardiac gene therapy.26,27 AAV gene therapy was initially 

tested on rodents, where dense cardiac delivery was demonstrated. 

It is not nearly as effective in large mammals as it is in mice, but it 

appears sufficient to alter the phenotype in large mammalian models 

of disease.28,29 The principal advantage of AAV is the possibility of 

permanent gene expression. Cardiac studies have been limited, but 

gene expression in skeletal muscle persisted over one year after 

injection in a haemophilia clinical trial.30 Preclinical large mammalian 

models with various targets, delivery techniques and transgenes 

have reported stable expression persisting for several years after 

gene transfer.31–33 The principal disadvantage of AAV vectors is the 

limited insert size, preventing use with some ion channels or other 

large genes. Recent cardiac studies have shown efficacy of AAV gene 

therapy in large mammalian models and in a human HF clinical trial.28,34

Lentiviruses are human immunodeficiency virus-based members of the 

retrovirus family. They are enveloped RNA viruses capable of packaging 

approximately 10 kb of genetic information. Unlike other retroviruses, 

lentivirus can transduce non-dividing cells, including cardiomyocytes. 

Transfection efficiency for lentivirus vectors is similar to AAV.30 Long-

term stable gene expression is another similarity between lentiviruses 

and AAV, although by a different mechanism. Lentiviruses actually 

integrate into the host genome allowing permanent expression. A 

potential risk for lentiviruses is the possibility of mutagenesis related to 

the insertion site. Another significant limitation is the inability of current 

technology to concentrate them to levels necessary for intracoronary 

delivery. Lentivirus vectors have been used for intramyocardial injection 

in large mammalian models of cardiac disease. The feasibility of using 

lentivirus vectors in situations needing widespread cardiac delivery 

has not yet been verified and no clinical trials using lentivirus vectors 

for cardiac disease have been attempted to date. 

Gene Delivery Methods
Several gene delivery strategies have been developed and verified 

for the large mammalian heart (see Figure 1). For AF therapy, the 

areas of therapeutic interest are primarily broad atrial delivery for 

sinus rhythm restoration and atrioventricular (AV) nodal delivery 

for rate control. Methods to deliver a gene transfer vector to these 

regions reported in preclinical AF models include direct myocardial 

injection followed by electroporation, epicardial gene painting and 

intracoronary catheterisation.31–34 Some methods such as intravenous 

injection and tail vein injection have been reported in mice, but these 

have not shown viability in large mammals.35,36

Direct myocardial injection is one of the simplest methods for effective 

cardiac gene delivery. Both naked DNA plasmids and viral vectors 

have been tested with this method.37,38 Intramyocardial injection leads  

to focused, high-density gene expression, but gene delivery is limited to  

the tissue volume within a few millimetres of the needle track.39,40 

Thus, multiple injection sites would be required to achieve sufficient 

gene delivery in the large mammalian heart, which increases both the 

risk of adverse events during the procedure and the probability of 

heterogeneous gene expression. Injection-related tissue damage also 

has a risk of triggering an acute inflammatory response.41,42

In order to enhance efficiency, electroporation has been used 

immediately after plasmid or virus injection. Since its initial trial on 

skeletal muscle, electroporation-mediated nonviral gene therapy has 

improved efficiency in both small and large mammalian hearts in 

vivo.15,43–45 Thomas et al. and Aistrup et al. have demonstrated viability 

of direct myocardial injection with epicardial electroporation for gene 

delivery to the atria.34,46-48 In their studies, epicardial electroporation 

increased the efficiency from ~10  % to ~50  % in both atria. The 

drawbacks of this hybrid injection/electroporation approach include 

possible fibrillation of the heart if the pulse is not synchronised and 

challenges to coordinate the injection with the placement of the 

electrodes for routine clinical use.15 Targeting for direct injection has 

been reported with various imaging modalities, such as magnetic 

resonance imaging (MRI), cardiac CARTO-NOGA mapping (Biosense 

Webster Inc, CA, US) and ultrasound. These have not yet been 

reported in AF studies, but they could potentially be adapted for atrial 

or AV nodal gene delivery.49–52

To date, the atrial epicardial gene painting method is the only 

reported widespread atrial gene transfer method that achieves 

dense, transmural, homogenous atrial expression without affecting 

ventricular cardiomyocytes.33 Gene painting involves applying a 

mixture of poloxamer gel, dilute trypsin and gene transfer vector to 

the atrial epicardial surface. Poloxamer gel is used to increase virus 

contact time with the atria and trypsin increases virus penetration. 

The main technical difficulty to translating painting is the current need 

for open access to the atrial epicardial surface. In clinical settings, this 

delivery method could potentially be performed during open cardiac 

surgery or cardiac allografting.53 Modifications to create a minimally 

invasive method for this technique have not yet been reported. 

Intracoronary perfusion is an attractive method for either whole heart 

or targeted AV nodal gene delivery, but it is not effective for isolated 

atrial gene delivery due to the lack of sufficient atrial vasculature.54  

The advantages of this approach include minimal invasiveness and 

delivery of vectors using clinically standard equipment. The main 

disadvantage of delivery by intracoronary perfusion is the limited 

efficacy of whole heart delivery in spite of several reports that have 

outlined various parameters that can optimise gene transfer.55–59 To date, 

the best available method requires nitroglycerin, adenosine, vascular 

endothelial growth factor and low calcium administration to increase 

transvascular access, and simultaneous coronary arterial and venous 

delivery to increase target area. Sasano et al. used these methods 

with Ad vectors and achieved 80  % transfer to the anterior-septal 

left ventricle.32 A modification to achieve dense, whole heart delivery  

has not yet been reported. 

Gene delivery methods are arguably the principal limitation to 

clinical translation of AF gene therapy. Myocardial injection and 

intracoronary infusion have been used in angiogenesis and heart 

failure clinical trials.60,61 As noted above, these methods would be 
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limited for widespread, specific atrial delivery in the clinical setting. 

The epicardial painting method has potential for clinical application 

during cardiac surgery, and the development of a minimally invasive 

version could potentially lead to use in non-surgical AF therapy. 

Gene Therapy Targets and Strategies for Ablation of 
Atrial Fibrillation
A key consideration for developing AF therapies is the arrhythmia 

mechanism. Both triggered activity and reentry have been implicated 

for provoking AF onset. Multiple lines of evidence support reentry as 

the dominant mechanism for sustaining AF.5,62 Approaches for sinus 

rhythm restoration include reentry-disrupting interventions such as 

prolongation of atrial action potential duration (APD), improvement of 

atrial conduction and trigger disruption by prevention of calcium leak 

from the sarcoplasmic reticulum. Rate control has targeted the AV node 

with overexpression of inhibitory G proteins, suppression of stimulatory 

G proteins, or introduction of a calcium channel inhibiting protein.  

Table 1 presents various gene targets and strategies for AF therapy.

Restoration of Sinus Rhythm
A principal element of AF electrical remodelling is the shortening of 

APD, which favours the maintenance of reentrant circuits. A logical 

approach would be to prevent AF by increasing the reentrant path 

length to prolong APD. Kikuchi et al. and Amit et al. demonstrated 

that gene transfer of the dominant negative mutation KCNH2 (G628S) 

blocked the IKr current and prolonged atrial APD.33 Animals receiving 

this gene by the epicardial gene painting method were resistant 

to atrial burst pacing-induced AF.63 The extent of APD prolongation 

and AF resistance correlated with gene expression. The dominant 

negative character of the mutation allowed it to suppress the 

endogenous, presumably normal, KCNH2 expressed in the atria. 

Soucek et al. performed a comparable study confirming that inhibition 

of KCNH2 function could prevent AF. They used the canine analogue of  

the channel (CERG-G627S) delivered to pigs using the injection/

electroporation method.46 

A potentially complementary strategy is to prevent or reverse impaired 

intra-atrial conduction associated with AF or other diseases affecting 

the atria. One method to improve conduction is to target disease-related  

gap junction remodelling. Igarashi et al. found that atrial conduction 

impairment correlated with connexin (Cx) expression, phosphorylation 

and intercalated disk localisation. Using the atrial epicardial painting 

method, they showed not only that Cx43 gene transfer could reverse 

the conduction defect, but also that Cx40 gene transfer could replace 

the lost Cx43 and prevent AF.64 Bikou et al. additionally showed that Cx43 

gene transfer using the injection/electroporation method improved atrial 

conduction and prevented AF.34

A possible approach to suppress conduction heterogeneity is to target 

atrial structural remodelling. Atrial apoptosis, inflammation and fibrosis 

are near universal findings, not only in AF, but also in diseases that 

support development of AF (e.g. HF, hypertension).65–67 Experimental 

studies indicate that AF can be prevented by suppression of fibrotic 

pathways including the renin–angiotensin system, transforming 

growth factor-β1, and other pathways relevant to inflammation and 

oxidative stress.68–72 As an example, histone deacetylase inhibition 

inhibited atrial fibrosis and reduced AF vulnerability in transgenic 

mice.73 No studies with gene therapy in clinically relevant models have 

yet been reported for prevention or reversal of atrial fibrosis, but this 

area holds promise. 

AF is also linked to cardiomyocyte apoptosis, which leads to 

a reduction in conduction velocity. In vivo gene transfer with 

Ad-siRNA-Cas3 to knockdown caspase 3 has suppressed apoptosis, 

improved conduction velocity and delayed onset of AF, but didn’t alter 

myocardial fibrosis significantly.47

Calcium leak from the sarcoplasmic reticulum (SR) through ryanodine 

receptors (RYRs) potentially plays an important role in triggered activity 

that initiates AF.74 One strategy to target calcium leak from the SR is 

to reduce calcium/calmodulin-dependent protein kinase II (CaMKII) 

activity.75 Inhibition of CaMKII decreased phosphorylation of RyR2 and 

prevented induction of AF in FKBP12.6 knockout mice.76 Long-term 

inhibition of CaMKII prevented AF in CREM mice.77 A limitation of 

these data is that they are all from various transgenic mouse models. 

AF mechanisms are likely to differ in mice where triggered activity 

may play a more prominent role. Further investigations in preclinical 

models are required for a thorough understanding of the various roles 

of triggering and sustaining mechanisms in maintaining AF.

A strategy explored for protection against vagal-induced AF was 

administration of genes encoding the C-terminal fragment of Gαi 

and Gαo. The strategy competitively inhibited interaction between 

endogenous Gαi and Gαo with the muscarinic receptor, attenuating 

the effects of parasympathetic stimulation. Investigators delivered 

plasmids by direction injection followed by electroporation. Afterwards, 

they checked AF inducibility with vagal stimulation or carbachol 

administration. The combination of Gαi plus Gαo had similar effects on 

APD shortening when compared with Gαi alone, but had improved AF 

prevention effects suggesting a mechanism that involved more than 

the observed APD effects.18 

Rate Control
AF normally results in an elevated ventricular rate. Rate controlling 

drugs are largely successful mainstays of therapy, but their use is 

limited in some patients by inadequate efficacy or intolerable side 

effects.78,79 Patients with AV node ablation are permanently dependent 

on pacemaker, and they have loss of synchronous left ventricular 

contraction that can be partially relieved by biventricular pacing, 

again requiring more implanted hardware. As a proof-of-concept, 

the inhibitory G-protein α-subunit (Gαi2) was incorporated into Ad 

and transferred to porcine AV node. The heart rate during AF after 

Gαi2 gene transfer reduced 20  %.31 In a follow-up study, the heart 

rate reduction with wild-type Gαi2 was lost when the animals were 

awake. A constitutively active Gαi2 mutation (cGi) caused a similar rate 

reduction that was impervious to animal arousal.80 A similar approach 

introduced Gem, an L-type calcium channel blocking G protein into the 

pig AV node and reduced ventricular rate.81 

An alternative approach for AV nodal therapy is down-regulation 

of the stimulatory G protein α subunit. Lugenbeil et al. found that 

RNA interference-mediated inhibition of Gαs expression decreased 

ventricular rate by 20  %.82 In a separate study, they transferred this 

gene to the sinoatrial node and achieved an 8–17 % decrease in sinus 

rate.48 This strategy may well be complementary with the reported Gαi 

approach since the two proteins relay opposite signalling pathways 

in AV nodal cells. Gαs transmits β adrenergic signalling by increasing 

adenylate cyclase activity and downstream effects through protein 

kinase A. Gαi transmits cholinergic and purinergic signalling that 

decrease adenylate cyclase activity, antagonising the β-adrenergic 

effects in the AV node. 
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RNA interference is evolving to be a promising method for therapeutic 

silencing of protein-coding genes.83 MicroRNAs (MiRs) that inhibit 

expression of several proteins have been described. MiRs have 

been proven in various systems to be critical contributors to the 

pathophysiology of AF, either directly by modulation of ion channels 

and connexins, or indirectly by affecting fibrosis.84 MiR-1 is related to 

potassium channel and conduction velocity.85 MiR-21 and MiR-101 are 

associated with cardiac fibrosis.86,87 MiR-26 and MiR-328 contribute to the 

electrical remodelling of AF.88,89 MiRs are a potential gene therapy target 

for AF. This area is developing rapidly although it is still in an early stage. 

Conclusions
Gene therapy approaches for AF are all currently at the preclinical 

development stage. Translation to clinical trial and practice is a long 

and difficult process. Clinical trials have demonstrated excellent long-

term safety but limited efficacy for gene therapy in other cardiovascular 

diseases.22,23,60,61,90 The existing obstacles include lack of efficient, 

safe and clinically relevant delivery approaches and lack of vectors 

with high transfer efficiency and long-term regulated expression.91,92 

Improvements in gene transfer vectors and delivery methods (including 

development of minimally invasive delivery methods) will further 

increase the likelihood of successful transfer of animal studies to 

clinical science. A better understanding of AF mechanisms in humans 

(particularly those with persistent AF complicated by heart failure 

or other cardiac diseases) is needed to refine therapeutic targets. 

Appropriate animal models with established AF need to be developed 

to study for longer time to insure effectiveness and durability of gene 

therapy. Overall, gene therapy for atrial fibrillation holds the potential 

to become the paradigm for clinical treatment but extensive further 

development is needed to reach this goal. n
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