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We present the implementation of an electronic-structure approach dedicated to

ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL)

pulses. In our scheme, molecular orbitals for molecular core-hole states are repre-

sented by linear combination of numerical atomic orbitals that are solutions of cor-

responding atomic core-hole states. We demonstrate that our scheme efficiently

calculates all possible multiple-hole configurations of molecules formed during

XFEL pulses. The present method is suitable to investigate x-ray multiphoton mul-

tiple ionization dynamics and accompanying nuclear dynamics, providing essential

information on the chemical dynamics relevant for high-intensity x-ray imaging.
VC 2015 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4919794]

I. INTRODUCTION

The advent of x-ray free-electron lasers (XFELs)1,2 opens up a new era in science and

technology.3–5 Unprecedentedly ultraintense and ultrafast hard x-ray pulses generated from

XFELs enable us to measure molecular structures on the atomic scale and to explore the struc-

tural dynamics on the femtosecond scale. One of the most prominent XFEL applications is

imaging of biological macromolecules. X-ray crystallography with XFELs, after demonstration

of the proof-of-principle,6 has started to reveal previously unknown protein structure,7 promis-

ing a breakthrough in structural biology (see reviews in Refs. 8–11). Recent advances in

time-resolved serial femtosecond crystallography12–16 enable us to take a step forward towards

molecular movies. To investigate molecular structure and structural dynamics with XFELs, one

needs to understand radiation damage dynamics—x-ray multiphoton ionization dynamics and

accompanying nuclear dynamics. Furthermore, the phase problem17 is the bottleneck to recon-

struct molecular structures in serial femtosecond crystallography as much as in conventional

x-ray crystallography. To overcome the phase problem for x-ray crystallography with XFELs,

one uses conventional phasing technique at intermediate x-ray intensity,18 or one takes an

advantage of the large degree of ionization at high x-ray intensity. The latter brings in high-

intensity phasing (HIP) methods,19 including high-intensity multiwavelength anomalous
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diffraction20,21 and high-intensity radiation damage induced phasing.22 The HIP techniques

require detailed description of deep-inner-shell decay dynamics of heavy atoms influenced by

the molecular environment. Therefore, understanding of radiation damage dynamics is the key

for successful molecular imaging.

Modeling of biological macromolecules exposed to XFEL radiation was pioneered by the

seminal work of Neutze et al.23 Since then, there have been several computational tools to

address molecular imaging problems, for example, classical molecular dynamics model,24,25

particle-in-cell approach,26,27 transport model,28,29 and Coulomb complex model.30,31 Some of

these methods have been recently applied to ion fragment spectra32 and electron spectra33 from

C60 molecules interacting with intense x-ray pulses. So far, most computational methods have

been based on the independent-atom model or the plasma model. The description of the molec-

ular environment is omitted by assumption or incorporated in an ad hoc manner. When a mole-

cule absorbs x-ray photons, inner-shell multiple ionization induces fragmentation dynamics.34,35

Chemical bonds are weakened, and electrons and holes rearrange before the molecule breaks

apart.36–38 Detailed electronic structure calculations for chemical bonding and charge rearrange-

ment are thus crucial to describe molecular effects in modeling of the XFEL–matter interaction.

The electronic response of atoms and molecules to XFEL pulses is in essence characterized

by multiphoton multiple ionization dynamics.39–41 The XATOM toolkit42,43 has been developed to

simulate the XFEL–atom dynamical interaction, and the ionization dynamics model has been

tested with a series of experiments.44–48 The unprecedentedly large number of x-ray photons

delivered by an XFEL pulse induces sequential x-ray absorptions, creating a variety of different

q-hole configurations for each charge state þq. To simulate ionization dynamics, one needs to

calculate photoionization cross section, Auger rate, and fluorescence rate for each configuration

and solve a set of coupled rate equations for the time-dependent populations of the configura-

tions.39,49,50 The q-hole electronic configurations are energetically highly excited, and theoreti-

cal treatment of such highly-excited states is challenging. Another challenge is the complexity

of the ionization dynamics. Even for the atomic case, one must solve more than 2 � 107

coupled rate equations for Xe L-shell-initiated ionization dynamics.46 To address this formida-

ble problem, a Monte-Carlo approach has been proposed for solving the rate equations43,45 and

sampling the most probable configurations.46 In this scheme, the electronic structure is calcu-

lated for every single configuration selected on the fly as part of the Monte Carlo sampling. For

the molecular case, the complexity increases even further because of the degrees of freedom

associated with atomic motions, so the Monte Carlo approach seems to be the only way to sim-

ulate molecular response to an intense XFEL pulse. However, the most important question still

remains: How to describe the electronic structure of molecules on the fly for the Monte Carlo

method?

Here, we present a new efficient method for electronic structure calculation of polyatomic

molecules and implement a dedicated toolkit, XMOLECULE. The proposed method is well suited

for calculations of molecular multiple-hole configurations that are formed during x-ray multi-

photon ionization dynamics. To efficiently describe molecular orbitals of core-hole configura-

tions, the method employs atomic orbitals as basis functions that are numerical solutions of

atomic core-hole states, calculated by XATOM.42 For any given molecular electronic configura-

tion and any given molecular geometry, XMOLECULE calculates molecular orbitals and orbital

energies, which are essential components for dynamical simulations of x-ray multiphoton multi-

ple ionization. We demonstrate that XMOLECULE is capable to calculate the whole spectrum of

multiple-hole configurations at a given molecular geometry and potential energy surfaces for

given multiple-hole configurations of molecules. Also, performance scalability with the system

size is discussed. In this paper, we focus on the implementation of a molecular electronic-

structure approach. Calculating cross sections and rates and solving coupled rate equations to

simulate ionization dynamics will be described elsewhere. Having achieved these results,

XMOLECULE aims to play a key role in molecular imaging at high x-ray intensity.

The paper is organized as follows. Section II formulates our scheme to calculate molecular

multiple-hole configurations. It includes theoretical and computational schemes for basis func-

tion generation with numerical atomic orbitals, multicenter integration on a molecular grid, and
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direct Coulomb integral evaluation. In Sec. III, we show benchmark calculations for XMOLECULE,

and then numerical results for the potential energy curves of various electronic configurations

of carbon monoxide, and single- and double-core ionization potentials of several polyatomic

molecules. We discuss the scalability of our scheme to a molecular size of hundreds of atoms.

This is followed by the conclusion in Sec. IV.

II. COMPUTATIONAL METHODS

A. The Hartree–Fock–Slater method

We consider a molecular system composed of Natom atoms with Nelec electrons. The Ath
nuclear charge and coordinates are denoted by ZA and RA, respectively. The molecular charge

state þq is given by q ¼ P
AZA � Nelec. We use the Hartree-Fock-Slater (HFS) method in

which molecular orbitals (MO), wiðrÞ, and orbital energies, ei, are obtained by solving the

effective single-electron Schrödinger equation (atomic units are used unless specified

otherwise),

� 1

2
r2 þ Vext rð Þ þ VH rð Þ þ VX rð Þ

� �
wi rð Þ ¼ eiwi rð Þ; (1)

where VextðrÞ is the external potential due to the nuclei,

Vext rð Þ ¼ �
X
A

ZA
jr� RAj ; (2)

and the Hartree potential VHðrÞ represents the classical Coulomb interaction among the

electrons,

VH rð Þ ¼
ð
d3r0

q r0ð Þ
jr� r0j ; (3)

and the last term VXðrÞ represents the exchange interaction, which is approximated by the

Slater exchange potential,51

VX rð Þ ¼ � 3

2

3

p
q rð Þ

� �1
3

: (4)

The electronic density qðrÞ is obtained by the sum of squared MO’s weighted by the occupa-

tion numbers fnig as

qðrÞ ¼
X
i

nijwiðrÞj2; (5)

where ni 2 f0; 1; 2g. In contrast to conventional ground-state electronic structure calculations,

in which the Nelec spin-orbitals with the lowest energies are filled, we consider all possible fnig
subject to

P
ini ¼ Nelec, in order to take account of electronic excited states representing q-hole

configurations.

The total energy within the HFS method is given by the sum of the nucleus–nucleus repul-

sion energy and the electronic energy,

Etotal ¼
X
A<B

ZAZB
jRA � RBj þ

X
i

niei � 1

2

ð
d3r

ð
d3r0

q rð Þq r0ð Þ
jr� r0j þ 3

8

3

p

� �1
3
ð
d3r q rð Þ43: (6)
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B. Linear combination of numerical atomic orbitals

For atomic systems, the orbital is represented with spherical harmonics as

/nlm rð Þ ¼ unl rð Þ
r

Ylm h;uð Þ; (7)

where n, l, and m are the principal quantum number, the orbital angular momentum quantum

number, and the associated projection quantum number, respectively. The radial wavefunction

unlðrÞ can be solved by a numerical grid-based method. The XATOM toolkit42 has been developed

to solve the atomic HFS equation. By employing the generalized pseudospectral (GPS)

method52,53 and imposing a spherically symmetric potential, XATOM accurately calculates unlðrÞ
for a given (n, l)-subshell, and accordingly /lðrÞ for a given l � ðn; l;mÞ. This numerical

atomic orbital has been used to successfully calculate multiple-hole configurations formed dur-

ing x-ray multiphoton ionization dynamics in the atomic case.41,42

For molecular systems, we employ the linear combination of atomic orbitals (LCAO)

scheme to construct molecular orbitals,

wiðrÞ ¼
X
l

Cli/lðrÞ; (8)

where /lðrÞ is the lth atomic orbital (AO) and Cli is the coefficient of the lth AO for the ith
MO. Using Eq. (8) transforms the self consistent field (SCF) Eq. (1) into the corresponding

Roothaan-Hall equation,54

HC ¼ SCE; (9)

where E is a diagonal matrix of MO energies and C is the MO coefficient matrix. The elements

of the Hamiltonian matrix H and the overlap matrix S are given as

Hl� ¼
ð
d3r/l rð Þ � 1

2
r2 þ Veff rð Þ

� �
/� rð Þ; (10)

Sl� ¼
ð
d3r/lðrÞ/�ðrÞ; (11)

where the effective potential VeffðrÞ � VextðrÞ þ VHðrÞ þ VXðrÞ. Equation (9) is solved in a self-

consistent manner. To accelerate convergency, we employ the direct inversion in the iterative sub-

space (DIIS) method.55,56 When we encounter convergence problems at large bond distances,

where the energy gap between the highest occupied molecular orbital (HOMO) and the lowest

unoccupied molecular orbital (LUMO) is very small, we apply level shifts57 in the SCF iterations.

Here, our choice of basis set for the LCAO scheme is the numerical atomic orbitals

(NAOs) obtained by XATOM described above. In Fig. 1, we plot the squared radial function

FIG. 1. Numerical atomic orbitals for different core-hole states of the nitrogen atom.
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junlðrÞj2 for the 1s, 2s, and 2p orbitals of the ground state of the neutral nitrogen (N) atom, the

single-core-hole (SCH) state of Nþ, and the double-core-hole (DCH) state of N2þ, respectively.
Comparison among different core-hole states shows significant deformation of valence orbitals

in states with core holes. To cover these effects efficiently in the molecular calculation, we use

NAOs that are numerical solutions of the corresponding atomic core-hole states. For instance,

N2þ
2 with one core hole at each atomic site (a DCH state) is calculated with basis functions

optimized for Nþð1s�1Þ on both N atoms, whereas N2þ
2 with a single-site DCH state is calcu-

lated with basis functions optimized for N2þð1s�2Þ on which the core hole is located and basis

functions optimized for neutral N on the other side. In this way, we expect core-hole MOs are

well described by core-hole-adapted NAOs.

To achieve utmost efficiency towards complex ionization dynamics, we employ the mini-
mal basis set. Each AO with (n, l, m) in Eq. (7) corresponds to a single basis function. Fully or

partially occupied (n, l)-subshells contribute to a set of basis functions and each l gives ð2lþ 1Þ
basis functions (jmj � l). For example, the N atom has 1s, 2s, and 2p (partially) occupied sub-

shells, which constitute 5 basis functions (/1s; /2s; /2px ; /2py , and /2pz) in total. This basis set

is denoted as [2s1p]. According to the minimal-basis-set scheme, the chemical elements from B

to Ne have the same number of basis functions (Nbasis ¼ 5). In Sec. III A, we will discuss limi-

tations and extensions of the minimal-basis-set scheme.

C. Molecular grid and multicenter integration

Equations (10) and (11) require evaluation of the corresponding integrals in three dimen-

sions. In our case, the /lðrÞ and /�ðrÞ are represented with a radial grid and spherical har-

monics. To perform 3D integrals involving many atomic centers, we employ the multicenter

integration proposed by Becke.58 Molecular grid points are constructed as a combination of

sets of atomic grid points. Each set of atomic grid points, centered at one of the nuclei, con-

sists of Nr radial grid points and Nang angular grid points. The radial grid points are exactly

the same as those used for NAO calculations with the GPS method.52,53 The angular grid

points are obtained by the Lebedev grid scheme59 with an angular momentum cutoff at lmax.

The number of angular grid points is approximately given by Nang � 4ðlmax þ 1Þ2=3. A

detailed description of constructing multicenter molecular grid points is found in Refs. 60 and

61. We use an atomic radial grid size (rmax) large enough (�10 Å) so that the atomic grids of

many neighboring atoms overlap with each other. In principle, different atomic grid parame-

ters can be used for individual atoms in a molecule. For convenience, however, we use the

same grid parameters for all atoms. Then, the total number of molecular grid points is given

by Ngrid ¼ Natom � Nr � Nang.

Becke’s multicenter integration scheme58 introduces a set of smooth nuclear weight func-

tions fwAðrÞg, subject to the constraint
P

AwAðrÞ ¼ 1. The nuclear weight functions are gener-

ated by the third-order polynomial cutoff profile in the fuzzy cell scheme.58 Then, any integral

of a given function f can be evaluated by the sum of individual atomic integrals,

I ¼
ð
d3r f ðrÞ ¼

X
A

ð
d3r f ðrÞwAðrÞ �

X
A

ð
A

d3rA f ðrAÞwAðrAÞ; (12)

where rA � r� RA. Each atomic integral can be readily performed using the spherical coordi-

nate system of rA, centered at the Ath atom,

IA ¼
ð
A

d3rA f ðrAÞwAðrAÞ �
X
k2A

f ðrkÞwAðrkÞwk; (13)

where k is the index of the grid points of the Ath atom and wk is defined as a product of the ra-

dial Legendre-Gauss-Lobatto quadrature weights62,63 and the angular Lebedev quadrature

weights.59
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D. Implementation of direct Coulomb integrals

In electronic structure calculations, one of the most time-consuming parts is the evalua-

tion of electron repulsion integrals. In order to achieve fast calculation within a desired accu-

racy, we have developed a multipole expansion scheme with an adaptive cut off. First, the in-

tegral involved in the Hartree potential in Eq. (3) can be decomposed into individual atomic

integrals,

VH rð Þ ¼
ð
d3r0

q r0ð Þ
jr� r0j �

X
A

ð
A

d3r0A
qA r0A

� �
jrA � r0Aj

; (14)

where qAðrÞ � qðrÞwAðrÞ. Each single-center density qAðrÞ can then be regarded as the atomic

contribution to the total electronic density. To implement the integral, we expand the single-

center density with real spherical harmonics Ylmðh;uÞ as

qAðrAÞ ¼
Xlmax

l¼0

Xl

m¼�l

qAlmðrAÞYlmðhA;uAÞ; (15)

where qAlmðrÞ is the (l, m)-component of the spherical expansion,

qAlmðrAÞ ¼
ð2p
0

duA

ðp
0

dhA sin hA qAðrAÞYlmðhA;uAÞ: (16)

With this single-center decomposition and spherical harmonic expansion of the electronic den-

sity, qAlmðrÞ, the Hartree potential in Eq. (3) is obtained as

VHðrÞ ¼
X
A

X
l;m

VA
lmðrAÞYlmðhA;uAÞ; (17)

where VA
lm is given by

VA
lm rAð Þ ¼ 4p

2lþ 1

ðrmax

0

dr0A r
0
A
2 r<

l

rlþ1
>

qAlm r0A
� �

; (18)

where r< ¼ minðr0A; rAÞ and r> ¼ maxðr0A; rAÞ. This radial integral is numerically evaluated in

combination with various truncation methods (see the Appendix).

E. Molecular electronic configuration

Keeping the energetically lowest orbitals doubly occupied, the SCF procedure obtains the

HFS solution for the electronic ground state. In order to obtain a solution for an excited elec-

tronic state of a q-hole configuration, each molecular orbital has to be assigned a specific occu-

pation number. This can be done, as in the ground state calculation, by identifying the orbitals

by their HFS energy eigenvalue. However, during the SCF iterations, the energetic order of

MOs may change. Thus, identifying the orbitals by ordering them according to their HFS

energy eigenvalue may lead to failure of the above SCF procedure or yield a solution for a dif-

ferent electronic state than required. This is called variational collapse.64–66

To prevent this situation, we employ a variant of the maximum overlap method.66 In the

maximum overlap method, the desired excited electronic state is specified by a set of initial

guess orbitals fwguess
j g in combination with a set of occupation numbers fnjg. In each SCF iter-

ation, the occupation number ni of the calculated orbital wi is chosen according to its projection

onto the subspace spanned by the guess orbitals with respective occupation number.

Specifically, we calculate the overlap of the ith current MO with the jth guess MO,
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Oij ¼ hwijwguess
j i ¼

X
l;�

Cli ~Sl�C
guess
�j ; (19)

where ~Sl� ¼
Ð
d3r/lðrÞ/guess

� ðrÞ. Note that the basis set for the initial guess orbitals is not nec-

essarily the same as the one used for the expansion of the actual molecular orbitals, because

different NAOs can be used for different q-hole configurations. Therefore, ~Sl� can be different

from the overlap matrix Sl� defined in Eq. (11). Then, the projections of the ith orbital onto the

span of the guess orbitals for the unoccupied (n¼ 0), singly occupied (n¼ 1), and doubly occu-

pied (n¼ 2) cases are given by

P
ðnÞ
i ¼

X
j

jOijj2; (20)

where j runs over all initial guess orbitals whose occupation number nj equals n. To preserve

the character of the required electronic configuration during the SCF procedure, we choose the

set of the occupation numbers of the current orbitals, fnig, such that
P

iP
ðniÞ
i is maximized,

while the total number of doubly and singly occupied orbitals is maintained.

This procedure to determine the orbital occupation critically depends on the initial guess

MOs. Thus, it is essential that the provided guess MOs fwjg together with the provided occupa-

tion numbers fnjg describe a wavefunction that is close to the required solution. For the calcu-

lations performed here, we choose initial guess MOs obtained from a previous calculation for a

lower ionized electronic state or for the same electronic state with an altered molecule geome-

try. For the single-core-hole state in N2, we obtain a localized core hole on a specific nucleus

by performing a Boys-orbital-localization procedure67 of the two guess core orbitals. Having

obtained a converged solution, we verify that the obtained set of MOs is indeed close to the ini-

tial guess, by inspecting the individual overlap Oij.

III. RESULTS AND DISCUSSION

A. Benchmark calculations

We first estimate the accuracy of our calculations using the numerical multicenter integra-

tion in comparison with conventional calculations using the analytic Gaussian integration by

GAMESS.68 Here, we employ the 6–31G Gaussian basis set69 to calculate the SCF-level ground-

state energy of a water molecule. The internuclear distance of RðOHÞ ¼ 0:957 Å and the bond

angle of ffðHOHÞ ¼ 104:48	 are used. Only in this test, we employ the restricted Hartree-Fock

(RHF) method instead of the HFS method, in order to directly compare with the GAMESS results.

Figure 2 shows that our numerical calculations converge to the GAMESS results as the number of

radial grid points per atom (Nr) and the number of angular grid points per atom (determined by

lmax) are increased. The total number of molecular grid points for Nr¼ 50 and lmax ¼ 8 is

3� 50� 110 ¼ 16500. The maximum radius rmax ¼ 20 a.u., and the GPS mapping parame-

ter52,53 L¼ 1 a.u. is used. Note that all grid parameters utilized here provide a numerical accu-

racy jDEj < 1:5 eV. If chemical accuracy is required (typically 1 kcal/mol � 0.04 eV), our

study for the water molecule shows that it is achievable with Nr 
 200 and lmax 
 11, keeping

the same L and rmax. As to be shown in Sec. III B, the energy scale of x-ray-induced dynamics

of highly-charged molecules will extend into the keV regime. Therefore, the worst grid parame-

ters (for example, Nr¼ 30 and lmax ¼ 4) shown in Fig. 2 would be sufficient to describe the mo-

lecular ionization dynamics at high x-ray intensity.

We next examine the performance of our NAO basis set scheme. In Fig. 3, we show the

calculated HFS energy of (a) the ground state of neutral N2 molecule with NAOs optimized for

neutral N atom and (b) the quadruple-core-hole (QCH) state of N4þ
2 ion with NAOs optimized

for the DCH state of N2þ. The internuclear distance R¼ 1.096 Å is fixed. Nr¼ 200, L¼ 1 a.u.,

rmax ¼ 20 a.u., and lmax ¼ 11 are used. The results are shown together with those obtained by

the equivalent calculations using conventional Gaussian-type-orbital (GTO) basis sets of differ-

ent sizes (STO-3G70 and a series of Dunning’s correlation-consistent basis sets;71 All GTO
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basis sets are obtained from the EMSL Basis Set Library72). DE is the energy difference from

the total energy calculated with the uncontracted version of cc-pV6Z, [16s10p5d4f3g2h1i] with

161 basis functions, which is considered here the complete basis set limit. Thus, DE indicates

the numerical error due to lack of basis functions.

In both Figs. 3(a) and 3(b), one can see that the minimal NAO basis set is superior to the

conventional minimal basis set of STO-3G, illustrating that fully optimized NAOs are a practi-

cal choice for the basis set in the LCAO scheme. Also, Fig. 3 shows convergency of GTOs

with respect to the number of basis functions. Interestingly, the conventional GTOs for QCH

N4þ
2 perform almost one order of magnitude less accurate than GTOs for neutral N2. The reason

is that GTOs are optimized to be used for neutral ground-state calculations. In contrast, NAOs

optimized for corresponding atomic q-hole configuration provide similar accuracy for both neu-

tral N2 and QCH N4þ
2 . Thus, NAO functions provide an ideal basis set for our minimal-basis-

set HFS scheme.

To improve accuracy, we try to increase the number of NAOs in a systematic manner by

including unoccupied atomic orbitals with higher (n, l) such as 3s, 3p, and so on. As shown in

Fig. 3, the NAOs are somewhat inefficient to achieve higher accuracy by simply extending to

higher (n, l), as previously reported in Ref. 73. This is attributed to the fact that additional se-

ries of higher (n, l)-orbitals, whose mean square radius is far from the atomic center, are ineffi-

cient for representing bonding molecular orbitals. Instead, we propose a scheme for adding

compact p-type and d-type functions to the minimal NAO basis set in order to improve the

FIG. 3. Comparison of convergency in total energy with respect to the number of basis functions, using the GTO scheme

and the NAO scheme: (a) neutral N2 and (b) QCH N4þ
2 . DE is defined by the total energy difference from the complete basis

set limit (see the text).

FIG. 2. Convergence of the total HF energy with respect to the number of grid points. Nr is the number of radial grid

points, and lmax controls the number of angular grid points per atom. The ground-state energy calculation of H2O with

RHF/6-31G is performed using the numerical multicenter integration, and DE is the difference from the result obtained

using the analytic Gaussian integrals.
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description of chemical bonding. Additional functions are constructed by use of radial wave-

functions of occupied subshells multiplied by r, where r is the radial coordinate in the atomic

system. For the chemical elements from B to Ne, the p-type functions are u2sðrÞY1mðh;uÞ,
where m ¼ 0;61, and the d-type functions are u2pðrÞY2mðh;uÞ, where m ¼ 0;61;62. By add-

ing these functions, as denoted by extended NAO (NAO[e]) and as marked with the black rec-

tangle in Fig. 3, the accuracy is much improved; the total energy of neutral N2 is close to the

cc-pVDZ level, and the total energy of QCH N4þ
2 is close to the cc-pVQZ level. The number

of basis functions for NAO[e] is only 13 per atom, whereas cc-pVQZ has 55 basis functions.

There have been several approaches for extension of the minimal NAO basis set,73,74 where

additional basis functions are constructed in a systematic way.

B. Potential energy curves for various hole configurations

Figure 4 shows the HFS total energies in Eq. (6) using core-hole-adapted NAO basis func-

tions for all possible q-hole configurations that can be accessed by x-ray multiphoton ionization

of the neutral carbon monoxide molecule. The internuclear distance R¼ 1.128 Å is fixed, and

the grid parameters of Nr¼ 50, L¼ 1 a.u., rmax ¼ 20 a.u., and lmax ¼ 8 are used. For conven-

ience, the figure shows these configurations grouped into charge states. The lowest horizontal

line for each charge state indicates the ground-state energy for a given charge þq. This figure

then illustrates how much energetically excited the q-hole configurations are. For example, the

energy of DCH CO2þ (O1s�2) is about 1 keV higher than the ground-state energy of CO2þ.
Ionization dynamics induced by intense x-ray pulses may occur step by step, visiting lots of

these electronic states. Therefore, it is crucial to efficiently calculate this set of electronic states

of q-hole configurations.

We further investigate the behavior of the potential energy curves (PEC) obtained using

the NAO basis set. In Fig. 5, we show the calculated HFS total energies for three different

types of CO2þ DCH states: (a) C1s�2, (b) C1s�1O1s�1, and (c) O1s�2. The dashed red line

indicates PECs calculated with core-hole-adapted NAO[e]. The solid red line indicates PECs

with core-hole-adapted NAO without additional functions. Both results are compared with the

solid blue line calculated with the conventional cc-pVTZ basis set. Previous theoretical studies

of core-hole states suggested that calculations of the cc-pVTZ level are reasonably

FIG. 4. Spectrum of total energies for various electronic states of CO, which are accessible by x-ray multiphoton ioniza-

tion. The colors indicate different core hole configurations. Potential energy curves of the DCH states inside the box will be

shown in Fig. 5.
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converged.75,76 Our NAO[e] scheme reproduces well the cc-pVTZ results, even though the size

of NAO[e] (Nbasis ¼ 13) is much smaller than that of cc-pVTZ (Nbasis ¼ 30). For comparison,

we also plot PECs with NAOs optimized for neutral ground-state atoms, denoted by NAO[n],

which shows a trend similar to what a conventional STO-3G minimal basis set would be. The

NAO[n] results represent a poor estimate of PECs due to missing the core-hole effect on orbi-

tals. On the other hand, PECs from NAOs, which are optimized for atomic core-hole states,

show dramatic improvement over NAO[n], even though NAO and NAO[n] have the same num-

ber of basis functions (Nbasis ¼ 5).

C. Single- and double-core ionization potentials of molecules

To further test the accuracy of our calculation scheme, we compare core ionization poten-

tials for a series of small molecules obtained from the HFS calculation. The molecular geome-

tries are taken from Ref. 77 and the grid parameters are the same as those used in Sec. III B.

We derive the single-core ionization potential from the HFS orbital energy of a neutral ground-

state calculation using NAOs with and without additional basis functions. The double-core ioni-

zation potential is calculated as the sum of the first and the second core ionization potential,

where the second core ionization potential is taken from the orbital energy of the SCH state

calculation. For the DCH states with core holes on different nuclear sites, thus, two values are

obtained for the two different ionization sequences.

Table I lists the ionization potentials compared with the values obtained from complete-

active-space SCF (CASSCF) calculations75 and experimental values.78–83 For our calculations

of two-site DCH states, a mean value and a deviation are listed for two values from the differ-

ent ionization sequences. For the CASSCF results of two-site DCH states, only triplet spin

states are listed and the difference between singlet and triplet states is smaller than 0.7 eV.

Note that N2O is a linear molecule Nt—Nc—O, where Nt indicates the terminal N atom and Nc

means N at the center. As can be seen, the CASSCF results75 show agreement within less than

4 eV with the available experimental values. The single ionization potentials we extract from

the much simpler HFS calculation using the minimal NAO basis set show for all molecules a

similar agreement within 5.1 eV, except F1s�1 in LiF (28 eV). For the DCH states, where the

core holes are located on different nuclear sites, with the minimal NAO basis set, we also see a

similar agreement within 7 eV to the CASSCF values and, where available, the experimental

values. Again, LiF is an exception showing a much larger discrepancy of ’ 30 eV. For the

DCH state with core holes on the same nucleus, we find a systematically larger disagreement

of about 20–30 eV (for F1s�2 in LiF 78 eV).

The inclusion of the p-type and d-type functions in the basis set leads in most cases to a

larger deviation to the literature values than the results obtained with the minimal basis set. For

these calculations, we get ionization potentials that tend to be lower than the literature values

(from 3.4 eV for Li1s�1 to 60.5 eV for F1s�2 in LiF). Clearly, the extended NAO basis set

should improve the quality of the electronic structure model, as the electronic wave function

FIG. 5. Potential energy curves of CO2þ double-core-hole states as a function of the internuclear distance R. Energy is

given relative to the ground-state energy of neutral CO.
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has more flexibility. Thus, we conclude that the good agreement with the minimal basis set

might be an artifact due to cancellation of errors.

For the results obtained with the larger basis set, we attribute the remaining deviations to

the literature values mainly to relaxation energy contributions associated with the core hole

electron removal. The applied scheme of taking orbital energies as ionization potentials cannot

account for these effects. For core holes on the same nuclear site, where the core hole relaxa-

tion contributions are particularly strong, we see the strongest deviations (18.2–60.5 eV). Also,

the extreme deviations for LiF may be explained from these contributions: The core hole on

the F atom in LiF shows a particular large core hole relaxation effect, whereas for the core

hole on Li it is very small.75

D. Performance scaling

Our implementation of XMOLECULE aims for large-scale molecular calculations, especially

for a large number of repeated calculations where time and resources available for each calcula-

tion are severely limited. At the same time, it requires the capability of calculating moderate-

size systems in order to describe molecular-environment effects. Here, we demonstrate the

TABLE I. Single core hole and double core hole ionization potentials in eV. The molecular geometries are taken from Ref.

77.

Molecule Configuration Present (NAO) Present (NAO[e]) CASSCF75 Exp.

CO O1s�1 537.43 533.80 542.82 542.5a

C1s�1 295.81 289.84 296.36 296.5b

O1s�2 1139.12 1136.43 1176.56

C1s�2 647.50 636.89 664.42 667.9b

C1s�1O1s�1 850.706 2.28 840.346 0.52 855.20 855.3b

LiF F1s�1 663.77 670.23 688.04 691.8c

Li1s�1 59.34 58.56 65.33 61.9d

F1s�2 1403.81 1420.99 1481.50

Li1s�2 154.84 153.19 172.60

Li1s�1F1s�1 735.136 2.72 739.486 1.06 763.28

N2 N1r�1
g 409.57 403.30 411.03 409.9e

N1r�1
u 409.54 403.26 410.93

N1s�2 878.29 868.83 901.16 903.2f

N1s�1
A N1s�1

B 836.966 0.02 823.876 0.02 836.44

N2O O1s�1 537.81 534.72 542.54 541.4g

Nt1s
�1 408.70 403.66 408.61 409.0f

Nc1s
�1 413.74 407.89 412.52 412.5e

O1s�2 1138.96 1136.23 1173.25

Nt1s
�2 874.42 866.83 893.93

Nc1s
�2 883.76 875.54 902.31

O1s�1Nt1s
�1 961.296 0.25 951.476 0.25 963.27

O1s�1Nc1s
�1 964.306 0.40 954.536 0.37 965.62

Nt1s
�1Nc1s

�1 836.556 0.01 825.256 0.11 833.22 834.2f

aReference 78.
bReference 79.
cReference 80.
dReference 81.
eReference 82.
fReference 83.
gReference 84.
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performance scalability of our scheme toward molecular calculations with a few hundred atoms.

Our grid-based method has the potential to achieve linear scaling in the number of atoms.85–88

In the HFS method, the two-body interaction is divided into the exchange interaction and

the direct Coulomb interaction. The former is replaced with the local density approximation,

and the latter is treated with the Hartree potential as described in Sec. II D. The computational

complexity of the Hartree potential is OðN2
gridÞ, where Ngrid is linearly proportional to Natom,

because the potential VHðrÞ in Eq. (3) contains the integral over molecular grid points and has

to be evaluated at every single molecular grid point. By introducing the truncation methods

described in the Appendix, this complexity can be reduced to OðNgridNatomÞ. These truncation

schemes do not change the quadratic scaling behavior with respect to Natom, but reduce the

actual computational time by several times (for example, a factor of two in our following

calculations).

Another truncation can be made in the evaluation of one-body matrix elements in Eqs. (10)

and (11). Both Hl� and Sl� are decomposed into atomic contributions by the multicenter inte-

gration: Hl� �
P

AH
A
l� and Sl� �

P
AS

A
l� . We define an AO pair /lðrÞ/�ðrÞ and its contribu-

tion to each atomic grid,

QA
l� ¼

ð
A

d3rAj/lðrAÞ/�ðrAÞjwAðrAÞ: (21)

Then we set HA
l� and SAl� to zero if QA

l� < e, where e is a control parameter. The complexity of

the integrals in Eqs. (10) and (11) is OðN2
basisNgridÞ, where both Nbasis and Ngrid are linearly pro-

portional to Natom. By using our truncation scheme described above, we can reduce it to a quad-

ratic behavior with respect to Natom.

Figure 6 shows the size dependence of the computation time of XMOLECULE with the current

truncation schemes. We calculate the HFS ground state of C24H12 molecule (coronene) in its

equilibrium molecular geometry taken from Ref. 77. Then, we perform calculations for n such

molecules (n ¼ 1;…; 7) stacked in the vertical direction with an interlayer separation of 3.3 Å.

The minimal NAO basis set is used with Nr¼ 20, L¼ 1 a.u., rmax ¼ 10 a.u., and lmax ¼ 4. The

y axis is the CPU time per SCF iteration in seconds on a lab workstation (Intel Xeon X5660

2.80GHz), and the x axis indicates the number of atoms in the stacked (C24H12)n molecule.

When all truncations are off (blue curve), the computational performance shows close to a

cubic dependence. On the other hand, when the truncation method of Eq. (21) is applied with

e ¼ 10�3 (red curve), the scaling shows a quadratic dependence on the system size. Note that

when the truncation of Eq. (21) is used, the complexity of the matrix element calculations is

FIG. 6. Performance scaling with respect to the molecular size. The y axis is the CPU time per SCF iteration in seconds,

and the x axis is the number of atoms in stacked (C24H12)n molecules. The dotted lines with OðN2
atomÞ and OðN3

atomÞ indicate
a quadratic behavior and a cubic behavior, respectively, with respect to the number of atoms, Natom.
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reduced to a quadratic relation, while the Hartree potential calculation becomes the most time-

consuming step, which is also governed by a quadratic scaling. The difference in the total

energy between the calculations with and without this truncation is less than 0.14 eV/atom,

whereas the truncated calculation is about 7.5 times faster than the calculation with no trunca-

tion. The calculation with 216 atoms (n¼ 6) takes 40 second per single SCF iteration on the

lab workstation. The whole computation time takes about 14 min including the overhead costs

for numerical grid construction and 12 SCF iterations. When additional truncation schemes for

the Hartree potential (see the Appendix) are applied with e0 ¼ 0:1 and e1 ¼ 0:01 (green curve),

the complexity is a bit reduced towards a linear relation and the errors in the total energy are

less than 0.93 eV/atom. The actual computational time per iteration is improved by a factor of

two for the 216-atom case.

IV. CONCLUSION

In summary, we present a new method to calculate various multiple-hole electronic states

for polyatomic molecules that may be formed by x-ray multiphoton ionization dynamics at high

x-ray intensity. The method is based on the Hartree-Fock-Slater method, employing the LCAO

scheme, where NAOs are used as a minimal basis set for molecular orbital calculations. Usage

of NAOs has two advantages over conventional Gaussian-type basis functions. First, NAOs are

obtained from numerical solutions for atomic core-hole states at the same computational level.

Second, accuracy and efficiency of numerical integration with NAOs are controllable by grid

parameters and truncation schemes. The NAOs presented here are accurately solved by using

the numerical grid-based method that is implemented in the XATOM toolkit.

Using core-hole-adapted NAOs, molecular orbitals for core-hole states are efficiently calcu-

lated. We present benchmark calculations for multiple-core-hole states of N2. The NAO results

show consistent accuracy for different charge states, which is not the case for conventional ba-

sis sets that are optimized for neutral systems. We demonstrate that our scheme is able to calcu-

late all possible configurations that may be formed by removing zero, one or more electrons

from the ground-state configuration of neutral CO molecule. The electronic state during x-ray

multiphoton ionization dynamics may visit several of these multiple-hole configurations, which

are energetically excited by about 4 keV with respect to the ground-state configuration of neu-

tral CO. For molecular and ionization dynamics during XFEL pulses, we need not only all dif-

ferent multiple-hole states but also potential energy surfaces for individual electronic states. For

double-core-hole states of CO2þ, we calculate potential energy curves with core-hole-adapted

NAOs, in good agreement with converged results with respect to the basis-set size. Also, we

present single- and double-core-hole ionization potentials for several molecules in comparison

with available theoretical and experimental data.

Efficient electronic structure calculations for molecules are essential for dynamical model-

ing of molecules at high x-ray intensity. We have implemented XMOLECULE to make a step to-

ward dynamical simulation of molecular imaging with XFELs. Calculations of photoionization

cross sections, fluorescence rates, and Auger rates for all possible configurations formed during

molecular ionization dynamics are in progress.
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APPENDIX: TRUNCATION SCHEMES FOR EVALUATING THE HARTREE POTENTIAL

Here, we introduce truncation schemes on VA
lmðrAÞ. The upper bound of jVA

lmj is given by
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jVA
lm rAð Þj ¼ 4p

2lþ 1

����
ðrA
0

dr0A r
0
A
2 r0A

l

rlþ1
A

qAlm r0A
� �þ ðrmax

rA

dr0A r
0
A
2 rlA
r0Alþ1

qAlm r0A
� �����

� 4p
2lþ 1

���� 1rA
ðrA
0

dr0A r
0
A
2 r0A

rA

� �l

qAlm r0A
� �����þ

���� 1rA
ðrmax

rA

dr0A r
0
A
2 rA

r0A

� �lþ1

qAlm r0A
� �����

" #

� 4p
2lþ 1

1

rA

ðrA
0

dr0A r
0
A
2
���qAlm r0A

� ����þ 1

rA

ðrmax

rA

dr0A r
0
A
2
���qAlm r0A

� ����
" #

¼ 4p
2lþ 1

� 1
rA

ðrmax

0

dr0A r
0
A
2
���qAlm r0A

� ����: (A1)

Then, we define

dAlm ¼
ðrmax

0

dr0A r
0
A
2jqAlmðr0AÞj (A2)

to be used as a truncation indicator. Note that the number of electrons in the Ath atomic electronic

density is given by QA ¼ Ð
d3r qAðrÞ ¼

ffiffiffiffiffiffi
4p

p
dA00. Within the atom, we consider higher multipole

moments of the density to be less relevant. Thus, if dAlm is small enough in comparison with dA00,
then the contribution of l and m is truncated, i.e.,

VA
lm rAð Þ ! 0 when

dAlm
dA00

< e1; (A3)

where e1 is a truncation control parameter.

Another truncation is that if the distance from the origin of the Ath atom is large enough, the

Hartree potential contributed from A is approximately evaluated by the monopole only, and all

l> 0 contributions are truncated, i.e.,

VA
lmðrAÞ ! 0 when rA > rc; (A4)

where rc is a cut-off radius given by rc ¼ QA=e0 ¼
ffiffiffiffiffiffi
4p

p
dA00=e0. Here, e0 is another truncation con-

trol parameter.
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