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Focused transcription from the human CR2/CD21 core
promoter is regulated by synergistic activity of TATA and
Initiator elements in mature B cells

Rhonda L Taylor1,2, Mark N Cruickshank3, Mahdad Karimi2, Han Leng Ng1, Elizabeth Quail2,
Kenneth M Kaufman4,5, John B Harley4,5, Lawrence J Abraham1, Betty P Tsao6, Susan A Boackle7

and Daniela Ulgiati1

Complement receptor 2 (CR2/CD21) is predominantly expressed on the surface of mature B cells where it forms part

of a coreceptor complex that functions, in part, to modulate B-cell receptor signal strength. CR2/CD21 expression is

tightly regulated throughout B-cell development such that CR2/CD21 cannot be detected on pre-B or terminally

differentiated plasma cells. CR2/CD21 expression is upregulated at B-cell maturation and can be induced by IL-4

and CD40 signaling pathways. We have previously characterized elements in the proximal promoter and first intron

of CR2/CD21 that are involved in regulating basal and tissue-specific expression. We now extend these analyses to the

CR2/CD21 core promoter. We show that in mature B cells, CR2/CD21 transcription proceeds from a focused TSS

regulated by a non-consensus TATA box, an initiator element and a downstream promoter element. Furthermore,

occupancy of the general transcriptional machinery in pre-B versus mature B-cell lines correlate with CR2/CD21

expression level and indicate that promoter accessibility must switch from inactive to active during the transitional

B-cell window.
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INTRODUCTION

Human complement receptor 2 (CR2/CD21) is predomi-

nantly expressed on the surface of mature B cells and follicu-

lar dendritic cells.1,2 At the cell surface, CR2/CD21 forms the

ligand binding component3,4 of the B-cell receptor coreceptor

complex. Upon interaction with ligands iC3b, C3d, C3dg and

the Epstein–Barr virus (EBV)3,5 the CR2/CD21–CD19 core-

ceptor complex crosslinks with the B-cell receptor leading

to a 10- to 1000-fold decrease in the threshold for B-cell

activation.6–8

In mice, Cr2/CD21 expression is first evident at low levels on

late-immature B cells exiting the bone marrow, a critical check-

point for B-cell autoreactivity, and Cr2/CD21 expression

increases with B-cell maturation.1,9 Following B-cell activation

and differentiation, Cr2/CD21 is downregulated and is not

detected on plasma cells.10,11 In this window, Cr2/CD21

expression varies according to the stage of B-cell develop-

ment and differentiation, with the highest level of expression

observed on marginal zone B cells and B10 cells.12 The major

population of mature B cells, follicular B cells, expresses an

intermediate level of Cr2/CD21 that fluctuates according to

immunogenic challenge.13 Research conducted in mouse mo-

dels has been integral to the current understanding of B-cell

development. However, there are important differences in

CR2/CD21 between mouse and human (reviewed in Ref. 14).

In mice, two proteins Cr2/CD21 and Cr1/CD35 are transcribed

1School of Pathology and Laboratory Medicine, Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, WA, Australia;
2Biochemistry and Molecular Biology, School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia; 3Telethon Kids
Institute, The University of Western Australia, Crawley, WA, Australia; 4Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA; 5US Department
of Veterans Affairs Medical Center, Cincinnati, OH, USA; 6Division of Rheumatology, Department of Medicine, University of California at Los Angeles, Los
Angeles, CA, USA and 7Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
Correspondence: Dr D Ulgiati, School of Pathology and Laboratory Medicine, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009,
Australia.
E-mail: daniela.ulgiati@uwa.edu.au
Received: 18 October 2014; Revised: 5 December 2014; Accepted: 27 December 2014

Cellular & Molecular Immunology (2016) 13, 119–131
� 2015 CSI and USTC. All rights reserved 1672-7681/15 $32.00

www.nature.com/cmi

www.nature.com/cmi


by alternative splicing of the Cr2/CD21 gene.15 In humans,

CR1/CD35 is transcribed from a separate downstream gene

and therefore, human CR2/CD21 and CR1/CD35 may have

additional functions compared to their mouse counterparts.

Aberrant regulation of CR2/CD21 is observed in systemic

lupus erythematosus, an inflammatory autoimmune disorder

of the connective tissue involving production of auto-antibod-

ies to DNA and chromatin in more than 90% of patients.16 B

cells derived from systemic lupus erythematosus patients

express increased CD19 and decreased CR2/CD21 compared

to healthy controls.17–19 Further, the appropriate restriction

and regulation of CR2/CD21 expression is critical to the

development of a healthy B-cell repertoire. Transgenic mice

expressing human CR2/CD21 at the pre/pro stage of B-cell

development in the bone marrow develop B cells with reduced

antigen responses, potentially driven by impaired B-cell activa-

tion and B-cell receptor-dependent signaling.20,21 This implies

that timing of CR2/CD21 expression is critical to shaping a

functional B-cell repertoire, however the mechanisms driv-

ing CR2/CD21 expression during B lymphopoiesis are not

defined.

Signaling via CD40 and IL-4 has been shown to increase

surface density of CR2/CD21 by 20%–30% and activate the

cAMP pathway in human B lymphocytes.22,23 The inducible

expression of CR2/CD21 is mediated through elements in the

CR2/CD21 proximal and core promoter. Previously we have

identified various elements that regulate the basal and cell-

specific expression of CR2/CD21 in the proximal promoter

and first intron respectively.24,25 Important regulatory regions

include an SP1 site located at 2120 and two functionally dis-

tinct E-boxes located between 247 and 260 relative to the

transcriptional start site (TSS).25 Recent studies have attributed

the core promoter with a more complex role in regulation of

gene expression.26–29 The concepts that have emerged are that

core promoters are tailored to their biological function and act

as the convergence point for long-range and cis-acting regula-

tors of transcription. In the experiments outlined in this report,

we assessed the role of the CR2/CD21 core promoter in driving

transcription initiation in B cells. We identified a single major

transcription initiation site in two mature B-cell lines and

demonstrated that general transcriptional machinery occu-

pancy surrounding the TSS correlates with CR2/CD21 express-

ion level in vivo. Moreover, we identified functional regulatory

elements in the core promoter that modulate transcriptional

activity in vitro including a TATA box, initiator element (Inr),

downstream promoter element (DPE), SP1 binding site and a

functional single nucleotide polymorphism (SNP).

MATERIALS AND METHODS

Cell culture

Suspension cell lines Reh (CRL-8286), Ramos (CRL-1596),

Raji (CCL-86), SKW 6.4 (TIB-215) and K562 (CCL-243) were

obtained from ATCC (ATCC, Manassas, VA, USA) and were

maintained at 37 uC with 5% CO2 in RPMI-1640 supplemented

with 10% FBS 50 U/ml penicillin and 50 mg/ml streptomycin.

We selected cell lines blocked at various stages of development

to represent pre-B (Reh),30 mature-B (Ramos, Raji),31 termi-

nally differentiated-B (SKW 6.4)32 or erythroid precursor

(K562)33 cells.

Chromatin immunoprecipitation (ChIP)

ChIP was performed as described34 with Protein A/G Agarose/

Salmon sperm DNA (Upstate Biotechnology, Lake Placid, NY,

USA) and 5 mg of a-SP1 (ab13370; Abcam, Milton, Cambridge,

UK), a-TBP (ab63766; Abcam), a-RNA polymerase (RNAP) II

CTD YSPTSPS phosphoS2 (ab5095; Abcam), a-RNAP II CTD

YSPTSPS phosphoS5 (ab5131; Abcam), a-E12 (Sc-762X; Santa

Cruz Biotechnology, Dallas, TX, USA), a-E47 (sc-763X; Santa

Cruz) or IgG (ab554121; Abcam) (BD Pharmingen, San Jose,

CA, USA). Quantitative PCR utilized 2 ml of ChIP samples and

the Illumina Eco Real-Time PCR system V.4 (Illumina, San

Diego, CA, USA). Primers spanning the 242/1139 portion

of the CR2/CD21 promoter (forward 59-CGTGTGCCGGA-

CACTATTT-39 and reverse 59-GGTGCGACGAGAGCCAAG-

AA-39, annealing temperature 60 uC) were used to detect spe-

cific enrichment across the CR2/CD21 TSS. Primers spanning

the 28/1291 portion of the CR2/CD21 gene (forward 59-GCT-

CACAGCTGCTTGCTGCT-39 and reverse 59-GGTCCCTCA-

AAGCTAGCGGGAGGCG-39, annealing temperature 60 uC)

were used to detect specific enrichment across the CR2/CD21

DPE. Serially diluted chromatin input (10%–0.01%) was used

to construct a standard curve against which samples were

quantified. Specific enrichment generated by immune com-

plexes was normalized to the background enrichment gene-

rated by the isotype control. Amplicons from a representative

qPCR for each experiment were run on a 1.5% agarose gel

stained with ethidium bromide for visualization to ensure spe-

cificity and correct amplicon size.

Electrophoretic mobility shift assay (EMSA)

Protein-DNA binding reactions utilized 2–4 mg of cell line

nuclear extract (Thermo FISHER Scientific, Scoresby, VIC,

Australia) in chilled binding buffer(4% Ficoll, 20 mM

HEPES, 1 mM EDTA, 0.5 mM DTT, 1 mg poly dI : dC) and

25 fmol of biotin-labelled oligonucleotide for 30 min on ice.

Oligonucleotides encompassed the TATA box (plus 59-CCGG-

ACACTATTTAAGGGCCCGCCTCTCCTGG-39 and minus

59-CCAGGAGAGGCGGGCCCTTAAATAGTGTCCGG-39),

the putative SP1 site (plus 59-TTAAGGGCCCGCCTCTCCT-

GGCTCACAGCTGC-39 and minus 59-GCAGCTGTGAGCC-

AGGAGAGGCGGGCCCTTAA-39) or the TSS incorporating

the major (plus 59-CCGCCTCTCCTGGCTCACAGCTGCTT-

GCTGCT-39 and minus 59-AGCAGCAAGCAGCTGTGAGC-

CAGGAGAGGCGG-39) or the minor (plus 59-CCGCCTCTC-

CTGGCTCATAGCTGCTTGCTGCT-39 and minus 59-AGCA-

GCAAGCAGCTATGAGCCAGGAGAGGCGG-39) allele of

rs182309299. For competition reactions, cold competitor was

incubated with nuclear extract for 10 min. For supershift

assays, 2 mg of a-SP1 (Abcam) or a-TBP (Abcam) was incu-

bated for 30 min prior to addition of labelled oligonucleotide.

Binding reactions were electrophoresed in pre-cast 6% DNA

retardation gels (Life Technologies, Mulgrave, VIC, Australia)
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at 100 V for 60 min, transferred to a nylon membrane at 30 V

for 60 min. Protein–DNA complexes were visualized with the

Chemiluminescent Nucleic Acid Detection Module (Thermo

FISHER Scientific, Scoresby, VIC, Australia).

Identification of putative core promoter elements

The 250 to 150 region of the CR2/CD21 promoter was manu-

ally interrogated for sequences with similarity to known core

promoter motifs including TATA box, Inr, upstream or down-

stream TFIIB recognition element (BREU and BRED), motif ten

element and DPE at consensus locations. Putative transcrip-

tion factor binding sites were identified using the LASAGNA-

search web tool.35

Flow cytometry

Cultured B-cell lines were harvested and 13106 cells washed

twice with cold staining buffer (PBS containing 5% FBS) at

300g for 5 min at 4 uC. Cells were resuspended in 80 mL staining

buffer and incubated with 20 ml of PE-conjugated mouse anti-

human CD21 antibody (555422; BD Biosciences, San Jose, CA,

USA) or PE-conjugated mouse IgG1k isotype control (BD

Biosciences, 551436), for 20 min. Unstained cells were also

included. Cells were washed twice, resuspended in 0.5 ml stain-

ing buffer and analysed using a BD Accuri C6 flow cytometer

(BD Biosciences) and FlowJo software V10.0.5 (Tree Star,

Ashland, OR, USA).

Rapid amplification of cDNA ends (RACE)

59RACE was optimized and performed based on the Scotto-

Lavino et al.36 new RACE protocol with modifications. Total

mRNA was prepared from 13107 cells using RNAzol RT

(Sigma Aldrich, St Louis, MO, USA), dephosphorylated

with 20 U CIP (New England Biolabs, Ipswich, MA, USA)

and mRNA cap removed using 0.5 U TAP (Epicentre

Biotechnologies, Madison, WI, USA). An RNA oligonucleotide

(59-CGACUGAAGCACGAGGAUAUUGACAUGGACUGAA-

GGAGUAGAAA-39) was added using 10 U T4 RNA ligase

(New England Biolabs). RNA was incubated with 2.5 fmol

gene-specific reverse primer and annealing buffer (0.25 M

NaCl, 6.25 mM EDTA, 50 mM Tris-Cl pH 7.5), for 5 min at

65 uC, snap cooled and incubated for 4 h at 40 uC. RNA was

reverse transcribed using the SuperScript VILO cDNA

Synthesis Kit (Life Technologies). Primary PCR (FWD 59-

CGACTGAAGCACGAGGATATTGA-39, REV 59-GGAGCAA-

TGGAGCCAACATT-39, annealing temperature 55 uC) was

followed by two nested reactions (REV 59-CGGCCCCCACAT-

ATTATTT-39, annealing temperature 55 uC and FWD 59-

GGATATTGACATGGACTGAAGGAGTA-39, REV 59-GGGT-

GTAGAGCCTCTAATTTT-39, annealing temperature 54 uC).

PCR was performed using the PTC-100 Thermocycler (MJ

Research, Waltham, MA, USA) and GoTaq green master mix

(Promega, Madison, WI, USA). Briefly, 1 ml template was amp-

lified in 50 ml reactions with 0.2 mM each primer. PCR products

were electrophoresed on a 1.5% agarose gel stained with

ethidium bromide. Amplicons were cloned using the TOPO-

TA cloning kit (Life Technologies) and sequenced.

Transfection and quantitation of promoter activity

The luciferase reporter containing 21250/175 (1.2 LUC) of the

CR2/CD21 promoter was prepared as described previously.25

Bioinformatics were generated with LASAGNE-Search 2.035

and site-directed mutagenesis was performed using the Quik-

Change mutagenesis kit (Stratagene, La Jolla, CA, USA).

Plasmid DNA was prepared using the EndoFree Plasmid Maxi

kit (QIAGEN, Valencia, CA, USA) followed by transient trans-

fection with the Amaxa Nucleofector Device and Cell Line

Nucleofector Solution V (Lonza, Basel, Switzerland). Cell lysates

were sequentially assayed for Firefly and Renilla luciferase us-

ing the Dual-Luciferase Reporter Assay system (Promega).

Luminescence was analysed using Tropix Winglow software

(Applied Biosystems, Foster City, CA, USA). Firefly luciferase

was normalized to Renilla luciferase and the activity of each

mutant was normalized to the wild-type 1.2 LUC plasmid.

Statistical analysis

Differences in transcriptional activity or ChIP enrichment were

assessed using Student’s paired t-test with a confidence interval

of 95% (P,0.05). Statistics and graphs were generated using

GraphPad Prism version 5.0 (GraphPad, San Diego, CA, USA).

All graphed values represent the mean6SEM of at least three

independent experiments.

RESULTS

Transcription of CR2/CD21 proceeds from a focused TSS in

mature B cells

Four potential TSS for CR2/CD21 have been identified 89–99

base pairs (bp) 59 of the translational start codon in EBV-posi-

tive human B-cell lines.37,38 To evaluate this further, we per-

formed 59 rapid amplification of cDNA ends (RACE) using

mRNA from CR2/CD21-positive Ramos (EBV-negative) and

Raji (EBV-positive) cells, alongside CR2/CD21-negative Reh

and K562. No PCR amplicons were detected in CR2/CD21-

non-expressing cell lines (Reh and K562) (Figure 1a, lanes 2

and 5) and no-template controls (NTC) (Figure 1a, lanes 4 and

7). Only one major PCR product was detected in Raji

(Figure 1a, lane 6), while a major band and a minor band were

observed in Ramos samples (Figure 1a, lane 3). Sequencing

of all PCR products indicate that the major TSS in both

Raji and Ramos is an adenine residue (Figure 1b, red box)

located 92 bp 59 of the translational start codon, and directly

39 of the conventional site identified by Rayhel et al.38 in

1991. The minor product observed in Ramos samples

mapped to an adenine residue precisely 30 bp downstream

of the major TSS (Figure 1b, blue box). To determine if the

results generated in our cell lines accurately represent that of

primary B cells, we interrogated polyA1 cap analyses of gene

expression (CAGE) tags from donor derived CD201 primary

human B cells, which were freely available from the ENCODE

server.39 The vast majority of CAGE tags aligned to a narrow

region (25 bp) downstream to the major TSS identified

previously (Figure 1c), however, a small number of CAGE

tags mapped to a broader 100 bp region either side of the

major TSS. Shorter fragments are potentially an artefact of
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RNA quality or methodology, but could indicate the presence

of minor start sites in B cell subpopulations. Our results and

those of others37,38 indicate that transcription of CR2/CD21 is

focused around a single peak spanning approximately 30 bp.

The CR2/CD21 core promoter contains putative TATA, Inr,

DPE and GC box motifs

We next identified potential core promoter elements and tran-

scription factor binding sites surrounding the TSS (Figure 2a).

A non-consensus Inr (CR2/CD21; ACAGCTG, consensus; Py-

Py-A11-N-T/C-Py-Py) was identified that was spatially aligned

with a TATA-like element (CR2/CD21; TATTTAAG, con-

sensus; TATAWAWA) located at 229 to 222 relative to the

A11 in the putative Inr. A GC box potentially bound by SP1

(CR2/CD21; GGGCCC, consensus; GGGCGG) was identified

directly downstream and slightly overlapping the TATA-like

element. A putative DPE was also identified with a near-con-

sensus sequence (CR2/CD21; AGAGC, consensus; A/G-G-A/

T-C/T-A/C/G) located at 131 to 135 and predicted to bind

E2A. E2A is associated with gene expression changes during B-

cell development40 and is essential for the development of pro-,

pre- and immature B cells in the bone marrow.41 To determine

if E2A is bound to the CR2/CD21 gene encompassing the DPE

in mature B cells, we performed chromatin immunoprecipita-

tion with antibodies specific for the E2A proteins E12 and E47

as well as RNAP as a positive control (Figure 2b). Using Ramos

cells, robust enrichment of E12, E47 and RNAP could be

detected upstream of the CR2/CD21 TSS (Figure 2b, n52).

TATA box, Inr and DPE sequences contribute to

transcriptional regulation of the CR2/CD21 promoter

To test the functionality of putative core promoter elements,

luciferase assays were performed using various mutants of the

21250/175 CR2/CD21 promoter (Figure 3a). Robust activa-

tion of the wild-type (WT) promoter was observed when trans-

fections were performed in Raji cells. Mutation of the TATA

box, Inr or DPE sequences resulted in a significant 30%–40%

decrease in 1.2 LUC promoter activity (Pf0.01) (Figure 3b).

The 222/220 mutation resulted in reduced luciferase activity

comparable to that of the adjacent TATA box mutation, while

the overlapping 221/217 mutant had no effect, suggesting

that the guanine (G) residue which forms the overlap between

the TATA box and SP1 site, is critical for TATA box function.

Mutation of the GC box at either two (SP1 2 bp), or five (SP1

5 bp) nucleotides had no effect. As mutation of a single

promoter element was insufficient to abolish transcriptional

a

c

b

500 bp

1

M
ar

ke
r

R
eh

R
am

os

N
TC

K
56

2

R
aj

i

N
TC

2 3 4

Sequence of CR2/CD21 gene

Sequence of
RNA adapter

20 bases
207,627,650

CR2
CR2
CR2

CD20+

UCSC Genes (Refseq, GenBank, CCDS, Rfam, tRNAs & Comparat ive Genomics)

who1e ce11 po1yA+ CAGE P1us start sites Rep 1 from ENCODE/RIKEN

Minor TSS in RamosPrimary TSS in Ramos and Raji

207,627,700
hg19

Cloned Ramos PCR product

5′
100 110 120 130 140 150

– 3′–5 6 7

400 bp

Figure 1 Transcription of CR2/CD21 proceeds from a single predominant start site in the majority of mature B cells. (a) 59RACE generates a single
major PCR product in Ramos (lane 3) and Raji (lane 6), while no PCR amplicons are detected in Reh, K562 or NTCs (lanes 2, 5, 4 and 7,
respectively). (b) A representative chromatogram generated by sequencing the Ramos 59RACE PCR product indicates that the first nucleotide in
the predominant CR2/CD21 mRNA is an Adenine (red box) while the minor mRNA start site is located 30 bp downstream (blue box). (c) The
ENCODE track of CD201 cell CAGE tags indicates that CR2/CD21 TSSs are focused around a single 25 bp peak. The major (red line) and minor
(blue line) TSS identified in Ramos and Raji cells are indicated. CAGE, cap analyses of gene expression; CR2/CD21, complement receptor 2; NTC,
no template control; RACE, rapid amplification of cDNA end; TSS, transcriptional start site.

TATA and Iinitiator elements regulate CR2/CD21

RL Taylor et al

122

Cellular & Molecular Immunology



activity, we hypothesized that transcription is regulated by a

synergistic combination of elements. Concomitant mutation of

the TATA and GC boxes resulted in a 50% reduction in luci-

ferase activity compared to the WT promoter (P,0.001)

(Figure 3c), but was not significantly different from mutation

of the TATA box alone. Simultaneous mutation of the TATA

box and Inr element decreased transcriptional activity by 65%

(P,0.0001), and was significantly reduced compared to the

individual TATA (P,0.001) and Inr (P,0.01) mutants. As

the effects of the individual TATA and Inr mutations were

not additive, we conclude that these two elements do not func-

tion independently. Additional mutation of the DPE did not

further reduce transcriptional activity. Similar results were

observed when transfections were performed in the CR2- and

EBV-negative cell line K562 (Figure 3d and e).

Sequence-specific protein-DNA complexes containing TBP

and SP1 interact with 226 to 16 of the CR2/CD21 promoter

in vitro

To delineate the transcription factor binding sites spanning the

TATA box (TATA probe, 237 to 26) and putative SP1 site

(GC box probe, 226 to 16) partially overlapping oligonucleo-

tides were designed (Figure 4a). When electrophoretic mobility

shift assays (EMSA) was performed with CR2-negative (K562,

Reh) or CR2-positive (Ramos, Raji) nuclear extract, three pro-

tein–DNA complexes were detected in the presence of the

TATA oligonucleotide (I, III, IV) and four major complexes

bound to the GC box oligonucleotide (I –IV) (Figure 4b). All

complexes formed resulted from specific protein-DNA inter-

actions, as they were successfully out-competed by a 30- to 60-

fold excess of unlabeled oligonucleotide (Figure 4b). Supershift

assays performed with Raji nuclear extract using either a-TBP

or a-SP1 with the TATA oligonucleotide did not yield any

differences in complex formation (Figure 4c, lanes 2–4).

When similar supershift assays were performed with the GC

oligonucleotide, addition of a-TBP resulted in a decrease in

complex B (Figure 4c, lane 8, white arrow) whereas a-SP1

resulted in a decrease of complex A (Figure 4c, lane 9, black

arrow). Addition of an IgG control antibody did not result in

removal of any complexes (Figure 4c, lanes 5 and 10). Similar

results were obtained using Ramos nuclear extract (data not

shown).
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Occupancy of general transcriptional machinery at the CR2/

CD21 promoter corresponds to CR2/CD21 expression level

and development stage

As CR2/CD21 is upregulated upon B-cell maturation, we

hypothesized that the core promoter is poised for transcrip-

tional activation at the pre-B-cell stage. To investigate this, we

performed ChIP using antibodies specific for TBP, SP1 and

RNAP phosphorylated at either serine 2 (RNAPpS2) or serine

5 (RNAPpS5). CR2/CD21 non-expressing pre-B (Reh), or ter-

minally differentiated B (SKW) and CR2/CD21-expressing

mature B (Ramos and Raji) cell lines were used to assess general

transcriptional machinery occupancy at the CR2/CD21

promoter during B-cell development. The status of CR2/

CD21 surface expression for each cell line was confirmed by

flow cytometry. In the Reh and SKW cell lines, which do not

express CR2/CD21, no significant enrichment was generated

with any of the antibodies tested (Figure 5a and d), indicating

that CR2/CD21 is not poised for transcriptional activation

prior to induction of CR2/CD21 expression or after cells have

undergone terminal differentiation. In both mature B-cell

lines, TBP and RNAPpS5 could be detected at the CR2/CD21

promoter (P,0.05) (Figure 5b and c). Consistently, the levels

of enrichment generated by TBP and RNAPpS5 were higher in

Raji than Ramos cells, and correlated with CR2/CD21 express-

ion. Capture of RNAPpS2 at the CR2/CD21 promoter was

slight in both Raji and Ramos, whereas the results for anti-

SP1 differed between the mature B-cell lines. In Ramos cells,

anti-SP1 enrichment was on average sevenfold greater than the

isotype control, however this was not observed for Raji cells.

Interestingly, although SP1-specific pull-down in Ramos cells

did not reach statistical significance, a significant negative

correlation was observed between enrichment of SP1 and

RNAPs5 within each biological replicate (P,0.05, R250.91)

(Figure 5e). Therefore, higher levels of RNAPpS5 appear to

correlate with lower levels of SP1 enrichment and this is con-

sistently observed in the Raji samples.
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Figure 3 TATA box, Inr and DPE sequences contribute to transcriptional regulation of CR2/CD21 in vitro. (a) Site directed mutagenesis was
performed at multiple sites in the CR2/CD21 core promoter surrounding the TATA box, GC box, TSS and DPE (consensus sequences identified with
black boxes). Sites of individual mutations are indicated with a grey cross above their sequence, name and location. (b) In Raji cells, mutation of the
TATA box, Inr or DPE results in a significant 30%–40% decrease in luciferase activity compared to the WT CR2/CD21 1.2LUC construct. (c) In Raji
cells, concomitant TATA–SP1 mutation resulted in a 50% reduction in luciferase activity, while TATA–INR mutation resulted in a 65% decrease in
luciferase activity but tripartite mutation of TATA–INR–DPE did not reduce luciferase activity below 30% of the WT promoter. (d) In CR2/CD212 and
EBV-negative K562 cells, mutation of the GC box and Inr sequence resulted in a 50% reduction in luciferase activity compared to the WT promoter.
(e) In K562 cells, concomitant TATA–SP1 mutation resulted in a 50% reduction in luciferase activity, while TATA–INR mutation resulted in a 65%
decrease in luciferase activity but tripartite mutation of TATA–INR–DPE did not reduce luciferase activity below 25% of the WT promoter. Data are
the results of three independent replicates presented as mean6SEM Significance is indicated by *P,0.05, **P,0.005 and ***P,0.0005. CR2/
CD21, complement receptor 2; DPE, downstream promoter element; EBV, Epstein–Barr virus; Inr, initiator element; WT, wild-type.
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The CR2/CD21 promoter is unmethylated and enriched for

activating histone marks in CD201 human B cells

We have previously shown that chromatin accessibility sur-

rounding the CR2/CD21 TSS also correlates with CR2/CD21

expression status in the model cell lines K562, Reh, Ramos, Raji

and SKW.34 In addition, enrichment of histone H3/H4 acetyla-

tion and H3K4 dimethylation was also correlated with CR2/

CD21 expression status in Reh, Ramos and Raji cells.34 To

determine if these results are representative of primary human

cells, we interrogated the ENCODE database for enrichment of

histone modifications and CpG dinucleotide methylation in

CD201 or EBV-immortalized peripheral blood B-cells

(Figure 6). In general, enrichment of histone modifications

associated with active transcription (H3K4m2, H3K27ac,

H3K4m3, H3K9ac, H3K79m2)42 was greater in CD201 or

EBV-immortalized peripheral blood B cells than in the CR2/

CD21-negative cell line K562 (Figure 6, red box). Further,

CpG dinucleotides surrounding the CR2/CD21 TSS in peri-

pheral blood B-cells were unmethylated, while CpG dinucleo-

tides were frequently methylated in K562 cells (Figure 6, blue

box).

The minor allele of rs182309299 is associated with increased

CR2/CD21 transcript abundance in mature B-cell lines but

does not alter protein–DNA interactions

Genetic variants in the core promoter potentially contribute to

differential transcriptional regulation and gene expression. We

have previously reported the transcriptional effects of the SNP

rs3813946 in the core promoter of CR2/CD21, which alters

chromatin accessibility and transcription factor binding.43 We

identified a second SNP, rs182309299 (C.T), located at the 21

position of the CR2/CD21 gene that we hypothesized could

affect Inr activity, since single nucleotide variations located at

21 to 13 can result in differences in promoter activity of up to

ninefold.44,45 Therefore, we performed luciferase assays in Raji

cells using a 21250/175 CR2/CD21 promoter construct expres-

sing either the major or minor allele of the 21 C.T SNP.

Expression of the minor allele (21T) resulted in significantly

higher luciferase activity when compared to the major allele

(21C) (P,0.001) (Figure 7a). Similar results were observed in

the CR2/CD212 and EBV-negative cell line K562 (Figure 7b).

To determine if altered transcriptional activity was mediated by

altered protein–DNA interactions, we performed EMSA analysis

using oligonucleotides spanning the TSS (218 to 114) and

containing either the C or T allele of rs182309299. Using

K562, Reh, Ramos and Raji nuclear extracts, we detected two

weak sequence-specific protein–DNA complexes (Figure 7c).

These complexes correspond to complexes I and IV (Figure 4b

and c) previously observed to bind directly upstream of the

TSS; however, complex formation did not differ between the

alleles.

DISCUSSION

The dynamics of core promoter regulation are made possible

by the integrated interaction between nucleotide sequence,

core-promoter-element spacing, epigenetic regulation and
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three dimensional conformation.28,46–48 Here we discuss the

complex core promoter regulation of CR2/CD21, the expres-

sion of which is cell type-specific and inducible.

We have identified core promoter elements in the CR2/CD21

core promoter including TATA box, GC box, Inr and DPE

sequences. This core promoter architecture is of interest as

the combination of TATA, Inr and DPE is rare in human

promoters. While human genes containing DPE have been

identified,49,50 very few functional studies on human DPEs

have been carried out.51–54 Interestingly, all of the human

DPEs so far characterized are found in genes containing func-

tional Inr elements and in close proximity to an SP1 site.49,51–54

We find that no single element is capable of directing CR2/

CD21 transcription initiation, although the TATA box and Inr
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function synergistically in regulating CR2/CD21 transcription.

We show that the DPE contributes to transcriptional regu-

lation but does not act in conjunction with the TATA and

Inr elements in vitro. The 257/175 region of CR2/CD21 core

promoter has previously been shown to direct cAMP inducible

expression of CR2/CD21 in vitro.23 The DPE may be involved in

regulating inducible expression of CR2/CD21 as the specific

elements mediating this effect have not been defined.

Consistent with this, the MHC class I gene promoter contains

a TATA box, an Inr, a DPE and an SP1 binding site, none of

which are strictly necessary for transcription.53,54 Rather, each

element uniquely regulates tissue-specific or inducible expres-

sion levels accordingly.

The role of the GC box is harder to interpret as our EMSA

analyses suggest that SP1 competes for binding with uniden-

tified factors bound to the adjacent TATA box, a feasible pos-

sibility since the two binding sites overlap by a single nucleotide.

Further, our ChIP data show an inverse correlation between

SP1 and RNAPpS5, consistent with binding site competition.

However, since our luciferase assays indicate that the GC box

does not control basal levels of transcript abundance, the role of

this element may be mechanical. For example, it has been sug-

gested that constitutive SP1 binding to the core promoter of the

Lymphotoxin-a gene in T cells is required to maintain the

promoter in an accessible conformation in the absence of

TFII-I and RNAP.55 Further, SP1 is known to interact with both

histone acyltransferase56 and histone deacetylase57 and may

therefore be involved in regulating the chromatin conformation

surrounding the TSS. Such interactions would not likely have

an effect on reporter gene expression, but may be important to

the regulation of inducible gene expression requiring rapid

transcript upregulation upon receiving a specific biological

signal.

We mapped the major CR2/CD21 TSS in mature B-cell lines

to a single nucleotide located within the Inr. This observation is

in line with the current view that tissue-specific and develop-

mentally regulated genes are more likely to be controlled by

core promoter elements (TATA, Inr, DPE) and initiate tran-

scription at a single precise location or narrow window.26,58

This is supported by primary cell data which show that in the

major population of peripheral blood B cells, CR2/CD21 tran-

scription initiates from a focused TSS (ENCODE). However, a

small population of CD201 CAGE tags initiated transcription

over a broader 100 bp range. Since CD201 cells encompass the

entire B-cell pool ranging from late pro-B to mature B, it is

possible that minor start sites may be utilized in specific B-cell

subsets.

We find that general transcription factor occupancy sur-

rounding the major TSS correlates with CR2/CD21 expression

level in pre-B- and mature B-cell lines. It has been suggested

that developmentally regulated genes are enriched for poised

promoters, while tissue-specific genes are more likely to be

strictly active or inactive.59 However, inducible promoters of

the broad peak class are also frequently poised for transcrip-

tion.60 We did not find any evidence that CR2/CD21 is poised

prior to B cell maturation. These results are supported by
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chromatin accessibility assays which show that in CR2/CD21

expressing cell lines Ramos and Raji, chromatin is significantly

more accessible compared to the CR2/CD21 non-expressing

cell line Reh.34 Chromatin was also more accessible directly

surrounding the transcriptional start site in Raji cells compared

to Ramos cells.34 Therefore, CR2/CD21 expression level corre-

lates with chromatin accessibility and general transcription

factor occupancy which suggests that between the pre-B- and

mature B-cell stages, the CR2/CD21 promoter switches from

strictly inactive to active and requires significant chromatin

rearrangement.

rs182309299, located at 21, modifies the transcriptional activi-

ty of the CR2/CD21 core promoter. Since phenotypic differences

in gene expression between populations can be attributed to

differences in frequencies of genetic variants,61 it is possible that

rs182309299 contributes to variation in CR2/CD21 expression

levels between populations. Genotyping performed through the

1000 Genomes Project Phase 1 demonstrated the minor allele of

this SNP is detected only in 1%–2% of individuals of African or

African-American ancestry (Ensembl release 76, August 2014).

The retention of this variant in individuals of African descent

could confer a functional benefit, potentially relevant to a specific

immunological challenge. We did not detect differences in pro-

tein binding between the two alleles of rs182309299 in vitro

despite a threefold increase in transcriptional activity associated

with the minor allele. These data suggest that sequence variants

in the core promoter may regulate the structural dynamics of

transcription. The major allele of rs182309299 is present in a

complementary tri-nucleotide pair CA11G-CTG which scores

among the highest for bendability and flexibility compared to

all trinucleotide combinations assessed by DNase I accessibility

and nucleosome position matrices.46 The minor allele disrupts

this complementarity (TA11G-CTG) and could therefore alter

the curvature of the DNA directly surrounding the transcrip-

tional start site. Similarly, point mutations surrounding a

Super-core Promoter TSS that did not alter transcription factor

binding in vitro resulted in a fourfold decrease in reporter gene

activity, which was attributed to a decreased seeding of TSS

bubble formation.62 It is likely that DNA structural dynamics

act in conjunction with TF binding. The promoters’ structural
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Figure 7 The minor allele of rs182309299 increases transcript abundance in vitro, but does not alter protein–DNA complex formation. (a) The
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properties seed the 3D conformation required for initiation,

which simultaneously enhances recognition of DNA sequence

motifs required for TF assembly and directing TSS placement

and strength.

CONCLUSION

Using human B-cell lines frozen at specific stages of B-cell

development, we show a marked difference in promoter access-

ibility and RNAP occupancy surrounding the CR2/CD21 core

promoter in pre-B versus mature B cells. Based on the results

presented here, we propose that consensus motifs in the CR2/

CD21 core promoter become accessible during B cell ontogeny

via chromatin rearrangement, allowing a developmental switch

from inactive to active and recruitment of the general transcrip-

tional machinery (Figure 8). The precise stage of transitional B

cell development (T1–T3) at which chromatin remodeling

occurs, and the developmental signals driving this transition,

remain to be defined. Subsequently, synergistic activity of

TATA and Inr efficiently positions RNAP to direct transcrip-

tion from a focused TSS, while inducible expression of CR2/

CD21 may be modified by TF interactions with GC box and

DPE motifs. Lastly, we highlight the potential for single nucleo-

tide variants in the core promoter to contribute to transcrip-

tional regulation and variation in gene expression between

populations.
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