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How the brain represents other minds

Julien Dubois™' and Ralph Adolphs®’

How does the brain represent the world? Sensory
neuroscience has given us a detailed window into how
the brain represents physical objects in our environ-
ment: For instance, the shape, color, and direction of
motion of visual stimuli are represented in an orderly
fashion in higher order visual cortices. But we also
represent social objects: other people and their
thoughts, beliefs, and feelings. How is that kind of
knowledge represented in the brain? In an ambitious
new study in PNAS, Tamir et al. (1) used functional MRI
(fMRI) to argue that our brains represent other minds
along three broad dimensions: social impact, rational-
ity, and valence.

The approach taken by the authors is straightfor-
ward to understand by analogy. For example, we
could represent any specific place on earth we have
visited as a unique combination of a large number
of variables: altitude, temperature, humidity, light,
chemical composition of the air, and so forth. Despite
the enormous number of different variables, you could
quickly tell me which of these visits were more similar
to one another: Standing on top of Mont Blanc would
be more similar to standing on top of Mount Whitney
than to lying on your towel on a beach in Aruba. To
judge such similarities, you do not need to recollect all
of the details; a few coarse dimensions suffice. We do
the same thing when we think about other people,
Tamir et al. (1) argue. Psychologists have attempted to
capture the specific dimensions by which we repre-
sent others in several theories, from which the study
extracted 16 dimensions for further investigation (Fig.
1A). Importantly, prior work on these dimensions was
based largely on theory and on behavioral data. Tamir
et al. (1) looked to the brain for further evidence.

Human participants underwent fMRI while they
imagined another person experiencing a number of
different mental states (60 mental states; table S1 in
ref. 1). On a given trial, a word, such as “awe,” was
shown together with two phrases, such as “seeing the
Pyramids” or “watching a meteor shower,” and par-
ticipants had to decide which phrase best fit the word.
As in the example, there was no right or wrong answer,
effectively ensuring that the participants’ brains were

hard at work thinking about the mental state under
scrutiny. First picking the 60 mental state terms and
the phrases, however, required some work.

The studly is a tour de force in design. An initial list
of 166 mental states (i.e., 166 “locations” in the space
whereby we represent other people’s minds) was cat-
egorized into specific dimensions by a separate group
of subjects (through Amazon’s Mechanical Turk over
the Internet). This list was whittled down to an optimal
subset by maximizing the distinctiveness of each state
(i.e., highest loading on a subset of 16 dimensions and
lowest loading on the rest) while minimizing the sim-
ilarity between selected states. For each of the final 60
states thus produced, 36 concise and believable sce-
narios were generated and once more validated with
an independent set of participants over the Internet,
who produced ratings (about 65 for each scenario) of
the association of each scenario with the intended
mental state. The authors wanted to use 16 scenarios
per mental state for their fMRI study (as suggested by
a power analysis; discussed below), which not only
had to be most representative of their intended men-
tal state, but all of the different mental states also had
to be captured equally well by their scenarios, and
even simple properties like word counts needed to
be similar across scenarios. A genetic algorithm jointly
optimized all these objectives. A power analysis sug-
gested a design with 20 subjects each scanned for
about 2 h (16 runs with 60 trials each, corresponding
to the 60 mental state terms). All in all, this study is
a poster child for how one should design an fMRI
experiment.

After collecting all these data, the goal was now to
examine the mental state space inferred from the
neural data (the brain’s dimensions for representing
other people’s mental states) and to compare this neu-
ral space with the dimensions suggested by psycho-
logical theories and behavioral data. A recently
developed analytical technique was perfectly suited
for this challenge: representational similarity analysis
(RSA), which was initially introduced in visual neurosci-
ence (2) but has now been applied to many fields,
including social neuroscience (3). On the one hand,
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Fig. 1. Summary of the study by Tamir et al. (1). (A) Seven existing psychological models (A through G) encompassed different dimensions (1
through 16) along which the mental states of others are represented psychologically. (B) Online ratings for 60 mental states on these 16
dimensions, together with dimensionality reduction, resulted in four new dimensions for mental state representation. Three of these dimensions
fit the data best, and were combined into a new 3D model, M. PCA, principal components analysis. (C) Brain regions differentially activated by
mental states (statistical parametric map displayed on brain surface) were used in a representational similarity analysis to test extant
psychological models (A through G) as well as the new model M. Model M was found to fit the neural data best, although there is room for
improvement because it was still below the noise ceiling [the best possible fit (dotted line)].

patterns of brain activity were extracted from the fMRI data: The
authors ran a classical general linear model and made a separate
map (t-values, across 16 runs) of the whole-brain blood oxygen
level-dependent (BOLD) activity triggered by each of the 60 men-
tal states. The similarity of these patterns was computed using
a Pearson correlation coefficient, resulting in a 60 x 60 similarity
matrix. On the other hand, the psychological similarity of the con-
ditions of interest was assessed relative to seven psychological
models (A through G in Fig. 1A) onto which the mental states
could be mapped (using the ratings that were initially acquired
over the Internet). A psychological similarity matrix (again, of
dimensions 60 x 60) was built for each candidate psychological
model. Finally, the neural similarity matrix from the fMRI data was
compared with each of the psychological model similarity matri-
ces in turn, using linear regression or Pearson correlation. Which
similarity structure derived from the psychological models
showed the best correspondence to the neural similarity structure
derived from the fMRI data?

The authors ran the RSA in two ways: first, using an anatomical
“searchlight” approach whereby a sphere (with a radius of about 9
mm) was moved throughout the entire brain to discover any local
representations; second, using a network-of-interest approach,
which consisted of selecting those brain regions differentially ac-
tivated by thinking about mental states in the experiment [over-
lapping with the known “social brain” (4, 5)]. Restricting ourselves
here to the results from the network-of-interest analysis, the sim-
ilarity structure derived from the fMRI data fit equally well for the
first five existing psychological models (A through E, r ~ 0.2), but
not significantly for the last two (F and G in Fig. 1C).

To go beyond the original psychological models, the authors
next extracted a new set of dimensions by combining the unique
variance captured by each of the prior models, using their Internet
ratings together with dimensionality reduction (principal compo-
nents analysis; Fig. 1B). They found that four orthogonal dimen-
sions captured most of the variance in the ratings accounted for by
the seven models. These dimensions were linear combinations of
the original 16 dimensions, and the authors gave them names
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based on their respective loadings: “rationality,” “social impact,”
“human mind,” and “valence.” They tested this new set of dimen-
sions against the neural data, one-by-one, and when they looked
at neural similarity derived from the social brain network, rational-
ity, social impact, and valence explained significant variance,
whereas human mind did not. Tamir et al. (1) conclude that these
three dimensions organize our thinking about other people’s
minds, and they estimate that this 3D space explains nearly 50%
of the variance in the neural responses (averaged across subjects)
to the 60 mental states measured in the fMRI study.

This new study is exceptionally thorough, but also exceptionally
complex, and the final conclusions leave us with more questions
than answers. It is somewhat perplexing that, even with the best
combination of existing psychological models (the four principal
components model introduced by the authors), the results only
explain slightly less than 50% of the variance in mental representa-
tions [explained variance is quantified again with another variant of
RSA, slightly closer to the classical implementation (6), in Support-
ing Information of the study by Tamir et al. (1)]. Clearly, there is
a whole lot more to be understood about how the brain represents
the landscape of mental states. One likely reason for the low total
variance accounted for is that the study completely discards indi-
vidual differences: It is likely that the landscape | have built through
my experiences to make sense of the minds of others is different
from the one you have built. Although these individual differences
may be reflected in the neural data, they are not yet exploited in the
models, which are based on average ratings from an independent
sample of subjects. A next step that could, in principle, be taken on
the extant data would be to parse the individual variability in neural
similarity matrices, and thus extract new, perhaps subject-specific,
dimensions from the neural data.

Relatedly, the authors speculate that the dimensions they
found reflect aspects of social behavior that need to be solved as
we interact with others, which seems plausible. Indeed, the core
problem that the brain is trying to solve here is how to predict the
behavior of others through these representations (7). However,
one wonders if the solution to this problem might be quite
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culturally specific. Would people from very different cultures, who
have different ways of thinking about mental states, show different
representations in their brains? It would also be interesting to
extend the investigation to individuals with psychiatric illnesses
like autism who appear to have atypical social cognition: What
are their neural representations of mental states?

Another intriguing further question concerns how the brain’s
representations of other minds might be related to representa-
tions of one’s own mind. Although the evidence we have available
for inferring mental states seems to differ radically in the two cases
(we need to observe other people, but not ourselves, to know
what they and we think, feel, and believe), it does seem as though
all of the 60 mental state terms used in the study would apply
equally well to thinking about one’s own mind. Does their repre-
sentation look the same in the brain?

A fuller description of how the brain represents mental states
would need to trace the flow of information from social perception
[seeing people behave in certain ways, known to be represented in
specific regions of association cortex (8)] to what is presumably
a series of neural representations that comprise the transformation
from perception to the inference of mental states. The representa-
tions revealed in the present study are explicit representations that
correspond to how we talk and think about mental states. Out of
what building blocks are these dimensions constructed in the brain
(9)? How do they, in turn, feed into valuation and action represen-
tations that ultimately determine our social behavior toward others?
The authors, perhaps wisely, stop short of these considerations in
their already ambitious paper, but the next generation of experi-
ments should begin to embed the present findings into a more
complex circuit from social perception to social action.
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