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Salt marsh losses have been documented worldwide because of
land use change, wave erosion, and sea-level rise. It is still unclear
how resistant salt marshes are to extreme storms and whether
they can survive multiple events without collapsing. Based on a
large dataset of salt marsh lateral erosion rates collected around
the world, here, we determine the general response of salt marsh
boundaries to wave action under normal and extreme weather
conditions. As wave energy increases, salt marsh response to wind
waves remains linear, and there is not a critical threshold in wave
energy above which salt marsh erosion drastically accelerates. We
apply our general formulation for salt marsh erosion to historical
wave climates at eight salt marsh locations affected by hurricanes
in the United States. Based on the analysis of two decades of data,
we find that violent storms and hurricanes contribute less than 1%
to long-term salt marsh erosion rates. In contrast, moderate storms
with a return period of 2.5 mo are those causing the most salt
marsh deterioration. Therefore, salt marshes seem more suscepti-
ble to variations in mean wave energy rather than changes in the
extremes. The intrinsic resistance of salt marshes to violent storms
and their predictable erosion rates during moderate events should
be taken into account by coastal managers in restoration projects
and risk management plans.
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The potential of salt marshes to serve as natural buffers against
violent storms seems even more important in view of signif-

icant threats imposed by climate change, such as increased
storminess and higher hurricane activity registered in the past de-
cades (1–12). Recent research results show that salt marshes reduce
wave energy during storms and possibly, mitigate storm surges (13–
15). These results triggered a flurry of planned coastal restorations
centered on the concept of “living shorelines” (14), which use veg-
etated surfaces to reduce the impact of hurricanes (13–16). However,
little is known about the endurance of salt marshes against wave
action and whether such ecosystems can survive extreme events.
Most marsh erosion occurs at its seaward boundary, where the

effect of waves is concentrated (2, 3). Wave erosion constitutes
one of the main contributions to salt marsh deterioration, and
even very small waves can cause failure of large salt marsh blocks
(2, 7, 17). Despite the complexity of the problem, some studies
have identified a correlation between wave energy and lateral
rates of marsh erosion (18, 19). Erosion of marsh edges by wave
action is caused by many different mechanisms, such as the in-
dentation of V-shaped notches into linear stretches of shoreline
or cliff undercutting when lower sediment layers are eroded
more rapidly than the overhanging root mats (2, 17, 19). Varying
resistance to wave erosion can be caused by biotic and abiotic
factors, such as geotechnical characteristics of the sediments (7,
20), vegetation characteristics (21), height of the marsh scarp,
and presence of mussels or crab burrowing (22).
However, existing studies have mainly focused on individual

marsh locations and do not provide a universal relationship

applicable to multiple ecologically diverse systems. Herein, we
combine wave energy and marsh erosion data from eight dif-
ferent locations in the United States, Australia, and Italy (18, 19,
23–26). We show that the data collapse into a unique linear
relationship (Fig. 1):

Ep = apPp, ap = 0.67, [1]

where Ep =E=Eavg and Pp =P=Pavg are the dimensionless erosion
rate and dimensionless wave power obtained by dividing field
measurements of erosion rate E and wave power P by the aver-
aged conditions at each site (Eavg and Pavg). Nondimensionaliza-
tion allows for filtering out of the diverse resistance of marsh
boundary at individual locations. Field measurements display a
linear behavior (R2 = 0.62; p < 0.05), as shown by their average
over subintervals (gray dots in Fig. 1). Some of the data also
account for the occurrence of major storms. As an example, data
for Barnegat Bay, New Jersey and Plum Island Sound, Mas-
sachusetts account for the passage of Hurricane Sandy, ranked
as a 1/900-y event (27) (SI Appendix, Fig. S1 shows detailed salt
marsh erosion measurements immediately before and immedi-
ately after Hurricane Sandy).
Two important observations are behind the linear nature of

the relationship. The first observation is that salt marsh erosion
continuously occurs, even under low wave energy conditions,
suggesting the absence of a critical threshold in wave energy
below which no erosion is expected. This result underlines the
importance of relatively low wave energy conditions for salt
marsh lateral retreat. The second observation is that, as wave
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energy increases, salt marshes do not respond with a catastrophic
collapse (e.g., absence of exponential growth in erosion rates),
highlighting the intrinsic endurance of salt marshes against ex-
treme events. Scatter in the data arises from several sources of
uncertainties, such as different methods used for the calculation
of wave power and the estimation of erosion rates.
We use this general relationship to investigate long-term salt

marsh behavior under realistic wave energy conditions. For this
purpose, we collect meteorological data for a 23-y period (from
1991 to 2014) at eight different salt marsh locations in the
United States and compute the corresponding wave energy time
series (Methods, Fig. 2, and SI Appendix, Figs. S2 and S3). The
areas taken into account were chosen to maximize the occur-
rence of major hurricanes (SI Appendix, Fig. S4). We use wave
energy and Eq. 1 to estimate yearly salt marsh erosion rates
(Fig. 2). The erosion rate maintains a similar value in different
years and at different locations. Moreover, the years character-
ized by the occurrence of extreme events, such as hurricanes or
tropical depressions, do not necessarily correspond to peaks in
erosion rate.
We further categorize wind data according to the Beaufort

wind scale and assess the contribution of each wind category to
the total erosion rate of the entire period of record (Fig. 3 and
SI Appendix, Fig. S5). The highest contribution to marsh edge

erosion comes from moderate but frequent weather conditions
(wind speed ranging from 10 to 40 km/h), whereas violent storms
and hurricanes (wind speed above 65 km/h) contribute less than
1% to the total marsh edge erosion. This result is because of the
linear nature of the relationship between wave power and ero-
sion rate and the short duration of extreme events. In fact, al-
though the action of moderate weather conditions spans most of
the study period, the erosion potential of extreme events is
concentrated within a few days per year.
This behavior can be well-explained in terms of geomorphic

work. Following a magnitude–frequency analysis (28), we can
multiply the magnitude of marsh retreat for a given wind event
by the event’s frequency to find the wind event that does the
most geomorphic work. This product attains a maximum, in-
dicating the frequency at which the largest portion of the work is
accomplished (28). Our test cases show that the maximum ero-
sion is attained for frequent and low-wave energy conditions,
occurring with a return period of 2.5 ± 0.5 mo (Fig. 4 and SI
Appendix, Fig. S6). Our results suggest that events occurring with
a monthly frequency, such as, for instance, winter storms asso-
ciated to cold front passages in the Gulf of Mexico in the United
States, lead to more marsh erosion than hurricanes occurring at
a decadal timescale.
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Fig. 1. Relationship between dimensionless wave power (P*) and dimensionless erosion rate (E*) in salt marshes (R2 = 0.6; p < 0.05). Gray circles
indicate values obtained by averaging data points over regular intervals to emphasize the overall linear trend. The gray area is the uncertainty of
the prediction of E* over a range of coefficients with 95% bounds, which are equal to 0.64 and 0.7. The nondimensionalization has been carried
out assuming that, if a linear relationship is valid for individual data points, then a linear relationship is valid for the averages as well, such that
E = aP and Eavg = aavgPavg. A general relationship, valid for all sites, is then obtained and reads E*= a*P*, where E*=   E=  Eavg, P*= P=Pavg, and
a*= 0.67.
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Fig. 2. Dimensionless wave power P* (blue) and dimensionless erosion rate E* (pink) for each study site. Wave power values, P*, are daily averages.
Yearly erosion rate values and bounds (pink) were obtained using the regression coefficients calculated for the linear relationship between
wave power and erosion rate. Major storms affecting the areas of interest are indicated (SI Appendix, Fig. S4 and Table S1 show storm category
and date).
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Therefore, extreme storms are not the dominant threat to salt
marsh stability, such as they are to other coastal environments.
As an example, beach dunes generally dissipate wave energy
during mild storms, whereas they can collapse during hurricanes
(29). Moreover, although the response of sandy beaches to
external drivers presents multiple stable states and the effect of
storms is amplified or mitigated depending on environmental
conditions (29, 30), the response of salt marshes is constant
across different geographic regions and for different climatic
conditions. Our analysis is only valid for salt marshes and might
not be applicable to brackish or freshwater intertidal vegetation,
which sometimes fail during hurricanes given their weaker root
system (20). The linear relationship between wave energy and
erosion and the fact that salt marsh erosion rates vary little from
year to year enable the prediction of the long-term fate of these
environments and the estimation of their lifecycle (3). Even if
salt marshes are constantly deteriorating at a slow rate, their
predictable response to a wide range of storms and the pos-
sibility of forecasting both their lifespan and mitigation ef-
fects make these landforms well-suitable for ecosystem-based
coastal defense.

Methods
Erosion Rates. We have conducted an extensive survey of available literature
data of marsh erosion as a function of wave power (18, 19, 23–26).We further
use salt marsh erosion measurements from Plum Island Sound, Mas-
sachusetts and Barnegat Bay–Little Egg Harbor system. Erosion measure-
ments in Plum Island Sound were collected at three different sites from 2008
to 2013 (SI Appendix, Fig. S1). At one of the sites, field measurements were
also collected immediately before and immediately after the occurrence of
Hurricane Sandy (note from SI Appendix, Fig. S1 that limited erosion oc-
curred during the event). Erosion measurements in Barnegat Bay were
obtained by digitalizing more than 100 km of marsh shoreline using aerial
images (1930, 2007, and 2013) from the digital orthophotography of New
Jersey. These datasets consist of 0.3-m GSD pixel resolution natural color
(2007 and 2013) and black and white (1930) orthoimages covering the state
of New Jersey (SI Appendix, Fig. S9).

Meteorological Data. Data used to compute wave power are available at the
National Data Buoy Center (www.ndbc.noaa.gov/). Specifically, we use the
following stations: VENF1: 27.072° N, 82.453° W for Tampa Bay; SRST2:
29.683° N, 94.033° W for Vermillion Bay; LLNR 293: 29.212° N, 88.207° W
for Lake Borgne; LLNR 1205: 27.907° N, 95.353° W for Galveston Bay;
CLKN7: 34.622° N, 76.525° W for Pamlico Sound; LLNR 830: 40.251° N,
73.164° W for Barnegat Bay; LLNR 168: 38.461° N, 74.703° W for Delaware

Bay; and CHLV2: 36.905° N, 75.713° W for Virginia Coast Reserve (SI Appendix,
Figs. S2–S4).

Wind Waves. Average water depth and fetch measurements for each indi-
vidual site are presented in SI Appendix, Figs. S2 and S3. To compute wave
climate, we follow the equations by Young and Verhagen (31). Wave height,
H, is computed from the wave energy, W, through the expression
W = ρgH2=8, whereas the wave power is P =Wcg, where cg is the
group velocity.

The dimensionless wave energy, e=g2W=U4, and peak frequency,
ν= FU=g, are related to the nondimensional fetch χ=gx=U2 and dimensionless
water depth δ=gd=U2 through the expression

e= 3.64 ·10−3
�
tanhA1tanh

�
B1

tanhA1

��1.74

, [2]

where g is the gravitational acceleration, U is the reference wind velocity at
an elevation of 10 m, F is the wave frequency, x is the fetch, d is the water
depth, A1 = 0.493δ0.75, and B1 = 3.13 ·10−3χ0.57. The dimensionless peak fre-
quency is

ν= 0.133
�
tanhA2tanh

�
B2

tanhA2

��−0.37

, [3]

where A2 =0.331δ1.01 and B2 = 5.215 · 10−4χ0.73.
For data points presented in Fig. 1 and relative to the Barnegat Bay–Little

Egg Harbor system, we use the Coupled Ocean Atmosphere Wave Sediment
Transport Modeling System (32) to reconstruct the long-term wave climate
in the area. Water-level variations typical of a tidal cycle and wind speed and
direction measurements collected from the National Data Buoy Center (see
above) are used as model input. The numerical model is used to more con-
veniently obtain wave power values at the scale of the entire bay (SI Ap-
pendix, Figs. S9 and S10).

Return Period of Wave Events. For the calculation of the return period of
wave events, we use the maxima method, which consists of breaking up
the initial sequence of data into monthly blocks, extracting the maximum
observation for each block, and fitting an extreme value distribution.
Assuming independence between different months, a well-established
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Fig. 3. Average contribution of different wind categories to salt marsh ero-
sion rates: calm, 0.1% ± 0.05%; light air, 4.0% ± 1.9%; light breeze, 5.0% ±
2.7%; gentle breeze, 36% ± 8.3%; moderate breeze, 18.0% ± 3%; fresh
breeze, 24.0% ± 5.7%; strong breeze, 7.0% ± 2.5%; near gale, 5.0% ± 3%;
gale, 0.2% ± 0.1%; strong gale, 0.2% ± 0.1%; storm, 0.2% ± 0.07%; violent
storm, 0.2% ± 0.05%; and hurricane, 0.1% ± 0.05%. Plots refer to the entire
period of record (SI Appendix, Fig. S5 shows the contribution of each wind
category to a specific field site).

6

5

4

3

2

1

0
0 1 2 3 4 5 6

1

0.8

0.6

0.4

0.2

0

0 3.5   7 14

E
*

f (
P

*)

P*

T (mo)

to
ta

l e
ro

si
on

Virginia Coast Reserve

Maximum erosion

10.5

Fig. 4. For the Virginia Coast Reserve, frequency–magnitude distribution of
dimensionless wave power fðP * Þ (dashed black line), total erosion (black
line), and dimensionless erosion rate E* (dashed blue line) as a function of P*

and its return period, T, in months. For the Virginia Coast Reserve, the return
period of wind waves causing maximum erosion is 3 mo. The average return
period for all sites is 2.5 ± 0.5 mo (SI Appendix, Fig. S6 shows the plot of
geomorphic work for individual bays).

Leonardi et al. PNAS | January 5, 2016 | vol. 113 | no. 1 | 67

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510095112/-/DCSupplemental/pnas.1510095112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510095112/-/DCSupplemental/pnas.1510095112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510095112/-/DCSupplemental/pnas.1510095112.sapp.pdf
http://www.ndbc.noaa.gov/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510095112/-/DCSupplemental/pnas.1510095112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510095112/-/DCSupplemental/pnas.1510095112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510095112/-/DCSupplemental/pnas.1510095112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510095112/-/DCSupplemental/pnas.1510095112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510095112/-/DCSupplemental/pnas.1510095112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510095112/-/DCSupplemental/pnas.1510095112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510095112/-/DCSupplemental/pnas.1510095112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510095112/-/DCSupplemental/pnas.1510095112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510095112/-/DCSupplemental/pnas.1510095112.sapp.pdf


model for extreme wave heights is based on the Gumbel distribution (34)
(SI Appendix, Fig. S7), which reads

Gðx; a,bÞ= exp
�
−exp

�
−
�
x −b
a

���
, −∞< x <∞, [4]

with a and b being the distribution parameters. If Mk
H is the maximum value

during the k month and GðxÞ is the variable Gumbel distribution function,
the N year return period, sN, is

GðsNÞ=1−
1
N
. [5]

For the Gumbel distribution, it follows that the return value for the monthly
maximum is

sT =b− a  log
�
−log

�
1−

1
T

��
. [6]
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