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In the mammalian brain, dopamine is a critical neuromodulator whose
actions underlie learning, decision-making, and behavioral control.
Degeneration of dopamine neurons causes Parkinson’s disease,
whereas dysregulation of dopamine signaling is believed to con-
tribute to psychiatric conditions such as schizophrenia, addiction,
and depression. Experiments in animal models suggest the
hypothesis that dopamine release in human striatum encodes re-
ward prediction errors (RPEs) (the difference between actual and
expected outcomes) during ongoing decision-making. Blood oxygen
level-dependent (BOLD) imaging experiments in humans support the
idea that RPEs are tracked in the striatum; however, BOLD measure-
ments cannot be used to infer the action of any one specific neuro-
transmitter. We monitored dopamine levels with subsecond temporal
resolution in humans (n = 17) with Parkinson’s disease while they
executed a sequential decision-making task. Participants placed bets
and experienced monetary gains or losses. Dopamine fluctuations in
the striatum fail to encode RPEs, as anticipated by a large body of
work in model organisms. Instead, subsecond dopamine fluctuations
encode an integration of RPEs with counterfactual prediction errors,
the latter defined by how much better or worse the experienced
outcome could have been. How dopamine fluctuations combine the
actual and counterfactual is unknown. One possibility is that this pro-
cess is the normal behavior of reward processing dopamine neurons,
which previously had not been tested by experiments in animal mod-
els. Alternatively, this superposition of error terms may result from an
additional yet-to-be-identified subclass of dopamine neurons.

dopamine | reward prediction error | counterfactual prediction error |
decision-making | human fast-scan cyclic voltammetry

Dopamine is an essential neuromodulator whose presence is
required for normal learning, decision-making, and behavioral
control (1, 2) and whose absence or dysfunction is associated with a
variety of disease states including Parkinson’s disease, schizophre-
nia, addiction, and depression (3-7). Experiments in animal models
support the hypothesis that changes in dopamine release at target
neural structures encode reward prediction errors (RPEs) (the
difference between actual and expected outcomes) important for
learning and value-based decision-making (1, 8-12). In support of
this claim, direct recordings of spike activity in mesencephalic do-
paminergic neurons in nonhuman primates demonstrate that these
neurons encode prediction errors in future reward delivery (8-10,
13, 14) and they may also encode other computations relevant for
reward-guided actions (1, 15-17). However, action potential pro-
duction in brainstem dopaminergic neurons can only be part of the
story because activity in parent axons must be converted to changes
in neurotransmitter release at synaptic terminals to have any impact
on downstream neural systems (1, 18). There have been no direct
measurements of dopamine release in human striatum that tests
these ideas directly. In a large cohort of human subjects (n = 17),
we tested the hypothesis that subsecond fluctuations in dopamine
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delivery to the human striatum encode RPEs generated during a
sequential choice task.

Our measurements of dopamine release are made in patients
undergoing deep brain stimulating (DBS)-electrode implanta-
tion for the treatment of Parkinson’s disease. This patient pop-
ulation provides a unique and important window of opportunity to
investigate dopamine’s role in human brain function. Parkinson’s
disease symptoms are treated with dopamine replacement

Significance

There is an abundance of circumstantial evidence (primarily work
in nonhuman animal models) suggesting that dopamine tran-
sients serve as experience-dependent learning signals. This report
establishes, to our knowledge, the first direct demonstration that
subsecond fluctuations in dopamine concentration in the human
striatum combine two distinct prediction error signals: (/) an
experience-dependent reward prediction error term and (ii) a
counterfactual prediction error term. These data are surprising
because there is no prior evidence that fluctuations in dopamine
should superpose actual and counterfactual information in
humans. The observed compositional encoding of “actual”
and “possible” is consistent with how one should “feel” and may
be one example of how the human brain translates computations
over experience to embodied states of subjective feeling.

Author contributions: K.T.K,, T.L, T.L.E, P.E.M.P,, and P.R.M. designed research; P.R.M. guided
all aspects of this work, including conception of the adaptation of prior rodent microsensor
technology for use in humans; T.L. and P.R.M. designed the sequential choice task; M.R.W.,
AW.L, SB.T, and T.L.E. conceived of surgical strategies for safe and effective placement of
microsensors for human fast-scan cyclic voltammetry (FSCV) experiments; P.E.M.P. guided mi-
crosensor fabrication; 1.S. assisted with optimization of microsensor design and engineering
of mobile electrochemistry unit; K.T.K,, 1S, M.RW., AW.L, and S.B.T. performed research; M.R.W.,
AWL, and SB.T. performed surgical placement of probes; P.E.M.P. guided FSCV experiments;
K.T.K. executed FSCV experiments (in vivo and in vitro); I.S. assisted with FSCV experiments (in vivo
and in vitro); K.T.K,, 1S, J.P.W., and P.E.M.P. contributed new reagents/analytic tools; K.T.K. built
and optimized parameters for the extended carbon-fiber microsensors and engineered the in-
tegration of mobile electrochemistry unit with game play technology; P.R.M. guided and inter-
preted signal extraction development and optimization procedures; K.T.K. optimized the signal
extraction algorithm using the elastic net; J.P.W. performed temporal alignment of signals col-
lected on electrochemistry unit and integrated game play system (NEMO); KT.K,, 1S, T.L, JP.W.,
and P.R.M. analyzed data; P.R.M. guided all analyses; P.R.M. guided and interpreted results from
FSCV experiments; K.TK, IS, T.L, MRW., AW.L, SBT, JP.W, P.EM.P,, and PR.M. interpreted
results; and K.T.K, T.L, and P.R.M. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

See Commentary on page 22.

"To whom correspondence may be addressed. Email: read@vt.edu or kenk@vtc.vt.edu.

2Present address: Helen Wills Neuroscience Institute and Haas School of Business, Univer-
sity of California, Berkeley, CA 94720.

3Deceased June 30, 2012.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1513619112/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1513619112


http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1513619112&domain=pdf
mailto:read@vt.edu
mailto:kenk@vtc.vt.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513619112/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1513619112/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1513619112

L T

/

1\

=y

therapies, and yet we know nothing about how rapid (subsecond)
dopamine concentration changes contribute to their symptoms or
changes in their decision-making abilities. The opportunity to
measure dopamine release with subsecond temporal resolution in
the brains of humans with Parkinson’s disease is an opportunity to
learn about fundamental processes in human brain function as well
as an opportunity to assess dopamine signaling in a patient pop-
ulation whose primary treatment is focused on replacing function
lost as dopamine neurons degenerate.

Participants (n = 17) in these experiments performed a simple,
yet engaging, sequential investment game (Fig. 1 and refs. 19-21)
while dopamine measurements with subsecond temporal resolution
were made in the striatum (n = 14 in the caudate and n = 3 in the
putamen). Participants were offered participation after they were
deemed candidates for deep brain-stimulating electrode implan-
tation (22, 23). The research protocol was explained to the
participants verbally, and they were provided a written consent form,
as required by dual-institutional review board (IRB)-approved pro-
tocols at Wake Forest University Health Sciences and Virginia Tech
Carilion Research Institute. Patients thus indicated that they un-
derstood the research protocol and provided written informed con-
sent to proceed with the research procedure.

The sequential investment game (Fig. 1 and refs. 19-21) consists of
120 investment decisions. On each trial (¢), this game requires partic-
ipants to use button boxes to adjust and submit an investment [bet (b;),
where bet sizes could range from 0% to 100% of the participants
portfolio, in 10% increments], after which, participants experience a
gain or loss (participant return) equal to the bet size times the frac-
tional change in the market price [market return () at time #: r, = %,
where p is the market price and the participant return (i.e., gain or loss)
at time ¢ is equal to b,r;]. Previous work used this task and functional
magnetic resonance imaging to demonstrate that RPEs and CPEs over
gains are tracked by blood oxygenation level-dependent (BOLD) re-
sponses in the striatum (19, 20). These reports also demonstrated at
the behavioral level that humans use counterfactual information over
choices that “might have been made” and RPE information over
choices that were actually made to make their next choice (19, 20).

Results

Cross-Validated Penalized Linear Regression Approach Reliably Estimates
Low Dopamine Concentrations. During the execution of the se-
quential investment game, an adaptation of fast-scan cyclic
voltammetry (FSCV) was used to track subsecond dopamine
fluctuations in the striatum. Standard approaches [see SI Methods,
Principal Components Regression to Estimate Dopamine Concen-
tration and Figs. S1-S3 and Table S1, which follow recommenda-
tions in ref. 24] for estimating dopamine concentration from FSCV
measurements produced unreliable predictions for low dopa-
mine concentrations in vitro (Fig. 24). Furthermore, and also
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under controlled in vitro conditions, we observed that these
methods produced predictions of dopamine concentration fluctu-
ations that confused changes in pH for changes in dopamine (Fig.
2B). Thus, we sought to develop a novel approach that uses in vitro
calibration data to fit a cross-validated penalized linear re-
gression model for estimating dopamine concentrations from
non-background-subtracted voltammograms [see SI Methods
for details on our elastic net (EN)-based approach]. The new
approach was sufficiently sensitive and stable to permit dopamine
measurements at low levels expected in patients diagnosed with
Parkinson’s disease (Fig. 2 C-E and Fig. S4). Fig. 2C shows our
approach stably and accurately estimating dopamine levels in
out-of-sample test cases from the same electrode and flow cell
conditions used in Fig. 2 A and B. Fig. 2D shows that the cross-
validated EN-based approach used to accurately track changes
in dopamine concentration in Fig. 2C does not confuse changes
in pH for dopamine fluctuations. Fig. S5 shows our approach
achieving signal-to-noise ratios (SNRs) ranging from 2/1 to 5,000/1
for tonic dopamine concentrations ranging from 500 nM to
10 puM, respectively. For the results below, we use our EN-based
approach to estimate dopamine levels from non-background-
subtracted voltammograms measured in the striatum of humans
undergoing DBS-electrode implantation surgery.

Dopamine Transients Fail to Simply Encode RPEs. Dopamine mea-
surements were made in 17 participants; each participant made 20
investment decisions per market in a total of six markets (120
decisions total per subject; one subject did not complete one
market). At each decision within a market, an RPE was computed
as the difference between the outcome (gain or loss as defined
above) and the expected value of the outcome for that market (i.e.,
the average participant return up to that trial in that market); this
difference is normalized to the variability of the preceding out-
comes to facilitate comparison across markets and across partici-
pants (see Eq. 2 in Materials and Methods for equation and
description of terms). The distribution of RPEs (Fig. 34) is peaked
around 0 but evenly distributed for positive and negative values. We
divide these events into positive and negative RPEs and report the
mean dopamine responses to positive (green; n = 17, n = 1,022) and
negative (red; n = 17, n = 991) RPEs in Fig. 3B. The measured
dopamine fluctuations in human striatum fail to distinguish
RPEs categorized by sign [Fig. 3B; two-way ANOVA: F(1,7) =
1.67, P = 0.1965]. This null result holds even at lower sample sizes
(n = 200 per category, randomly sampled). Prior work strongly
supports the hypothesis that dopamine fluctuations in striatum
should track RPE:s (1, 8, 10, 11, 13, 14). Our results contradict this
expectation; however, the task we use was designed to also assess
the impact of counterfactual feedback (e.g., difference between ac-
tual outcomes and what might have happened; Eq. 3). In this game,

Fig. 1. Investment game. (A) Participants played a
sequential-choice game during surgery using button
boxes (Left) and a visual display (Right). For each
patient, bet size adjustments (e.g., increase bet or de-
crease bet) and the decision to submit one’s answer
were performed with button boxes. (B) Investment
game (19, 21): participants view a graphical depiction
of the market price history (red trace), their current
portfolio value (bottom left box), and their most recent
outcome (bottom right box) to decide and submit
investment decisions (bets) using a slider bar in 10%
increments (bottom center). Bet sizes were limited to
0-100% (in 10% increments) of the participant’s port-
folio—no shorting of the market was allowed. During
an experiment, a participant played 6 markets with 20
decisions made per market. (C) Timeline of events
during a single round of the investment game.
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Fig. 2. Performance of EN-based dopamine estimation algorithm. (A and
B) Performance of PC regression-based approach on out-of-sample test
cases. (C-E) Performance of EN-based approach on out-of-sample test
cases. For A and B, light blue lines indicate dopamine concentration
of prepared out-of-sample calibration solutions, green points indicate
PC regression-based predictions accepted by Q-value analysis, and red
points indicate PC regression-based predictions rejected by Q-value
analysis. The inset scale bar indicates measurement period of 50 s. (4) PC
regression-based prediction of changes in dopamine concentration under
stable pH (pH 7.4). The prepared dopamine concentration (light blue; 200,
400, 800, and 1,600 nM) compared with the PC regression-based predic-
tions for dopamine concentration (red and green). (B) PC regression-
based predictions of dopamine concentration when pH is changed,
but dopamine concentration is held constant (0 dopamine in solution).
The dotted light blue line indicates actual concentration of dopamine
is equal to 0. Insets indicate pH levels (pH range: 7.19, 7.4, 7.6). (C) EN-
based predictions of changes in dopamine concentration under stable
pH (pH = 7.4). The prepared dopamine concentration (light blue, 200,
400, 800, and 1,600 nM) compared with the EN-based predictions for
dopamine concentration (dark blue). The inset scale bar indicates mea-
surement period of 50 s. (D) EN-based predictions of changes in dopa-
mine concentration when pH is changed, but dopamine concentration is
held constant (0 dopamine in solution). The dotted light blue line indi-
cates that actual concentration of dopamine is equal to 0. Insets indicate
pH levels (pH range: 6.79, 7.02, 7.8). (E) Dopamine concentration pre-
dictions from the EN-based procedure gives accurate predictions of do-
pamine concentration (blue squares). Horizontal axis: concentration
of prepared dopamine; vertical axis: predicted dopamine concentration.
Plotted are mean predicted values for five measurements at each con-
centration + SEM (note: SEM bars are plotted but are consumed by
the marker).
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counterfactual prediction errors (CPEs) (Eq. 3) are parameterized
by the distribution of participants’ bets. Instances where there is no
CPE occur when the participants’ bet is equal to one (i.e., “all in”).
In these specific instances, we observe (Fig. 3B, Inset) that dopamine
transients to positive (n = 173) and negative (n = 164) RPEs indeed
separate. Together, these results suggest that counterfactual in-
formation (as bet sizes decrease from 1) disrupts the expected
standard response of dopamine release to positive and negative
RPEs. We test this hypothesis below (Results, Dopamine Transients
Integrate RPEs and CPEs) by examining the dopamine response to
equivalent magnitude RPEs for different bet sizes.

Dopamine Transients Integrate RPEs and CPEs. Behaviorally, CPEs
in this task have been shown to combine with RPEs to influence
participants’ next decision (19, 20). Given the impact of bet size (and
thus potentially counterfactual information) on the encoding of RPEs
by dopamine fluctuations (Fig. 3B), we tested a novel hypothesis:
subsecond dopamine transients encode a combination of RPEs and
CPEs. To test our hypothesis, we follow the model of CPEs pre-
sented by Lohrenz et al. (19) and assume that dopamine encodes a
linear combination of two separate computations: RPEs (Eq. 2) and
CPE:s (Eg. 3): dopamine transient < {RPE} — {CPE}, or

dopamine transient < {RPE} — {r;(1 —b;)}. [1]

Here, b, is the subject’s fractional bet at choice trial ¢ and r,
expresses the relative fractional change in the market price
(= %). The difference in what the participant earned and what
the participant could have earned is the CPE (second term on
the right in Eq. 1). The guiding intuition for the form of Eq. 1 is
twofold: (i) that what might have been should adjust overall
valuation estimates and encode this adjusted amount in a com-
posite dopamine signal and (if) that the RPE and CPE terms are
computed in two separate pathways before being integrated at
the level of dopamine release. Thus, the valuation error encoded
by dopamine release is consistent with the intuition that “better-
than-expected” outcomes (positive RPEs) that might have been
better should be reduced in value and “worse-than-expected”
outcomes (negative RPEs) that might have been worse should
be increased in value. In this form, positive CPE terms (which
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Fig. 3. Dopamine fails to simply track RPEs in the investment game. (A) Histo-
gram showing the distribution of events for RPEs (n = 17 participants; n = 2,013
outcome revelations). (B) Mean normalized dopamine responses (+SEM) to posi-
tive (green; n = 1,022) and negative (red; n = 991) RPEs. Two-way ANOVA (RPE-
sign and time: 700 ms following and including outcome reveal) reveals no
significant difference comparing dopamine responses for positive and negative
RPES [Freesign(1,7) = 1.67, P = 0.1965]. Note, this null result holds even at lower
sample sizes (n = 200 per category, randomly sampled) comparable to those in
Fig. 4. Horizontal axis: time (ms) from outcome reveal (blue arrow head); vertical
axis: mean change in the dopamine response. Before averaging, dopamine
traces are normalized to the SD (o) of the fluctuations measured within patient.
Error bars: SEM. Inset shows dopamine response to a subset of positive (green)
and negative (red) RPE events (i.e., when the participants’ bet all in).

Kishida et al.


www.pnas.org/cgi/doi/10.1073/pnas.1513619112

higher bets medium bets lower bets

0.5; 0.5 0.5;

= 04f ® 0.4 0.4

~ *

S 03f 0.3 0.3

£ (*)

€ 0.2r 0.2 0.2/ *

[

g *

& 0.1 0.1 0.1

o

(o]

£ 0 0 0

£

©

g-0.1 -0.1 -0.1

° A A A

$-0.2/ -0.2 -0.2r

N

g.03f -0.3 -0.3t

o

S-04F —RPE (+),n=119  -0.4f —RPE (+),n=194  -0.4 —RPE (+), n=246
05 —RPE (), =99 05 —RPE (), =149 05 —RPE (), =194

0 200 400 600 ~2 0 200 400 600 2 0 200 400 600
Time (ms) Time (ms) Time (ms)

Fig. 4. RPE encoding by dopamine transients invert as a function of bet size.
Dopamine responses to equal absolute magnitude positive and negative RPEs
(=0.75 > RPE > +0.75) when bets are high (higher bets, 100-90%) (Left), medium
(medium bets, 80-60%) (Center), or low (lower bets, 50-10%) (Right). For all
three plots, mean normalized dopamine responses (+SEM) to positive RPEs
(green traces) and negative RPEs (red traces). Inset legends show sample sizes for
event types. Two-way ANOVA (RPE-sign and time: 700 ms following and in-
cluding outcome reveal) reveals a significant difference comparing dopamine
responses for positive and negative RPEs following higher bets [Frpesign(1,7) =
21.17, P = 0.00] and lower bets [Frpesign(1,7) = 32.64, P = 0.00] but not medium
bet sizes [Frpesign(1,7) = 0.15, P = 0.6957]. Asterisks indicate significant difference
between red and green traces: P < 0.05, post hoc, two-sample t test following
ANOVA with time and RPE-sign as the two main factors. Asterisks with paren-
theses indicate Bonferroni correction for multiple comparisons. For low bets (i.e.,
large CPEs), only those events where the market price change and the RPE-sign
are the same are considered. Horizontal axis: time (ms) from outcome reveal
(blue arrowhead); vertical axis: mean change in normalized dopamine response.

occur for missed opportunities on positive-going markets) diminish
the value of the RPE event, and negative CPE terms (which occur
for avoided losses on negative-going markets) increase the value of
the RPE event.

This model (Eq. 1) makes three testable predictions all of which
derive from a dependence on the bet size b,. We test these pre-
dictions for events that have the same magnitude of RPEs (positive
and negative) but grouped for different size bets. According to the
model in Eq. 1, we predict (and observe) the following.

Prediction 1: Impact of bet size equal to 1 (i.e., no CPE). When the bet
(by) is set near 1 (all in), the CPE is 0, so positive RPEs will be
encoded as positive-going dopamine transients and negative
RPEs will be encoded as negative-going dopamine transients
[similar to experiments in rodents and nonhuman primates (8,
11, 25) and exactly what is observed in Fig. 34, Inset, and for the
“higher bets” graph in Fig. 4].

Prediction 2: Impact of decreasing bet size on dopamine transient polarity for
positive RPEs. As the bet size decreases, the CPE grows in magnitude;
thus, dopamine transients to positive RPEs will diminish (as is ob-
served with the green traces in the “medium bets” graph in Fig. 4)
and eventually will be encoded as a negative-going transients as the
CPE term dominates (as is observed for green traces in the “lower
bets” graph in Fig. 4).

Prediction 3: Impact of decreasing bet size on dopamine transient polarity
for negative RPEs. Again, as the bet size decreases the CPE grows
in magnitude; thus, dopamine transients to negative RPEs will
diminish (as is observed for red traces in the medium bets graph
in Fig. 4) and eventually be encoded as a positive-going tran-
sients as the CPE term dominates (as is observed for red traces in
the lower bets graph in Fig. 4).

Fig. 4 demonstrates that striatal dopamine measurements in hu-
mans follow predicted responses of the simple model expressed in
Eg. 1. The three separate predictions are pertinent because in non-
human primates dopamine neurons show asymmetrical modulation
of their activity as a function of the RPE polarity (8, 10, 13, 15-17),
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and the integration of a CPE term has not previously been shown in
experiments measuring changes in dopamine neuron firing rate. One
possible interpretation here is that there is a separate class of mid-
brain dopamine neurons carrying the counterfactual information and
these have yet to be recorded from in prior experiments. This hy-
pothesis is particularly important because these subjects are patients
with Parkinson’s disease, suggesting a class of dopamine neuron
possibly preserved in the disease. Alternatively, these results suggest a
previously untested mode of operation of reward processing dopa-
mine neurons. Along these lines, different error terms for evaluating
behavioral outcomes may be integrated before dopamine release.
Both of these possibilities suggest two separate pathways for com-
puting actual and counterfactual outcomes over past decisions.
Where these computations may take place is unknown. Further
work is needed to distinguish these and other possibilities.

Discussion

We tested the hypothesis that fast fluctuations in dopamine
concentration encode RPEs over monetary gains and losses
using FSCV (to measure dopamine release) in 17 participants
while they played a sequential investment game. The data show
that a simple encoding of RPEs by dopamine release is not the
case (Fig. 3B). Instead, our data are consistent with the idea that
dopamine fluctuations integrate a RPE term with a CPE term
(Fig. 3B, Inset, and Fig. 4). A model (Eq. 1) that subtracts a CPE
term from the RPE term is consistent with our data (Figs. 3 and
4) and is consistent with how counterfactual experience should
modulate actual experience but in computational terms. This
model makes the surprising prediction that counterfactual out-
comes can suppress and even invert dopamine responses to positive
and negative RPEs.

Notably, our model and the dopamine responses it explains also
capture qualitative aspects about how one should “feel” (e.g., good
or bad) given one’s action, the resulting outcome, and the overall
context of that outcome. For example, a better-than-expected out-
come should feel good (i.e., rewarding); however, if the exact same
outcome occurs when an alternative action could have resulted in an
even better outcome, then the positive feelings associated with the
better-than-expected experience should be diminished and in ex-
treme cases such an experience should feel bad (i.e., aversive). This is
consistent with feelings of “regret” and the negative feelings asso-
ciated with missed opportunities. Likewise, a worse-than-expected
outcome should feel bad (i.e., aversive), but, if that outcome is ex-
perienced when the outcome could have been much worse, then the
overall experience should be driven toward the positive. These
analogous feelings of “relief” are typically positive and rewarding for
actions that avoid counterfactually large losses or severe punishment.
Our model, and the impact of combining actual and counterfactual
information to evaluate decision-making, has connections to regret-
based theories of decision-making under uncertainty (26, 27). An
interesting point here is that this combination of information in a
single physical signal (the dopamine response) could be one way that
the human brain translates computations about actual and simulated
experience to embodied states of feeling.

These data are collected in humans undergoing DBS-electrode
implantation for the treatment of Parkinson’s disease. In many re-
spects, decision-making in patients with Parkinson’s disease remains
largely intact: they make their own financial decisions, they are free
to choose to consent in clinical and research procedures, and they
make many other life critical decisions. However, prior work suggests
that pharmacological agents, DBS therapies, and the Parkinson’s
disease state have been associated with changes in patient behav-
iors associated with impulse control, adaptive decision-making, and
goal-directed behaviors (28-30). The impact of significant dopamine
neuron loss, which characterizes this disease, is important to con-
sider. For example, it is unclear what aspects of the dynamics in the
dopamine response we report are attributable to the normal state
of dopamine neuron function in humans, to reduced dopaminergic
signaling caused by Parkinson’s disease pathology, or perhaps
downstream adaptive mechanisms resulting from patients’ history of
pharmacotherapy. Thus, it is unclear whether the integration of

PNAS | January 5,2016 | vol. 113 | no.1 | 203

g
=
H
[
H
=
o
v}
]
o
wv

NEUROSCIENCE

PSYCHOLOGICAL AND

COGNITIVE SCIENCES



L T

/

1\

=y

these two error terms is representative of typical dopamine release in
a non-Parkinsonian brain. For example (and speculatively), exoge-
nously increased levels of dopamine via 1-3,4-dihydroxyphenylalanine
(L-DOPA) therapy could cause serotonergic terminals to inappro-
priately load dopamine through cellular reuptake mechanisms or
directly convert L-DOPA into dopamine in terminals that normal
release serotonin (31, 32); thus, signals normally encoded by sero-
tonin release might then be misencoded by dopamine release.
Although an integration of these terms is consistent with how a
decision-making agent might account for these opponent feedback
signals, it is not a priori necessary that dopamine release encodes this
specific computation. Further experiments are required to determine
whether dopamine release encodes the integration of actual and
CPE terms in humans without Parkinson’s disease or model systems
where the dopaminergic system is intact.

These present results are unanticipated by current models and
data collected in nonhuman model organisms including nonhuman
primate dopamine neuron recordings and dopamine release mea-
surements in rodents. Work in nonhuman primates has demon-
strated that neural activity (somatic spikes) in the anterior cingulate
cortex (33), orbital frontal cortex and dorsolateral prefrontal cortex
(34), and in rodent striatum (35) are able to track counterfactual
information. These studies indicate that activity of single neurons in
rodents and nonhuman primates are able to track counterfactual
information reflected through changes in spike frequencies but do
not demonstrate a mechanism by which these signals are integrated
to represent modulations in value estimates of outcomes. Our re-
sults demonstrate that experience-dependent RPEs and simulated
CPEs are combined at the level of extracellular dopamine fluctu-
ations in the striatum within hundreds of milliseconds following the
revelation of a decision—outcome.

In humans, it has been shown that lesions to the orbital frontal
cortex impair counterfactual information processing as read out
through decision-making behavior and subjective reports about
feelings of regret and relief (36). Also, BOLD imaging experiments
in humans support the idea that counterfactual information is
represented by brain responses in the orbital frontal cortex (37) and
striatum (19, 20, 38). However, BOLD imaging is unable to provide
specific information about the neurotransmitters involved (39), nor
do BOLD imaging experiments provide specific information about
how the brain encodes this information at the level of neurotrans-
mitter release, modulations in local field potentials, or somatic
spike activity (39, 40). One report has demonstrated neural activity
in human substantia nigra that was consistent with dopamine neu-
ron activity (41). In that report, dopamine neuron spike rates were
demonstrated to track RPEs as in the animal model literature;
however, no association between dopamine neuron activity and
counterfactual signaling could be made, nor could a direct link be
made between dopamine neuron activity in the substantia nigra and
dopamine release in downstream targets.

Our results show dopamine fluctuations combine evaluative
information about actual outcomes (RPE) and feedback about
outcomes that would have occurred had the agent performed a
different action (CPE). These computations are related to tem-
poral difference learning and related Q-learning methods
(42, 43), both of with are constrained by experience-dependent
learning signals, meaning that these approaches only update
state—action value estimates on those states and actions actually
experienced. This means that an agent must sample all state—
action pairs to gain a full representation of the state-space. A
more efficient approach would be to update representations
independent of immediate state—action experiences as alterna-
tive forms of information become available. Thus, the ability to
incorporate counterfactual information should speed up the
process of learning because the agent could then update value
estimates on multiple states in parallel. This kind of learning
from fictive experiences could occur with counterfactual in-
formation coming from a variety of sources including other
agents (social learning) or more complete information becoming
available after certain actions have been made. For example, in
the current task, the CPE signal is the difference between the
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best (or worst) possible outcome and the actual outcome (Eq. 3).
This kind of counterfactual information has been shown to be an
important signal for driving human choice behavior (19) and is
similar to the supervised actor critic framework proposed in ref.
44 and discussed in ref. 45. Together with experience based
learning, counterfactual learning signals like this one serve to
speed up learning about the optimal strategy in complex and
information rich environments.

How RPEs and CPEs are physically combined and contribute
to the composite dopamine signal is not known. One possibility is
that there are separate sets of dopaminergic neurons with activity
modulations that specialize in either the prediction errors or CPEs.
Such heterogeneity in dopamine neuron response profiles has been
demonstrated (16, 46). This possibility has simply not been tested.
Other possibilities are that such signal-dependent coding is multi-
plexed in a common set of mesostriatal dopamine neurons or that
direct modulation of dopamine release and clearance in the ter-
minal regions of the striatum provide direct control over the dy-
namics of error tracking by dopamine transients. Further work is
required to separate these and other possibilities.

Methods

For more detail on all procedures, materials, and analyses presented below,
refer to the SI Methods.

Informed Consent and Participant Recruitment. Participants (n = 17) gave in-
formed written consent and verbal assent to the dual IRB-approved research
protocol. IRB committees at Wake Forest University Health Sciences (IRB00017138)
and Virginia Tech (IRB 11-078) approved all procedures involving human experi-
mentation. Once written and informed consent was obtained from the patient,
the details of the computer task (i.e., the sequential-choice game) were described,
and participants practiced a version of the game to gain familiarity with the game
controls and game play.

Investment Game. The investment game (Fig. 1 and refs. 19-21) requires par-
ticipants to make decisions about how much of their portfolio they will invest in
a “stock market” given three pieces of information: (/) the history of the market
price, (ii) the participant’s current portfolio value, and (iii) the most recent
fractional change in the participant’s portfolio value. The participant begins the
game endowed with 100 points and plays six markets with 20 decisions in each
market. The participants’ final portfolio value (after all 120 decisions have been
made) determines the participants’ compensation. Fig. S6 shows the distribu-
tion of market returns (Fig. S6A), bets (Fig. S6B), participant returns (Fig. S6C),
RPEs (Fig. S6D), and CPEs (Fig. S6E).

RPE Calculation. The term b;r; corresponds to participant outcomes (gains or
losses) depending on the sign of r;. Positive r; results in a gain if participants’
bet size was greater than 0; likewise, negative r; results in a loss for bets
greater than 0. RPEs are calculated as the difference between the actual
participant return on that trial and the expected return on that trial. This
term is then normalized by the variability in returns experienced up to that
trial and within each market:

byre — E(btft)' 21
Obyry

where E(b;r¢) is the expected value of b:r¢, which is calculated as the mean

of participant outcomes from the first trial of the game to trial t — 1, and oy,

is the SD over those same events.

CPE Calculation. Participant outcomes (b;r;) are a fraction of the maximum
possible outcome on any given trial. The “maximum possible” is revealed as
the market return (i.e., price change) is revealed—had the participant bet all
in or by, then the gain or loss (dependent on the sign of ry) would have been
the largest that it could have been on that trial. The difference between this
value and the value of the participant’s actual return (b;ry) is the CPE — the
difference between what could have been and what actually happened:

re(1=by). [31

FSCV Carbon-Fiber Microsensors. We performed FSCV on extended carbon-fiber
microsensors in the striatum (n = 14 caudate and n = 3 putamen) of patients
(n = 17 total) with Parkinson'’s disease. The extended carbon-fiber microsensor is
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constructed to match the dimensions of the tungsten microelectrodes used for
functional mapping during DBS-electrode implantation surgery following ref.
21. Fig. S7 shows the component parts and assembly of the extended carbon-
fiber microsensor used in these experiments.

FSCV Protocol. Our FSCV protocol follows previous work in rodents (21, 47, 48).
An electrochemical conditioning protocol (see Fig. S8A for depiction of applied
waveform) is first applied consisting of a 60-Hz application of the measure-
ment waveform for approximately 10 min to allow equilibration. Following
this conditioning procedure, a 10-Hz application of the same triangular
waveform is applied for the duration of the experiment (Fig. S8B). Examples of
the resulting voltammograms (for each patient) and their derivatives, which
were used for analysis, are shown in Figs. S9 and S10, respectively.

Estimation of Dopamine Concentration. We estimate dopamine concentration,
as measured by FSCV using linear regression models trained using in vitro
data and the EN algorithm (refer to S/ Methods for more information). The
EN algorithm is an automatic shrinkage and regularization approach to
fitting-regression models (49). We use the glmnet package developed for
use in Matlab (50) to train and test cross-validated models against prepared
solutions of known dopamine concentrations. Solutions of dopamine are
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prepared in PBS (pH 7.4). Powdered dopamine hydrochloride (Sigma-Aldrich)
is dissolved in a 0.1 N solution of HCl to a concentration of 100 mM. Aliquots
of this solution are diluted to 10 mM in 1x PBS and further diluted (in 1x PBS)
to the desired concentration for in vitro calibration of the carbon-fiber
microsensors.
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