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How do people understand the minds of others? Existing psycho-
logical theories have suggested a number of dimensions that
perceivers could use to make sense of others’ internal mental states.
However, it remains unclear which of these dimensions, if any, the
brain spontaneously uses when we think about others. The present
study used multivoxel pattern analysis (MVPA) of neuroimaging
data to identify the primary organizing principles of social cognition.
We derived four unique dimensions of mental state representation
from existing psychological theories and used functional magnetic
resonance imaging to test whether these dimensions organize the
neural encoding of others’ mental states. MVPA revealed that three
such dimensions could predict neural patterns within the medial
prefrontal and parietal cortices, temporoparietal junction, and ante-
rior temporal lobes during social thought: rationality, social impact,
and valence. These results suggest that these dimensions serve as
organizing principles for our understanding of other people.

social cognition | theory of mind | mentalizing | functional magnetic
resonance imaging | multivoxel pattern analysis

The human mind plays host to a panoply of thoughts, feelings,
intentions, and impressions. External observers can never

directly perceive these mental states—one can never see “nostalgia”
nor touch “awe.” Nevertheless, humans are quite adept at repre-
senting other people’s internal states. Our ability to perceive and
distinguish among the rich set of others’ mental states serves as the
bedrock of human social life. We understand the fine differences
between pure joy and schadenfreude and judge a friend’s glee ac-
cordingly. Our ability to distinguish a partner’s sympathy from
sarcasm can make a world of difference to a relationship. Legal
decisions frequently hinge on nuanced mental distinctions such as
that between inattention and intentional neglect. How do people
navigate such complexities in others’ internal mental worlds?
One crucial tool for any navigator is a compass: a set of di-

mensions that help organize the contents of the world. By at-
tending to the position of others’mental states on key dimensions,
humans might reduce the complexity of others’minds to just a few
essential elements—coordinates on a map. Might navigators of
the world of mental states make use of such an intuitive compass?
Research in other domains of cognition suggests such organization
might be possible: The brain has a demonstrated capacity for
extracting and capitalizing on useful regularities in the world. For
example, our object representation system makes use of dimen-
sions such as size and animacy to organize its processing tracts (1).
Here, we explore the possibility that similar principles may orga-
nize our representations of other people’s minds.
Decades of research in social cognitive neuroscience, primarily

using functional magnetic resonance imaging (fMRI), have al-
ready implicated a well-defined set of brain regions in the pro-
cess of thinking about mental states: Thinking about the lives and
minds of others reliably engages a network including the medial
prefrontal cortex (MPFC), medial parietal cortex (MPC), tem-
poroparietal junction (TPJ), superior temporal sulcus (STS), and
the anterior temporal lobe (ATL) (for a review, see refs. 2 and 3).
However, this relatively young field has yet to explain how the

social brain’s hardware processes the richness and complexity of
others’ mental states. Fortunately, research in psychology supplies
a set of theories regarding how people might organize their
knowledge of mental states. The dimensions of these theories
include valence and arousal (4, 5), warmth and competence (6, 7),
agency and experience (8), emotion and reason, mind and body
(9), social and nonsocial (2, 10, 11), and uniquely human and
shared with animals (12). Any of these dimensions might plausibly
play a role in organizing our understanding of mental states. But
which, if any, do we spontaneously use during mentalizing? If a
dimension actually matters to the way people typically think about
others’ mental states, we should see evidence that the brain or-
ganizes its activity around that dimension. However, merely lo-
cating where in the brain mental state processing occurs—as social
neuroscience has done so well already—cannot tell us how these
regions represent mental states.
Fortunately, new analytic techniques in functional neuro-

imaging, under the umbrella of multivariate or multivoxel pattern
analysis (MVPA), enable us to bridge these levels of analysis.
MVPA examines activity in distributed sets of voxels, allowing for
discrimination between stimuli by their associated patterns of ac-
tivity even when absolute magnitudes of activity remain constant.
In this study, we use the form of MVPA known as representational
similarity analysis (13) to test which psychological dimensions
organize people’s understanding of mental states. These analyses
work by measuring the extent to which neural patterns of activity
can be predicted from theories of representational organization.
To illustrate, the dimension “arousal” would predict that “ecstasy”
and “rage” are represented very similarly in the brain because both
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are similarly intense mental states. In contrast, the dimension “va-
lence” would predict that “ecstasy” and “rage” are represented very
differently in the brain because one state is very positive, whereas
the other is very negative. Both predictions can be tested by mea-
suring the extent to which patterns of neural activity elicited by
thinking about a person in ecstasy are similar to those elicited by
thinking about a person in a fit of rage. Each dimension makes
thousands of predictions about the similarity of each mental state
compared with each other mental state; representational similarity
analysis allows us to assess the accuracy of all of these predictions
simultaneously. Thus, we can test which psychological dimensions
capture the way the brain encodes others’ mental states.

Results
Refining Psychological Theories. We used 16 dimensions extracted
from the psychological literature as a starting point for developing
a theory of mental state representation: positive, negative, high
arousal, low arousal, warmth, competence, agency, experience,
emotion, reason, mind, body, social, nonsocial, shared, and
unique. Note that these initial dimensions are nominal—in many
cases they merely represent different poles of the same underlying
variable—but we initially analyze them separately to remain
maximally agnostic to the possible covariance between them. To
determine what predictions each dimension would make about
mental state representation—that is, which mental states were
predicted to be similar or different with regard to each dimension—
we used a large online sample (n = 1,205) to measure the position
of 166 mental states on each dimension. Ratings across many
of the dimensions were highly correlated (Fig. S1). We distilled
the overlapping intuitions embodied in the original dimensions
down to a smaller set of nonredundant dimensions using principal
component analysis (PCA).
The PCA revealed a much simpler set of four orthogonal di-

mensions, each with easily interpretable loadings (Fig. 1). The first
component, which we term “rationality,” loaded highly in one
direction on the original dimensions experience, emotion, and
warmth, and loaded highly in the opposite direction on compe-
tence, reason, and agency. States such as embarrassment and ec-
stasy occupy one pole of this dimension whereas the other pole is
occupied by states such as planning and decision. The second
component, which we term “social impact,” loaded positively on
the dimensions high arousal and social, and negatively on low
arousal and nonsocial. States such as dominance, friendliness, and
lust rate highly on social impact whereas sleepiness and pensive-
ness rate as minimally impactful. The third component, which we
term “human mind,” loaded positively on unique to humans and
mind, and negatively on shared with other animals and body.
States high in human mind include those like imagination or self-
pity whereas states such as fatigue and stupor are considered more
physical in nature. The fourth component, which we term “va-
lence,” loaded positively on positive and warmth, and negatively
on negative. Positive states include affection and satisfaction
whereas negative states include disgust and disarray. From each
PCA dimension, we derived predictions about the similarity of
each mental state to the others by calculating their psychological
similarity as the absolute difference between the positions of
mental states on each dimension. These predictions were tested
against the neural data using representational similarity analysis,
allowing us to see whether patterns of neural activity elicited by
thinking about mental states reflected each dimension.

Neural Patterns Representing PCA Dimensions. Participants were
scanned while performing a task designed to elicit their thoughts
about 60 mental states (Table S1). On each trial, participants saw
the name of a mental state (e.g., “awe”) and decided which of two
scenarios would better evoke that mental state in another person
(e.g., “seeing the pyramids” or “watching a meteor shower”). This
task allowed us to estimate neural representations for each of 60
mental states by averaging the patterns elicited across the varied
scenarios. We estimated the pairwise similarity of the neural
representations of the 60 states by correlating their activity patterns.

These measures of neural similarity were then regressed onto
the predictions of psychological similarity made by the four PCA-
derived dimensions. For example, if mental states that rated
similarly on the valence dimension (such as “affection” and
“inspiration”) also elicited similar neural patterns of activity, the
regression would reveal that valence was a strong predictor of
neural pattern similarity. We would take this result as evidence that
mental state representations—embodied by these neural patterns—
were indeed organized by valence. This process was conducted re-
peatedly using local patterns extracted from throughout the brain of
each participant. Regression maps for each dimension were com-
bined across participants using t tests, thus revealing which dimen-
sions reliably organized mental state representations in each region
of the brain.
This analysis revealed that three PCA-derived psychological di-

mensions organize the way the brain represents mental states. Most
regions implicated in mental state representation fell within a net-
work of regions previously implicated in social cognition (Fig. 2 and
Table S2). The “rationality” dimension predicted the similarity of
patterns of neural activity in portions of the dorsolateral prefrontal
cortex (DLPFC), ventral lateral prefrontal cortex (VLPFC), dorsal
medial prefrontal cortex (DMPFC), lateral orbitofrontal cortex
(OFC), and anterior temporal lobe (ATL) bilaterally (Fig. 2A). The
“social impact” dimension robustly predicted neural pattern simi-
larity in a widespread set of regions, including significant clusters in
the DLPFC, VLPFC, DMPFC, VMPFC, anterior cingulate cortex
(ACC), posterior cingulate cortex (PCC), precuneus, temporopar-
ietal junction (TPJ) extending into the posterior superior temporal
sulcus (pSTS) and ATL (Fig. 2B). The valence dimension predicted
neural pattern similarity in a completely left-lateralized set of re-
gions including the DLPFC, VLPFC, and TPJ (Fig. 2C). Finally, the
“human mind” dimension captured a spatially restricted set of
neural patterns, predicting representations in only a single region in
the posterior parahippocampal cortex (Fig. 2D).
This analysis identified regions of the brain within which local

patterns of activity were predicted by the PCA-based models. To
test whether relevant patterns of activity were represented in a
more distributed manner, we conducted a network-wide analysis.
In this analysis, we extracted a single set of activity patterns from
across the entirety of a neural network sensitive to mental state

Fig. 1. Principal component loadings. Principal component loadings of the 16
existing theoretical dimensions onto the optimal four-dimensional solution.
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content. As with the whole brain analysis, the neural similarity of
each pair of mental states was estimated, and the results were
correlated with the predictions of the PCA-derived dimensions.
Results showed that three dimensions significantly predicted
network-level patterns: rationality [r = 0.16; 95% bootstrap
confidence interval (CI) (0.06, 0.20)], social impact [r = 0.21;
95% bootstrap CI (0.12, 0.26)], and valence [r = 0.12; 95%
bootstrap CI (0.04, 0.17)]. The human mind dimension [r = 0.05;
95% bootstrap CI (−0.01, 0.10)] did not (Fig. 3B). Results of a
multidimensional scaling analysis (Fig. S2) allowed us to esti-
mate that the dimensions of rationality, social impact, and va-
lence collectively account for approximately one-third of the
variance in neural patterns underlying mental state representa-
tion (weighted total R2 = 0.33) (SI Text). Disattenuating this
value by dividing it by the reliability of the neural similarity (α =
0.69) yielded a final R2 = 0.47. The results of the network
analyses were highly robust to different analytic approaches (SI
Text). Statistically controlling for the influence of scenario con-
creteness, complexity, and familiarity did not produce any quali-
tative changes in the outcomes. Using independent component
analysis (ICA) instead of PCA to generate dimensions, conducting
the analysis with Spearman rank correlations, and using a meta-
analysis-based feature selection method all produced very similar
results. Further, results were not contingent on the use of statistical
significance: The same three dimensions emerged from a model
selection technique based on cross-validation performance (14)
(Fig. S3). Finally, allowing two-way interactions between dimensions
did not alter the significance of the main effects although three
significant interactions were observed: human mind with rationality,
human mind with social impact, and social impact with valence.

Neural Patterns Representing Theoretical Models. Although the
primary purpose of this study was to discover the organization of
mental state representation, we also tested whether the seven
psychological theories from which we drew our PCA dimensions
could predict neural representations of mental states. To do so,
we repeated the whole brain and network-level representational
similarity analysis with the original psychological dimensions.
Whole brain analyses on each of the seven extant theoretical
models revealed regions of the brain within which patterns of
neural activity were predicted by each model (Fig. 4 and Table
S3). The valence and arousal model (Fig. 4A) predicted patterns
of activity in a number of regions, including the PCC, ACC, bi-
lateral lateral temporoparietal cortex, left lateral and anterior
temporal cortex, bilateral DLPFC, and both rostral and caudal
portions of the DMPFC. The warmth and competence model
(Fig. 4B) predicted patterns of activity in the left TPJ, rostral and
caudal DMPFC, bilateral ATL, bilateral VLPFC, and bilateral
DLPFC. Agency and experience (Fig. 4C) and emotion reason
(Fig. 4D) produced very similar results, an unsurprising outcome
given the degree of correlation between these models. These
models both predicted patterns of activity in the VMPFC, rostral
DMPFC, bilateral ATL, bilateral VLPFC and DLPFC, and
portions of the lateral temporal cortex. The mind and body di-
mensions (Fig. 4E) predicted patterns in a proximal but distinct
set of regions to those discussed above, including the ACC, PCC,
TPJ, and portions of the lateral prefrontal cortex. Sociality (Fig.
4F) and human uniqueness (Fig. 4G) models both predicted
much less extensive clusters of activity, with both appearing in
the precuneus and uniqueness also appearing in a posterior
portion of the parahippocampal gyrus.

Fig. 2. Searchlight results indicating regions
sensitive to the (A) rationality, (B) social impact,
(C) valence, and (D) human mind of others’
mental states. Within the yellow/orange re-
gions, the similarity of patterns elicited by
thinking about mental states can be explained
in terms of the corresponding social cognitive
dimension extracted from existing theories via
PCA (P < 0.05, corrected). Representational
similarity searchlight analyses were conducted
on each participant and combined through
one-sample random-effects t tests.

Fig. 3. Network-wide representational similarity analysis. (A) Whole brain ANOVA used for feature selection (voxelwise P < 0.0001). Different mental states
reliably elicited different levels of univariate activity within these regions. (B) Bar graphs of model fits for dimensions derived via principal component analysis
from existing psychological theories. (C) Bar graphs of model fits for existing psychological models. All model fits are given in terms of Pearson product-
moment correlations between neural pattern similarity and model predictions, with error bars indicating bootstrapped SEs. Note that bars in B refer to
individual dimensions derived via PCA whereas bars in C indicate the performance of full multidimensional theories. The theoretical advantage of the
synthetic model presented here can thus be seen by comparing any one bar in C with the combination of the three significant bars in B.
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Finally, we tested the degree to which of each of the seven
theoretical models predicted patterns of neural activity in a dis-
tributed manner. At the network level, the predictions of five of
seven theoretical models were significantly correlated with neural
similarity (Fig. 3C)—valence and arousal [r = 0.19, 95% bootstrap
CI (0.10, 0.23)], warmth and competence [r = 0.16, 95% bootstrap
CI (0.07, 0.21)], agency and experience [r = 0.19, 95% bootstrap CI
(0.09, 0.22)], emotion and reason [r = 0.17, 95% bootstrap CI
(0.06, 0.22)], and mind and body [r = 0.18, 95% bootstrap CI (0.09,
0.22)]—all with statistically indistinguishable effect sizes. Two
theoretical models did not predict network level patterns: social
vs. nonsocial [r = 0.04, 95% bootstrap CI (−0.03, 0.09)] and shared
vs. unique [r = 0.03, 95% bootstrap CI (−0.003, 0.06)].

Discussion
The current study used fMRI and representational similarity anal-
ysis to explore the dimensions that organize our representations of
other people’s internal mental states. We used dimensions from the
existing psychological literature on mental states as a springboard
for generating four nonredundant, easily interpretable dimensions
and tested which dimensions organize patterns of neural activity
elicited by considering others’ mental states. Results indicated that
neural activity patterns within the network of regions sensitive to
others’ mental states are attuned to three dimensions: rationality,
social impact, and valence. These dimensions account for nearly
half of the variation in the neural representation of mental states,
constituting the most comprehensive theory to date regarding
how we understand others’ minds.
What significance do these three dimensions hold? One of

these dimensions, termed “rationality,” has arisen across dispa-
rate philosophical and psychological traditions. Here, it derives
from theories in the domain of social cognition, including pri-
marily experience and agency (8), warmth vs. competence (6, 7),
and emotion vs. reason, an idea extending back at least as far as
Plato. This dimension may also closely mirror theories outside
the social domain, such as active vs. passive (15), system I vs.
system II (16), and reflective vs. reflexive (17). The ubiquity of
this distinction hints that it may reflect a deep principle of cog-
nition. The results of the present study align with previous
MVPA work (18) in suggesting that the brain spontaneously
attunes to others’ rationality. Knowing whether a person is ex-
periencing a rational state or not may be particularly useful for
certain social calculations. For example, it seems plausible that
rationality assessments may help guide our decisions about
whether people are responsible for their actions. These decisions
in turn would shape the degree to which we take those actions
into account during impression formation. These functions have
been repeatedly associated with the DMPFC, one of the regions
implicated in representing rationality (19–22).
A second dimension, termed “social impact,” combines two

well-known concepts: arousal and sociality. Social impact is the

most widely represented of the three dimensions identified here,
suggesting that it may serve as a crucial ingredient in many dif-
ferent social computations. We did not anticipate the degree of
covariation that these constructs displayed although this shared
variation across seemingly disparate dimensions is clearly impor-
tant, because sociality alone explains little neural pattern similar-
ity. Validating and exploring the nature of this construct should be
a topic for future research. Here, we suggest one possible expla-
nation: A key property of another’s mental state is how much that
state is likely to affect one’s self. For example, intense (i.e., high
arousal) states are often more impactful than more moderate
states. However, another person’s rage, although highly arousing
for them, may hold import for us only to the extent that it is di-
rected outward at other people (i.e., social) rather than inward.
Similarly, another’s envy, although highly social, may hold import
for us only in proportion to its intensity. Thus, whereas others’
mental states might affect the self for many reasons, highly intense
and social states may be most likely to do so.
The third dimension to emerge from this study, “valence,” cap-

tures the difference between positive and negative mental states.
This concept has long been implicated in social and affective pro-
cessing (5). As such, it may come as no surprise that valence plays
an important role in the organization of mental state representa-
tions. Of note, however, is that we find a unique spatial distribution
associated with this dimension. Previous work has associated the
processing of positive vs. negative stimuli with specific neural net-
works, including the mesolimbic dopamine system (23), as well as
other limbic structures, such as the amygdala (24). Supplementary
univariate analyses do show that the VMPFC, a region involved in
reward and value more generally, tracks the positivity of mental
states (Fig. S4). However, our MVPA results did not identify these
regions but instead implicated left-lateralized cortical regions in the
lateral prefrontal cortex and the angular gyrus. One possible ex-
planation is that language supports the processing of mental state
valence, but not other types of valence, a hypothesis here only
preliminarily supported by the lateralization and the proximity of
the valence regions to known language areas.
Together, the three significant dimensions described above explain

nearly half of the reliable variance in the neural representation of
mental states. While much remains unexplained (Fig. S5), this result
appears quite promising. The social impact dimension alone predicts
more variance than any of the original theoretical models; the com-
bination of the three significant PCA-derived dimensions explains
approximately twice the variance of the circumplex model, the most
successful of the original theories. At the same time, given their
significance to psychological theory, it is both reassuring and un-
surprising that five of the seven original theories significantly predict
neural pattern similarity. Notably, even theories that were originally
geared toward explaining traits or groups, such as the stereotype
content model, demonstrate their efficacy in the mental state domain.

Fig. 4. Searchlight results indicating the
spatial distribution of mental state repre-
sentations consistent with (A) the circumplex
model of affect, (B) the stereotype content
model, (C) the agency and experience model
of mind perception, (D) emotion and reason,
(E) mind and body, (F) social and nonsocial,
and (G) shared with other animals and
uniquely human. The similarity of patterns
within the yellow/orange regions can be
explained by their proximity to each other
on the dimensions of the corresponding so-
cial cognitive models (P < 0.05 corrected).
Searchlight analyses were conducted on
each participant and combined through
one-sample random-effects t tests.
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This finding raises the interesting possibility that the same dimensions
organize neural activity about different types of social constructs.
In addition to informing us about the psychological question of

interest—the organization of mental states—the current results
also hint at the neural encoding scheme within the social brain
network. By assessing the representation of mental states at two
different levels of spatial organization—local activity patterns
within spherical searchlights and broader activity patterns across
the social brain network—the current study is well placed to bear
on this issue. The results of the present study support the hy-
pothesis that information is encoded by patterns of activity
within localized brain regions, rather than across different re-
gions. If local patterns did not encode social information but
coarse patterns across the network did, the searchlight analysis
would fail to produce results. Instead, we observe reliable
encoding of mental state information in local patterns across the
social brain, and explanatory power at the network level appears
roughly in proportion to the cortical extent of their local
encoding. As such, the current results provide no evidence that
others’ mental states are represented by interregional activity
differences above and beyond the information already contained
in local patterns. Interestingly, we find that two regions, the
dMPFC and TPJ, each underlie multiple dimensions. Previous
work has already heavily implicated these regions in mentalizing.
The convergence of multiple dimensions on these nodes may
help to explain their prominence in this domain.
Here, we have identified three dimensions that organize our

representations of others’ mental states. However, participants in
this study thought about only the mental states of a nonspecific
other. Do these same dimensions apply across different categories
of “other”? For example, our understanding of a friend’s happi-
ness likely differs considerably from our concept of a stranger’s
happiness; our understanding of our own happiness likely differs
considerably from others’ happiness. Future work should en-
deavor to understand whether the dimensions we discovered here
expand or contract in their importance on the basis of the person
under consideration. We might expect such changes to be asym-
metric across dimensions depending on one’s relationship with the
person experiencing the mental state. For instance, when consid-
ering a close friend’s mental state, we might become more sensi-
tive to valence differences but less sensitive to social impact
(because all of the friend’s states are more impactful).
We can also ask how these dimensions might apply across social

cognition more generally. The current study used only lexical
stimuli and tested these dimensions on only English-speaking
adults. Do these dimensions apply to social cognition in other
cultures? Do infants or other primates demonstrate any of the
building blocks of these dimensions? Do these same dimensions
apply when mentalizing about nonlinguistic content? Previous
work on cross-modal emotion representation indeed suggests that
visual and verbal emotional stimuli may be processed similarly (25,
26) although the full model has yet to be tested. We hope that the
current data will provide a solid foundation for future research in
these domains. It is also worth considering precisely which pro-
cesses the imaging task taps. The task relies heavily on conceptual
representations of mental states, and it is not entirely clear how
strongly these concepts might guide other forms of mentalizing.
Finally, we should endeavor to ask why the social brain would

organize its activity in accordance with the three dimensions
discussed above and not others. The dimensions that shape
mental state representations likely contribute to helping us solve
problems in the social world. For example, we speculate that the
three dimensions identified here might inform calculations re-
garding the threat posed by others: Valence could indicate the
probability of help or harm; social impact would help estimate
the likely magnitude of that that help or harm; and rationality
would indicate the likely method of its expression (e.g., harm
through a devious plot vs. an explosion of rage).
The present study derived four potential dimensions of mental

state representation—rationality, social impact, human mind, and
valence—from the existing psychological literature. We discovered

that three of these dimensions—rationality, social impact, and
valence—predicted patterns of neural activity elicited across the
social brain network by consideration of others’ mental states. By
discovering which dimensions the brain spontaneously uses to
organize the domain of mental states, we have forged a deeper
understanding of both human social cognition and its relationship
to our own internal mental experience. These findings both inform
long-standing debates within social psychology about theory of
mind and can be used to generate novel predictions about how the
brain supports our ability to mentalize.

Materials and Methods
Participants. Participants (N = 20) were recruited via the Harvard University Study
Pool (16 female; mean age, 22.7 y; range, 18–27 y). A Monte Carlo simulation was
used to determine participant and trial numbers consistent with adequate sta-
tistical power (SI Text). All participants were right-handed native speakers of
English, reported no history of neurological problems, and had normal or cor-
rected-to-normal vision. Participants provided informed consent in a manner
approved by the Committee on the Use of Human Subjects at Harvard University.

Experimental Design. Participants underwent functional neuroimaging while
considering another person experiencing a variety of mental states. The task
elicited patterns of neural activity that reflect the representation of each
state. On each trial, participants considered 1 of 60 mental states (Table S1).
At the onset of the trial, one mental state term was presented for 1 s. This
word remained on screen while two very brief scenarios associated with that
mental state appeared for 3.75 s, one on the lower left side of the screen
and one on the lower right side. Participants were instructed to report which
of the two scenarios they thought would better evoke the mental state in
another person. Participants indicated their response using a button box in
their left hand by pressing either the middle finger for the left scenario or
their index finger for the right scenario. There were no correct answers
because both scenarios were pretested to elicit the scenario in question.
Each trial was followed by a minimum 250-ms fixation and a randomized
jittered fixation period (mean 1.67 s, range 0–10 s, in 2.5-s increments).
During scanning, participants saw each of the 60 mental states on 16 occa-
sions. Each state was presented once per run over the course of 16 consec-
utive runs of 405 s each. Participants judged a unique pair of scenarios on
each trial; each of 16 scenarios was used only twice over the course of the
experiment. Stimuli were presented with PsychoPy (27).

The 60 mental states in this study were selected to maximize observable
differences based on survey ratings from a separate set of participants (n =
1,205) (SI Text). Many of the theories under consideration made similar pre-
dictions about mental state representations. We pared down the information
contained in the extant models using PCA. The PCA was conducted with re-
spect to the 16 rating dimensions described above and the 60 mental states
selected for the experiment. Varimax rotation was used to maximize the in-
terpretability of the factors while maintaining their orthogonality (oblique
rotation indicated that the orthogonal solution was satisfactory) (SI Text).
Parallel analysis (28) and very simple structure (29) criteria were used to de-
termine component number, with both indicating four factor solutions. The
scenarios presented to subjects in this study were all written to be concise
(fewer than five words), believable, devoid of personal pronouns, in the pre-
sent tense, and maximally associated with their respective mental state. We
selected an optimal set of scenarios using a genetic algorithm on survey rat-
ings from a separate set of participants (n = 795) (SI Text).

Functional Imaging Procedure. Functional data were acquired using a gradi-
ent-echo echo-planar pulse sequence with parallel imaging and prospective
motion correction [repetition time, 2,500 ms; echo time (TE), 30 ms; flip angle,
90°) on a 3T Siemens Trio with standard 32-channel headcoil. Images were
acquired using 43 axial, interleaved slices with a thickness of 2.5 mm and 2.51 ×
2.51-mm in-plane resolution (field of view, 216 mm2; matrix size, 86 × 86
voxels; 162 measurements per run). Functional images were preprocessed and
analyzed with SPM8 (Wellcome Department of Cognitive Neurology), using
SPM8w. Data were first spatially realigned to correct for head movement and
then normalized to a standard anatomical space (2-mm isotropic voxels) based
on the ICBM 152 brain template (Montreal Neurological Institute).

A general linear model (GLM) was used to generate participant-specific
patterns of activity for each mental state. The model included one regressor
for each of the mental states, for a total of 60 regressors of interest. Events
were modeled using a canonical hemodynamic response function and
covariates of no interest (temporal and dispersion derivatives, session mean,
run mean, linear trends, outlier time points, and six motion realignment
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parameters). Boxcar regressors for events began at the onset of the pre-
sentation of the mental state. GLM analyses resulted in 60 t-value maps, one
for each mental state, for each participant. In essence, these maps embody
the average neural representation of each state.

We compared neural representations at each voxel in the brain using a
searchlight procedure (30). Patterns of activity for each of the 60 mental
states were extracted from participant’s GLM-derived t-value maps using a
spherical searchlight with 4-voxel radius (∼9 mm). To compare the similarity
of activity patterns for different mental states, we computed the Pearson
correlation between each pair of patterns. Thus, two mental states that
elicited highly correlated patterns of activity across the searchlight were
considered to be more similar to each other. This searchlight procedure
resulted in neural similarity matrices at each point in the brain: 60 × 60
matrices whose elements correspond to the correlations between the pat-
terns of neural activity within that searchlight.

We used these estimates of neural similarity to test whether mental states
were represented in amanner predicted by the four PCA-derived dimensions.
To do so, we made similarity predictions for each dimension with respect to
each pair of mental states by taking the absolute difference in their scores on
the dimension in question. Multiple regression was used to determine how
well the predictions of the PCA-derived dimensions accounted for neural
similarity. These regressions generated four maps of unstandardized re-
gression coefficients for each participant, one for each component. The
participant-specific maps were smoothed (Gaussian 6-mm FWHM kernel) and
entered into random effects analysis using one-sample t tests. The four
resulting t-value maps indicate regions of the brain in which differences in
the neural patterns elicited by mental states correspond to the differences
between mental states along each component. Results were corrected for
multiple comparisons via a Monte Carlo simulation using the AFNI (31)
3dClustSim script (estimates of actual smoothness obtained from the four
PCA maps and averaged; whole brain mask from the contrasts constrained
voxel number). This simulation indicated that, with an uncorrected threshold
P < 0.001, a 76-voxel extent was sufficient to yield a corrected threshold of
P < 0.05. For visualization, statistical maps were rendered on the cortical
surface using Connectome Workbench (32).

To test whether relevant patterns of activity were represented in a more
distributed manner, we conducted an additional network-wide similarity
analysis. In this analysis, we generated a single neural similarity matrix per

participant based on the pattern of activity across an independently defined
network of neural regions. This network was defined using a whole brain
omnibus repeated-measures ANOVA across the 60 mental states and 20
participants, which selected any voxels that showed different levels of activity
across mental states (Fig. 3A). Due to the sensitivity of this analysis, voxels
were selected at a conservative voxelwise threshold of P < 0.0001. The
univariate nature of this approach appeared adequate as similar regions
emerge from split-half searchlight reliability (Fig. S6). Note that, whereas
this feature selection relied on the same data subjected to MPVA, it was
independent of any of the dimensions being tested and thus did not yield
biased results. Indeed, the network analysis based on these voxels produced
results nearly indistinguishable from the same analysis conducted using
voxels selected via a metaanalysis of mentalizing studies (SI Text).

As with the searchlight analysis, in the network analysis, patterns of neural
activity were extracted from the entirety of the feature selected area for each
of the 60 mental states. These patterns were correlated to produce a single
neural similarity matrix for each participant. These matrices were then av-
eraged to produce a single group-level matrix. The group neural similarity
matrix was Pearson-correlated with the similarity matrices generated from
each of the four latent dimensions. To generate confidence intervals for these
correlations, this procedure was repeated 10,000 times with group similarity
matrices based on bootstrapped samples of the 20 participants.

We conducted analogous searchlight and network similarity analyses to
test the seven theoretical models. The similarity between pairs of mental
states was calculated as the (opposite of the) distance between the two
mental states in the Euclidean space determined by the dimensions of each
theory. This analysis diverged from that used for the PCA-based models only
in that each theoretical model’s predictions were independently correlated
with neural similarity. This divergence was due to the substantial collinearity
between the models, which was absent from the PCA-based models.
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