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Despite the success statistical physics has enjoyed at predicting the
properties of materials for given parameters, the inverse problem,
identifying which material parameters produce given, desired
properties, is only beginning to be addressed. Recently, several
methods have emerged across disciplines that draw upon optimi-
zation and simulation to create computer programs that tailor
material responses to specified behaviors. However, so far the
methods developed either involve black-box techniques, in which
the optimizer operates without explicit knowledge of the mate-
rial’s configuration space, or require carefully tuned algorithms
with applicability limited to a narrow subclass of materials. Here
we introduce a formalism that can generate optimizers automat-
ically by extending statistical mechanics into the realm of design.
The strength of this approach lies in its capability to transform statis-
tical models that describe materials into optimizers to tailor them. By
comparing against standard black-box optimization methods, we
demonstrate how optimizers generated by this formalism can be
faster and more effective, while remaining straightforward to imple-
ment. The scope of our approach includes possibilities for solving a
variety of complex optimization and design problems concerning ma-
terials both in and out of equilibrium.
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Computer programs that can design material properties have
led to exciting, new directions for materials science (1–3).

Computational methods have been used to predict crystal (4)
and protein (5, 6) structures, yielding the toughest crystals known
to mankind (4) and de novo protein configurations unseen in
nature (5). Applied to polymers, Monte Carlo methods (7–9)
and evolutionary algorithms (10, 11) have paved the way toward
optimizing directed self-assembly. Similar methods have been
used to identify the crystal structures of patchy, colloidal parti-
cles (12). For far-from-equilibrium systems like jammed, meta-
stable aggregates of particles (3), simulation-based optimization
has been successfully used to design bulk properties like stiffness
(13) and packing density (14) by way of tuning complicated mi-
croscale features like particle shape.
However, despite these successes, most of the existing meth-

ods work only for narrowly defined classes of materials: Opti-
mization techniques that prove successful at designing one class
of materials may struggle or fail on other systems. Thus, de-
signing new materials can require a large investment in trial and
error at the level of the algorithm itself, even if, for given pa-
rameters, the material’s behavior can be simulated easily.
In black-box approaches, the algorithm tunes the material by

adjusting control parameters without considering the likelihood of
finding the material in microscale configurations. Instead, the op-
timizer operates in some auxiliary space, defined outside the
physical model, and remains ignorant of the statistics in the physical
configuration space. On the other hand, for the overwhelming
majority of materials, an accurate description of macroscale be-
havior comes about by explicitly considering the probability of
finding the system in certain microscopic configurations. Several
materials optimization approaches exist that take this statistical
nature into account, examples include optimizers that design spin
configurations (15, 16), patchy colloidal particles (17), and self-

assembly driven by short-ranged interactions (18). These ap-
proaches build heavily upon the specific model defining the
material. As a consequence, it is difficult to extend them be-
yond the material class they are designed for. Evidently, micro-
scale configurations present key statistical information about a
material, which is completely ignored by black-box approaches, yet
there is no formalism that generically incorporates this information
into materials design.
The question we ask is whether microstate information not only

can be used to enhance an optimizer’s speed and range of appli-
cability, but also can become the cornerstone of an approach that
automatically transforms a design goal and a statistical model into
an optimizer. One can then construct optimizers that can work on
material classes that are as broad as those described by statistical
mechanics, without the need for ad hoc modification.
Here we take some first steps toward such a framework. We

present a formalism that can be used to transform the capacity to
predict material behavior into an optimizer that tunes it. Furthermore
we find that our formalism often solves optimization problems faster
and more reliably than approaches built around black-box methods.

Deriving the Optimization Equations
Our approach starts by assuming a given model ρðxjλiÞ that pre-
dicts the probability of finding a material in some configuration, x.
The model depends on the adjustable parameters λi and by tun-
ing λi, a user can impact the emergent, bulk properties, averaged
over configuration space. Thus, design proceeds by tweaking λi to
promote a desired, user-specified response.
We work toward this goal, starting from the heuristic equation

_ρðxjλiÞ= ρðxjλiÞ½f ðxÞ− hf ðxÞi�, [1]
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where the angle brackets denote an average over configurations
weighted by ρ, the overdot denotes a derivative with respect to an
artificial time that indexes the optimization steps, and f ðxÞ is a
function that quantifies how well configuration x represents the
user-specified goal. In this way, Eq. 1 attempts to increase the
probability of finding the system in states with better than aver-
age values of f ðxÞ: If a configuration x has a value of f ðxÞ greater
than the average, then the probability of finding the system near
x increases, for average f ðxÞ it does not change, and for worse
than average it decreases.
As written, Eq. 1 assumes that ρðxjλiÞ can be independently set

for every possible point in the configuration space, despite the
fact that ρðxjλiÞ is constrained by the physics behind the material
of interest. In actuality, ρðxjλiÞ can offer only a limited flexibility
through the parameters λi. Thus, for many problems it will not be
possible to exactly satisfy Eq. 1, although it is possible to make a
best approximation to Eq. 1, given a particular physical distri-
bution. We achieve this by setting the changes to λi such that they
minimize the average error between the updates implied by Eq. 1
and the actual changes to ρðxjλiÞ. Explicitly, we rewrite Eq. 1 as
_λi∂λi log½ρ�= f ðxÞ− hf i and select the _λi that minimize the average
value of the squared error, e= hð _λi∂λi log½ρ�− ½f ðxÞ− hf i�Þ2i. The
equations of motion for λi that minimize « at a given instant in time
are found by setting the partial derivatives with respect to _λi equal to
zero (Supporting Information):

_λiðtÞ=
�
∂λi logðρÞ∂λj logðρÞ

�−1�½ f ðxÞ− hf ðxÞi�∂λj logðρÞ
�
. [2]

Eq. 2 is now a closed expression for λi that depends only on
expectation values. Thus, it can function as an algorithm: one
can draw samples from ρðxjλiÞ, use the samples to evaluate the
right-hand side of Eq. 2, and then integrate the equations of
motion to generate new, improved parameter settings.
Eq. 2, and its motivating Eq. 1, overlap with a surprising

number of different fields. For example, the matrix elements in
Eq. 2 resemble kinetic coefficients, suggesting the interpretation
that f ðxÞ generates a thermodynamic force that pushes the system
to solve the design goal (19). Alternatively, Eq. 2 appears in the
optimization and mathematics literature as natural gradient de-
scent: It bears the interpretation of a gradient descent method
that takes the steepest step such that the change in entropy stays
bounded (20–22). Indeed, the matrix in front of Eq. 2 is the
Fisher information metric and is constraining the driving force
to move in directions of small entropy change (21). This in-
terpretation is also associated with state-of-the-art optimizers like
the covariance matrix adaptation evolution strategy (CMA-ES) (22–
24); however, here the design parameters λi are treated as random
variables drawn from a Gaussian distribution irrespective of the
design problem, and a version of Eq. 2 is used to update the mean
and covariance of this auxiliary distribution. This is in contrast to
our proposition that λi should be treated as deterministic variables
that evolve according to Eq. 2 with randomness entering only at the
level of material configurations. If the task considered is changed to
finding the best-fit model parameters to a given set of data, then Eq.
2 represents the direction in parameter space that decreases the fit
error most efficiently per unit of behavioral change in the model
(25). In this scenario, one can consider regularizing Eq. 2 to pro-
duce the Levenburg–Marquart algorithm modified to account for
the geometric aspects of the optimization. Finally, one can note that
the motivating equation, Eq. 1, is the replicator equation from game
theory and evolutionary biology (26–28). Thus, one could also in-
terpret the dynamics as a process of reproduction and competition
in a continuous parameter space (26, 27), projected onto ρðxjλÞ.
Whatever the picture, Eq. 2 has a number of powerful properties.

In particular, Eq. 2 is invariant to any invertible reparameterization
of λi, including rotations, dilations, and translations in parameter
space. If the reward function, f ðxÞ, is chosen correctly, the velocity
flow is also invariant to rank preserving changes in the design goal
(22). Thus, there will be no difference in performance between two
design problems that differ by coordinate choice over λi and/or a

rank preserving change in the design goal [e.g., gðxÞ vs. expðgðxÞÞ],
provided the initial values of λi are the same. These invariances also
provide stability to the algorithm: by making the search algorithm
invariant to both the goal function magnitude and the parameteri-
zation, the effect of sampling errors gets bounded in a parameter-
ization invariant way. Thus, errors from sampling parameters in
Eq. 2 will not cascade, even if the matrix in Eq. 2 becomes ill-
conditioned. Altogether, these features greatly simplify the optimi-
zation task because, now, the designer is free from worrying about
trivial choices surrounding λi and the goal function. Details on these
points can be found in Supporting Information.
For the task of optimizing materials, we stress one further prop-

erty: By using Eq. 2 optimization takes place in configuration space,
rather than in an auxiliary space introduced to define an optimizer.
As we will show, this gives a unique advantage in applying Eq. 2 to
materials design: More information is used by the optimizer when
updating parameters, without incurring an increase in computational
cost. Perhaps best of all, this optimizer is constructed by straight-
forwardly applying the formalism encoded in Eq. 2 to the relevant
statistical model. For example, when ρðxjλiÞ is given by the canonical
ensemble, ρðxjλiÞ∝ exp½−λihiðxÞ�, the optimizer follows immediately
from Eq. 2 as _λi =−Cov½hiðxÞ, hjðxÞ�−1Cov½hjðxÞ, f ðxÞ�. Ultimately,
Eq. 2 makes the transition from describing a material to de-
signing a material in just one step.

Comparison Against Black-Box Optimizers
To demonstrate these strengths, we test our method against
standard approaches that feed simulation parameters into a model
by way of a black-box optimizer. We use adaptive simulated
annealing (ASA) (29) and the CMA-ES (24). In each test, we allow
the optimizers a fixed budget of material simulations, and each
simulation requires a fixed amount of computational power. Thus,
in our comparisons, computational cost and number of simulations
are equivalent and an efficient optimizer is one that solves a design
problem simulating as few candidate materials as possible. Imple-
mentation details are in Supporting Information.
As a first example, we task these two black-box algorithms and

our approach with designing a square-lattice Ising model to max-
imize the magnitude of its magnetization. To do so, each method is
allowed to vary the coupling constants that define the energy of
spin alignments in the horizontal (Jx) and vertical (Jy) directions.
To implement the black-box methods, we allow each optimizer to
guess a set of coupling constants and evaluate the quality of that
guess by computing the average magnetization. We find that both
ASA and the CMA-ES struggle when searching entirely in the zero
magnetization phase. This is an obvious consequence of the fact
that the optimizer sees no variation in the quality for each pa-
rameter setting. Consequently, it receives no guidance about how
to update its parameter guesses and can at best walk randomly
until finding the phase boundary (Fig. 1 A and B).
By contrast, the updates encoded in Eq. 2 navigate a path that

links one phase to the other: Fig. 1C shows the flow field generated
by Eq. 2 upon taking ρðxjλÞ to be the canonical ensemble with
the Ising Hamiltonian, H =−Jx

P
½ij�x sisj − Jy

P
½ij�y sisj, where ½ij�x de-

notes summing over nearest neighbors along the x direction, like-
wise for ½ij�y, and si denote the spin variables. Given this
statistical model, the control parameters λi for optimization be-
come λx = Jx=kT and λy = Jy=kT. Finally, the quality function f ðsÞ is
set to reward states with higher magnetizations (Supporting In-
formation). If, for shorthand, we call the individual energy compo-
nents hx =

P
½ij�x sisj and hy =

P
½ij�y sisj, then Eq. 2 gives the velocity

field _λx = ð1=jCjÞðCov½hy, hy�Cov½hx, f �−Cov½hx, hy�Cov½hy, f �Þ, where
jCj=Cov½hx, hx�Cov½hy, hy�−Cov½hx, hy�2. A similar equation holds
for _λy but with the variables x and y appropriately interchanged.
In this form, it is clear that our method will optimize as long as

there is covariation between the quality function, f, and the energy
components, hi. Because magnetization and energy are correlated,
even if the average magnetization is zero, Eq. 2 can purposefully
optimize even when operating in regions of parameter space
where the black-box methods fail. The difference between these
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approaches lies in the fact that black-box methods are trying to solve
a problem defined over the space of λi, whereas our approach is
tasked to solve a problem defined on the space of configurations, x,
via Eq. 1. The CMA-ES generates multiple guesses of parameters
from a Gaussian distributed over all possible λ and ASA samples
by assigning an energy value to each choice of λ. These methods
associate only one piece of information, the quality function, to
full ensembles of configurations defined by each choice of pa-
rameters. This is in contrast to our approach that tries to solve the
problem of reproducing configurations, x, that are better than
average. Consequently, Eq. 2 is able to use information about how
fluctuations in configurations correspond to fluctuations in quality
because it has been built to exploit the extra fact that the simu-
lation data were generated from a known distribution, ρ.
As a second example, we consider a thermalized particle trapped

on a 2D substrate, defined on the x1 − x2 plane and at thermal
equilibrium. The substrate applies a potential to the particle,
making some positions more likely than others. We task the opti-
mizer with trapping the particle in a specific potential well. To do
so, we give the optimizer the freedom to tune the interaction
strength with the substrate, and we give it control over a linear
electric field to drive the particle. To make the problem interesting,
we use a rough substrate potential: hs =

P
ið−cos½xið2π=5Þ�+

x2i =25Þ. With the field included, the total Hamiltonian becomes
H = hs + vx1x1 + vx2x2, where vx1 and vx2 represent the field strength
in the two coordinate directions. To simplify the form of Eq. 2, we
represent these effects to the optimizer by defining λs = 1=kT and
absorb a factor of kT into the field coupling constants so that
ρ∝ exp½−λshs − λx1x1 − λx2x2�. In discussing the optimizer’s per-
formance, however, we will convert the results to the original,
physical variables kT, vx1, and vx2.
The solution to this problem requires the design engine to

make the target well the global minimum, and cool the system to
zero temperature to trap the particle. For definiteness, the target
well is the point ð5,5Þ and we initialize the algorithm with the
substrate at 1kT and the field parameters set to zero.
In Fig. 2A we plot the energy landscapes generated by the

optimizer, as well as the points sampled during each iteration.
Indeed, the optimizer quickly learns to tilt the landscape, cor-
rectly making the target well the global minimum, and then cools
the system (Fig. 2B), trapping the particle in the well. By com-
paring the performance against black-box approaches (Fig. 2C),
our approach is both faster and more reliable: It correctly tilts
the well after only 35 iterations, whereas it takes ∼ 100 simula-
tions for the CMA-ES and ASA. Further, neither of the black-
box methods learns to completely cool the system in the allotted
1,000 simulated ensembles.
We speculate that this shortcoming is again a consequence of

indirect problem representation. We note that when kT ≈ 0.1,
the particle is almost evenly distributed between both the central
well and the four nearest neighbors that surround it. Thus,
for black-box methods, noise in the average particle position
can play an overpowering role during parameter updates. By
contrast, Eq. 2 considers covariances at the finer scale of config-
uration space. As with our prior example, this extra information
makes our method appreciably more robust to flat regions in the

search landscape and in this case yields an essentially exponential
convergence to the optimized state (Fig. 2B).

Designing a Polymer to Fold into an Octahedron
The success of the two simple examples in the previous section
invites more complicated design problems. As an example, we
consider a basic model for a polymer: a string of hard, colored
balls interconnected by rigid rods. The balls are weakly attractive,
interaction strengths determined by the colors. For example, red
and blue may be attracted more strongly than blue and green.
In principle, by tuning the color interactions, it should be possible

to fold the chain into specific, desired shapes. To make a concrete
task, we take a chain of six particles and create an optimizer to fold
them into an octahedron, defined by minimizing the sum of the dis-
tances to the center of mass. Note that the search space is appreciably
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Fig. 2. Trapping a particle in a well. Here we treat the problem of a ther-
malized particle, trapped on a sinusoidal energy landscape superimposed on a
quadratic background with a minima at the origin, depicted by the energy
contours in A. The optimizer is given control over the system temperature kT
plus a linear field potential in the two coordinates vx1 and vx2 . Its task is to trap
the particle in a specific well located off center at ð5,5Þ in the x1 − x2 plane,
marked by a cross in A. The sampled particle locations, given each choice of pa-
rameters generated, after evaluating 0, 10, and 100 iterations of Eq. 2 are plotted
as red points. The optimizer uses the field to first tilt the potential and make the
target well the global minimum, and then it cools the system. In tasking the same
problem to black-box optimizers, we find that both ASA and the CMA-ES are able
to tilt the well, but never learn to cool the system (B). Comparing how the
temperature and field parameters change at each iteration (C) against dave in B
shows that the exponential convergence occurs in concert with an exponential
decrease in system temperature. We note that the field parameters vx1 and vx2
track one another, reflecting the fact that the optimizer is invariant to rotations in
the configuration space: The optimizer moves the field along the direction asso-
ciated with the greatest improvement in solution quality and is insensitive to the
fact that the problem was parameterized in the arbitrary coordinates x1 and x2.
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larger than in the prior examples (dimension 10), and that simply
setting all of the interaction strengths to large values will not
produce the optimal solution. By choosing the interaction ap-
propriately, the same energy can be given to the octahedral and
polytetrahedral configurations for identical coupling constants.
Entropic arguments imply that the polytetrahedron will dominate
the chain configurations unless the optimizer carefully adjusts the
coupling constants to take on unique values (30, 31).
Fig. 3A shows a typical chain configuration from each gener-

ation, and Fig. 3B shows the median sum of distances to the
center of mass, normalized relative to that of a perfect octahedron.
Initially, the coupling constants are set to 1kT, and random chain
configurations are typical. However, as the optimizer drives the
interaction energies to larger values, the shapes become compact
and structured. Around 200 generations, virtually every shape
generated is octahedral (Fig. 3A).
By plotting the values of the interaction strengths against it-

eration number, we find the optimizer’s solution is simple, log-
ical, and arguably optimal. Early on, the optimizer attempts to
meet the design goal by simply increasing the coupling strengths
to make more compact objects (Fig. 3A). However, as the coupling
constants are undifferentiated, the results are predominately poly-
tetrahedral geometries. To compensate, the optimizer deactivates
three coupling constants around 100 generations and sends the
remainder to infinity (Fig. 3C). The logic behind this maneuver
becomes clear by plotting the interactions as a network: The active
interactions plus the polymer backbone form the contact graph of
an octahedron. This strategy, transforming the contact matrix to
an interaction matrix, has been identified as an approach to
programing, by hand, the optimal interaction parameters for self-
assembly (18). In fact, the specific problem of creating a self-
assembling octahedron has been solved using a virtually identical
motif (32). Evidently our optimizer can reproduce a well
thought-out approach to self-assembly, and it does so automat-
ically, requiring only a model and a design goal.

Optimization of an Out-of-Equilibrium System
Because Eq. 2 holds for any parameterized probability distribu-
tion function, it can be used to create optimization schemes
beyond the canonical ensemble in the prior examples. The only
essential ingredients are a model that predicts the probability of
microstates, an engine that samples configurations from said
model, and a design goal. As simple extensions, chemical po-
tentials or constraints on pressure could be included as tunable
parameters (33). A new theoretical concept, termed “digital al-
chemy,” extends statistical mechanics to account for microscale
geometric parameters, such as the particle shape in a colloidal-
nanoparticle assembly (34). Thus, by coupling this approach
with our optimization formalism, particle geometry can be tuned
to produce optimized bulk responses. One can also note that
the range of parameters to design is at the user’s discretion:
Eq. 1 can be used to rederive Eq. 2, assuming that some of the
model parameters are not controllable by taking them to be
time independent. Indeed, for the particle in a well problem, the
wavelength of corrugation was taken as a fixed parameter and
the resulting optimizer was quite effective. One can also consider
optimization for global quality functions that exist over multiple
a range of parameters (35). For instance, our approach can op-
timize the density of a crystal lattice over a range of pressures
and system volumes by defining ρ= ρ0ðxjλ,V ,PÞUðV ,PÞ, where
UðV ,PÞ is a uniform distribution for V and P over a range of
consideration and ρ0 is the appropriate distribution for micro-
states given a fixed volume and pressure. Eq. 2 can then be ap-
plied to optimize in this extended parameter space to find
choices of λ that work well over a range of possible densities and
pressures. Abstracting the concept, statistical models could be based
on calculations like self-consistent field theory or experiments with
the code directly measuring correlation functions in the laboratory
and tuning physical parameters.
Moreover, nonequilibrium processes, provided they have a

statistical description, are fair game. For example, if one simu-
lates diffusion by adding white noise to a mean drift, then the paths
are distributed by a product of Gaussian distributions conditioned
on the prior steps. Clearly, the paths are statistical objects, with
diffusion and drift as the distribution parameters, λ. Thus, one
can build an optimizer that tunes these control parameters using
Eq. 2, even if they are time-dependent functions.
As proof of this point, we return to the problem of a particle

trapped on a substrate, but now simulate the particle dynamics.
The applied field and the system temperature are treated as
functions of time and the optimizer is tasked with moving the
particle from one well to another in a given interval.
Fig. 4A shows the median distance to the target well after

executing the optimizer’s processing protocol in each generation.
In the first 60 generations, the optimizer learns to transport the
particle from its starting location to the target well via a large,
deterministic driving force. It then spends the remaining iterations
monotonically decreasing the system temperature while developing
a trapping protocol with the field. After 2,000 iterations, the opti-
mizer seems to traps the particle by oscillating the driving force,
changing its direction before the particle can transition to another
well. In effect, the optimizer learns to drag the particle to the target
and trap it in place, using both the temperature and the field.
By 2,000 iterations, ∼ 90% of the points in the path fall within the
target well. When left to run longer, the optimizer continues to
improve the quality of solutions, but at the cost of becoming un-
physical, the optimizer generates extremely large fields that move
the particle to the well faster and faster. To optimize beyond the
proof of concept demonstrated here, one may have to restrict the
range of parameters allowed to the optimizer or account for ar-
bitrary velocities by increasing the number of steps in the walk.

Optimization of Directed Self-Assembly
As a final demonstration of our approach we consider the real-
world problem of designing the directed self-assembly of block
copolymers on a chemically patterned substrate. This represents a
task at the forefront of both materials design and sublithographic
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more structured objects appear, and ultimately only the octahedron configura-
tion exists (iterations 190–210). (B) Plotting the median percentage of deviation
between the polymer’s radius of gyration Rg and the radius of gyration for an
octahedron Roct at each iteration shows that the optimizer again produces a
monotonic decrease at each step, with an effectively exponential convergence in
the last 30 iterations. By the last 10 iterations, the median deviation from a
perfect octahedron is roughly 1%. (C) In plotting the coupling constants against
iteration number, we find that the optimizer adjusts coupling constants in
groups. It is clear that the active coupling constants form the contact network for
an octahedron (C, Inset).
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fabrication (1, 7–11, 36, 37). The goal is to lithographically pattern a
substrate with a small number of chemical features such that these
features promote block copolymers to self-assemble into a desired
target morphology. Here, we consider a task that has been
identified as a promising candidate for the manufacture of next-
generation semiconductor devices and high-density storage media:
self-assembly of AB-diblock copolymers into an ordered striped
or lamellar morphology (1, 9–11).
We use a theoretically informed coarse-grain model for block

copolymer simulations (36). Polymer chains are simulated as
beads that are linked together. The system is considered at fixed
temperature and volume, and thus the probability of finding a
given microstate configuration is defined in terms of an energy
given by three parts. The first is a linear spring bond energy
between beads in each polymer chain. The second is a non-
bonded interaction energy that characterizes repulsion from
unlike species and the material compressibility. Details are in
Supporting Information (36). Both the model and the parameters
in it represent a polystyrene-block-poly(methyl methacrylate) (PS-b-
PMMA) diblock copolymer with a number-averaged molecular
weight of 22,000-b-22,000 and a stripe period of 28 nm.
The final contribution to the energy is the substrate interac-

tion. The substrate consists of two regions: the patterned stripes
of width w and the background. Both are defined to have short-
ranged effects on the polymer beads and assume the form Hs=
kT =ΛðαÞ=dsexp½−ðz=2dsÞ2�, where ds defines the decay length of
the interaction, z is the distance from the plane of the substrate, and
ΛðαÞ is the interaction strength between the substrate and a bead of
type α. Thus, if the particle is over the guiding stripe and of type A,
ΛðAÞ=Λs. If the particle is of type A and over the background
region, ΛðAÞ=Λb. Following ref. 11, we simplify our model by as-
suming the interactions are antisymmetric: ΛsðAÞ=−ΛsðBÞ and
ΛbðAÞ=−ΛbðBÞ. The design problem is to adjust the width of the
strips w and the two energy parameters Λs and Λb so the target

stripe phase replicates itself m times between two guiding stripes
spaced by the polymer period multiplied by m.
The results for m= 3 and m= 6 density multiplication are

shown in Fig. 5. For the m= 3 problem, we ran the optimization
four times, varying the time step used in integrating Eq. 2. In
every instance, the optimizer not only brought the system to a
state that successfully met the design goal, but also, within noise,
converged to the same state. The optimized parameters suggest
that directed self-assembly is best achieved by setting the stripe
width equal to roughly half the polymer period, Λs ≈−1kT and
Λb = 0.05kT. All of these parameters agree with simulation re-
sults obtained by a brute-force solution to the problem and ex-
perimental verifications performed on the real polymer system
(37) and are physically consistent with optimization results
obtained for triblock copolymer pattern multiplication (11). These
results can be explained by considering the interfacial energies in
the system. The background interaction is required to be weak
because the background region has roughly equal coverage be-
tween the A and B phases and is significantly larger in area than
the size of the stripe. Moreover, the interaction strength for the
stripe components is larger in the m= 6 problem (Fig. 5D), be-
cause the larger distance between patterned regions requires
stronger anchoring to guide assembly.
When the optimizer was run at the most aggressive time step,

we were able to achieve convergence for m = 3, (m = 6) in less
than 10 (18) iterations, despite the fact that the material required
the simulation of roughly 50,000 (100,000) polymer beads. We
stress that the performance obtained here is not a consequence
of initializing the system too close to an optimal state, but rather
evidence of the power behind Eq. 2. Fig. 5 shows that indeed the
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Fig. 4. Optimizing a nonequilibrium process. By using Eq. 2 we can tune
processing protocols for a Brownian particle walking on a rough energy
landscape controlled by a time-dependent temperature, kT, and linear mean
drift components, μx and μy. The optimizer has been tasked to adjust to
place and trap the random walker in a well located at the x–y coordinates
ð10,10Þ. (A) Ensemble median distance to the objective well after executing
a processing protocol at each iteration of the algorithm. Callouts show
representative paths taken by the particle, and contours in the callouts show
lines of constant energy over the substrate potential. The large image
represents the protocol executed after 2,000 iterations. Every protocol
attempted at 10-iteration intervals is illustrated in B–D, where the temper-
ature, kT (D) as well as the applied fields in the x direction and y direction
normalized by temperature, μx=kT (B) and μy=kT (C), are plotted against
time. At t = 0 the particle is released from its initial position at ð−10,0Þ and
allowed to wander and the processing protocol is executed until the simu-
lation is stopped at t = 1. At each iteration, the optimizer works to mono-
tonically decrease the temperature, while arriving at a field protocol that
quickly drives the particle to the target well and then oscillates the fields to
trap it there.
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Fig. 5. Optimizing directed self-assembly. Here we design the width of the
stripe, the strength of its attraction to the red polymer beads Λs, and the
attraction strength of the background substrate Λb toward the blue polymer
beads, to match the self-assembled phase as closely as possible to the target of
alternating stripes. We quantify the success of our optimizer by comparing an
order parameter ΨðxÞ= ðnaÞ=ðna +nbÞ binned along the x axis of the box and
averaged over y and z to the target stripe pattern. With Eq. 2, we are able to
produce optimized parameters for 3× (A) and 6× (B) density multiplication
after simulating 10 and 20 parameter choices. Two characteristic configura-
tions are plotted in A and B, Insets, separated by just a handful of iterations,
yet displaying markedly different phases of the polymer. Asymptotic config-
urations depicting Ψ (solid, marked line) and the target (dashed line) (A and B,
Insets) show that the optimized parameters match the desired morphology,
typically within 80% or better. In plotting the parameters generated by Eq. 2
(C–E), we find that the interaction with the background brush is the most
relevant parameter in directed self-assembly. For both the 6× and 3× prob-
lems, the rapid convergence toward the optimized state takes place once the
background strength is reduced to Λb ≈ 0.05. After a weak background is
established, the strip width and strength function as fine-tuning parameters
that facilitate defect-free assembly.
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initial parameters do not produce a solution to the design problem,
let alone a stripe pattern of any kind.
This particular problem also has been attempted in some

variant using other materials design methods. In fact, our initial
conditions were selected to match those given to an imple-
mentation of the CMA-ES, solving the same design problem but
using triblock copolymers (11). For that problem, the CMA-ES
took roughly 50 generations to converge, simulating 32 ensembles in
parallel per iteration, each requiring 200,000 Monte Carlo steps.
Our approach also used 200,000 Monte Carlo steps per iteration,
but required only 10 iterations to converge. If algorithm perfor-
mance is measured in terms of the number of microstates simu-
lated, then solving directed self-assembly problems by way of the
CMA-ES requires at least 5 times as much compute power as the
approach proposed here. If it is not possible to run the ensemble
simulations in parallel, our approach is roughly 130 times faster
than the CMA-ES and completes a full optimization process before
the CMA-ES has completed a single iteration. Additionally, inverse
Monte Carlo methods have been used to solve directed self-
assembly problems involving the placement of guiding posts instead
of stripes (8). Although there are relevant physical differences, we
note that the results presented for inverse Monte Carlo converge
after simulating roughly 30 million microstates. Because this num-
ber of microstates simulated is roughly 15 times larger than what
was used here, we can speculate that our proposed methods could
also be faster for such applications.

Conclusions
To the extent that the goal of materials design is a unified
framework that handles a wide range of complex inverse prob-
lems, we believe the formalism introduced here represents
a significant step forward. By applying Eq. 2, we can solve
problems with flat search landscapes (Fig. 1) and multiple-
interaction types (Fig. 2), incorporate constraints (Fig. 3), tune
processing conditions (Fig. 4), and address application scale
design and optimization tasks (Fig. 5). Furthermore, in all of the
examples presented, the end result is intuitive even though it was
achieved in a complicated search landscape where other opti-
mization schemes struggle or fail. Finally, the fact that processing
conditions such as applied fields or temperature protocols and
model parameters like internal interaction energies can be op-
timized with the very same framework presents an unexplored
direction for materials design. Because these are the essential
aspects that determine the properties of any material, the ca-
pacity to tune both simultaneously, one accounting for the
other, opens the doors to a more coherent and conceptually
complete design program.
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