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Abstract

Background

Research suggests that interaction between humans and digital environments character-

izes a form of companionship in addition to technical convenience. To this effect, humans

have attempted to design computer systems able to demonstrably empathize with the

human affective experience. Facial electromyography (EMG) is one such technique

enabling machines to access to human affective states. Numerous studies have investi-

gated the effects of valence emotions on facial EMG activity captured over the corrugator

supercilii (frowning muscle) and zygomaticus major (smiling muscle). The arousal emotion,

specifically, has not received much research attention, however. In the present study, we

sought to identify intensive valence and arousal affective states via facial EMG activity.

Methods

Ten blocks of affective pictures were separated into five categories: neutral valence/low

arousal (0VLA), positive valence/high arousal (PVHA), negative valence/high arousal

(NVHA), positive valence/low arousal (PVLA), and negative valence/low arousal (NVLA),

and the ability of each to elicit corresponding valence and arousal affective states was

investigated at length. One hundred and thirteen participants were subjected to these sti-

muli and provided facial EMG. A set of 16 features based on the amplitude, frequency,

predictability, and variability of signals was defined and classified using a support vector

machine (SVM).

Results

We observed highly accurate classification rates based on the combined corrugator and

zygomaticus EMG, ranging from 75.69% to 100.00% for the baseline and five affective

states (0VLA, PVHA, PVLA, NVHA, and NVLA) in all individuals. There were significant
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differences in classification rate accuracy between senior and young adults, but there was

no significant difference between female and male participants.

Conclusion

Our research provides robust evidences for recognition of intensive valence and arousal

affective states in young and senior adults. These findings contribute to the successful

future application of facial EMG for identifying user affective states in human machine inter-

action (HMI) or companion robotic systems (CRS).

Introduction
Alongside the rapid and extensive development of interactive devices such as tablets and smart-
phones, the interaction between humans and their digital environment has become not only a
technical activity, but also a form of empathic companionship; the literature characterizes this
relationship as human computer interaction (HCI) or generalized human machine interaction
(HMI). This type of relationship provides not only passive functionalities, but also, ideally,
functions based on perception of the user’s implicit current needs, responses, preferences,
coherence, and intention [1–2]. This type of companionship-by-design system should be able
to completely and individually adapt to the user, and reflect the user’s situation and emotional
states; in other words, the system should have the ability to be empathetic [3–5].

To achieve an ideal technical companionship system, the user’s affective experience is a vital
consideration; accurate and appropriate recognition of the user’s emotional states is paramount
to the success of this type of technology. In human-human interaction (HHI), individuals rec-
ognize emotional states using innate sensors for facial expression, gestures, eye contact, lan-
guage, speed or tone of speaking, and other natural indicators[6]. A computer, of course, is
unable to perceive emotional states by definition. There are numerous signals relevant to emo-
tional responses that are, though, measurable by devices such as cameras, microphones, and
sensors [7]. For example, small electrodes attached to the skin can accurately detect psychobio-
logical changes indicative of the human emotional experience, gaining access to human emo-
tional states. One such psychophysiological sensor, the facial EMG, represents a robust and
effective method of recognizing human affective states in HMI [8–9].

Affective responses involve subjective experience, central and peripheral nervous system
changes, and behaviors (e.g., facial expressions, gestures, and vocal characteristics) [10]. Facial
expressions, specifically, are innate and untrained reactions to affective states [11] which enable
us to recognize and communicate emotions transiently as we interact with other people. Affec-
tive science research has struggled to quantifiably measure the affective states of human beings,
however [10]. There are two primary issues related to this problem (and, as such, to the present
study’s primary objectives). First, there is no standardized model for evaluating or interpreting
emotions or affects [12–13], however, as Mauss and Robinson [10] suggested, “measures of
affective responses seem to be structured along dimensions rather than discrete emotions”. Sec-
ond, due to the sizeable (and rapidly growing) proportion of senior adults in many societies,
particularly in Western countries, companion technology is highly desirable because of a short-
age of qualified healthcare personnel [9]. A meta-analytic study reviewing emotions and aging
suggested that seniors are worse than younger adults in recognizing emotional states, and that
there is a general declining trend in emotion recognition with age [14], though the results of
this study may have not been fully valid. Aging does indeed play an essential role in detecting
affective responses, however.
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The tridimensional theory of emotion, which is commonly applied in studies on this subject,
evaluates affective states according to valence, arousal, and dominance (VAD). This approach
can be dated back to Wundt [15]. “Valence” describes affective states from highly negative
(unpleasant) to highly positive (pleasant); “arousal”measures the intensity of affective states
ranging from highly calm to highly excited or alert; and “dominance” represents the feeling of
being controlled or influenced by external stimuli [16–17]. Lang, Rice, and Sternbach assumed
that emotion is comprised of these three dimensions [18]; and research has shown that domi-
nance is highly correlated with the dimension of valence [16]. As the proponents of this theory
have suggested, the tridimensional model of emotion can be reduced to two orthogonal dimen-
sions [19–21]: valence and arousal, in which all emotions can be classified. We adopted the
two-dimensional theory of affective experience in this study.

A number of researchers have investigated the effects of the sole dimension of valence on
facial EMG. Their findings demonstrated that facial EMG captured over corrugator supercilii
(frowning muscle), which is associated with negative emotional expressions, and zygomaticus
major (smiling muscle), which is related to positive emotional expressions [22–23], can differ-
entiate valence emotions and their intensities [24]. In these studies, corrugator EMG amplitude
increased in response to negative affective stimuli and decreased with positive affective stimuli
compared to neutral stimuli, whereas zygomaticus EMG amplitude increased during positive
stimuli [25–29]. In addition, zygomaticus EMG amplitude was not shown to discriminate neu-
tral and negative emotions, thus, corrugator and zygomaticus EMG activities can be considered
indicators of negative and positive affective states, respectively [25,28].

To date, the dimension of arousal has not received much attention in facial EMG emotion
recognition studies. Very limited evidence from previous studies has shown, though, that zygo-
maticus EMG differentiates positive valence/low arousal affective states from positive valence/
high arousal affective conditions. In the participants in these studies, the zygomaticus EMG
activity was lower when viewing positive valence/low arousal affective images than when view-
ing positive valence/high arousal ones [30], i.e., the high-arousal affective pictures elicited
higher corrugator and zygomaticus EMG activities than low-arousal ones [31]. Corrugator and
zygomaticus EMG could not independently differentiate the affective states in the arousal
dimension [28], which may modulate facial EMG responses when participants are confronted
by visual stimuli. Therefore, taking both the dimensions of valence and arousal simultaneously
into account is arguably necessary for detecting their compound effects on facial EMG
technology.

Research has also shown that increasing age is correlated with a general decline in physio-
logical functions [32–33], and many previous studies have indicated lower physiological
responses in senior adults than in young adults when exposed to affective stimuli [34]. Along
with the decline in physiological functions, increased positive well-being, affect control, and
affect regulation have been observed in senior compared to young adults [35–37]. Influenced
by the “positivity effect”, seniors typically highly favor positive stimuli, whereas negative sti-
muli are more recognized by young adults [38]. Conversely, senior adults in certain situations
experience greater affective responses than young adults do, although evidence suggests less
affective reactions for senior adults than young adults in most contexts [39]. Researchers have
claimed that there are no significant age variations in either corrugator or zygomaticus EMG in
relation to valence affective states [40], but researchers have identified lower overall corrugator
EMG activity in response to affective pictures in senior adults, regardless of valence [41].
Another study found that increasing age is associated with decreased corrugator EMG ampli-
tude in response to neutral stimuli [42]. Evidence for age differences in facial EMG on intensive
valence and arousal affective states, however, is scarce in the literature.
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In brief, the primary goal of the present study was to assess the potentially distinct effects of
intensive valence and arousal affective states on facial EMG detected over the corrugator super-
cilii and zygomaticus major of study participants. The secondary objective was to investigate
age differences in the EMG activity between senior and young adults in different affective
states, and the same by gender. We employed a case study followed by classification methods
and statistical analysis to achieve these goals.

Materials and Methods

Participants
Seventy young adults (from 20 to 40 years of age, mean = 24.57, SD = 4.37) and 43 senior adults
(from 52 to 77 years of age, mean = 64.30, SD = 7.16) participated in this study. The data from
two subjects in the young group and three in the senior group were excluded from subsequent
analysis due to technical problems (i.e., movements or artifacts.) The final sample size was 108
(69 females, 39 males). All participants were healthy and had normal vision or corrected nor-
mal vision. The experiment was designed and implemented according to the ethical guidelines
of the University of Ulm and was approved by the university’s Ethical Committee (number:
245/08-UBB/se).

Stimuli
To elicit intensive and sustained affective states, which are not easily induced by a static single
image in laboratory situations, the stimuli consisted of 10 picture blocks. In each block, 10
affective images with similar rating scores on valence and arousal were combined. Thus, a total
of 100 pictures chosen from the international affective picture system (IAPS) [43] and Ulm pic-
tures [44], which are well-designed, standardized, and generally employed for eliciting emo-
tional states with three dimensions (VAD) and are often utilized in studies on affective science
or affective computing. The content of the pictures ranged from daily experiences (e.g., house-
hold furniture) intended to elicit neutral and calm emotions, to extreme encounters (e.g., severe
human injuries,) that induce highly negative and arousal emotions, or to erotic images
intended to produce highly positive and arousal emotions. Ten picture blocks were divided
into five categories (i.e., two picture blocks with similar valence-arousal responded to one of
five affective states) according to the standardized rating scores: 1) 0VLA, neutral valence
(4.96 ± 0.25) and low arousal (2.75 ± 0.64); 2) NVLA, negative valence (3.74 ± 0.43) and low
arousal (3.63 ± 0.51); 3) NVHA, negative valence (2.20 ± 0.64) and high arousal (6.66 ± 0.57);
4) PVLA, positive valence (7.58 ± 0.39) and low arousal (3.26 ± 0.47); and 5) PVHA, positive
valence (7.00 ± 0.57) and high arousal (6.50 ± 0.51). Fig 1 shows the location of these five cate-
gories of affective states in the valence-arousal space.

Procedure
Participants were seated in a comfortable reclining chair in a sound-attenuated room of the
Emotion Lab, Ulm, after being introduced to the experiment and signing an informed consent
form. EMG sensors were attached to the participants’ respective facial muscles, afterwards par-
ticipants were asked to relax, keep stable, and pay attention to the image blocks for the duration
of the experiment.

Ten affective image blocks were presented randomly on a 17-inch monitor. Each block, car-
rying the same probability without any repetition, was presented for 20 s, during which each of
the 10 pictures was shown for 2 s continuously. There was a fixed pause of 20 s between blocks
(Fig 2). Facial EMG activity was recorded throughout the experiment.
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EMGData Acquisition
A NeXus-32 physiological measurement system (NeXus-32,Mind Media, Roermond-Herten,
Netherlands) running on a desktop computer was used for the acquisition of facial EMG. The
software package Biobserve Spectator (version 2.4.0.5, BIOBSERVE GmbH, Bonn, Germany)
was used to record the trigger and psychophysiological data. Facial EMG signals were captured
with bipolar miniature silver/silver chloride (Ag/AgCl) skin electrodes 4 mm in diameter with
gel-filled attach spaces. Bipolar electrodes were placed on the participants’ left corrugator
supercilii and zygomaticus major muscle regions (see Fig 3, EMG signal acquisition) according
to the guidelines for EMG placement recommended by Fridlund and Cacioppo [45]. Facial
EMG signals were recorded at a sampling rate of 512 Hz.

EMG Signal Processing and Data Reduction
As shown in Fig 3, raw facial EMG signals were filtered offline by a 20–250 Hz band-pass But-
terworth filter (order = 4) to exclude motion-related components, and an adaptive filter was
applied to remove the 50 Hz power line interference [46]. In order to classify the stimulated
affective statesusing facial EMG, further processing methods including the empirical mode
decomposition (EMD) technique and the Hilbert Spectrum (HS) were employed. Data from

Fig 2. Presentation of picture blocks.

doi:10.1371/journal.pone.0146691.g002

Fig 1. Location of affective stimuli in the two-dimensional space.

doi:10.1371/journal.pone.0146691.g001
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single (corrugator or zygomaticus) and combined (corrugator and zygomaticus) site(s) were
submitted to classification. All the processing, analyses, and machine learning were conducted
using the MATLAB software package (version R2009a and R2015a, Mathworks Inc., Natick,
MA, USA).

Data Classification
In order to verify the possibility of discriminating distinct affective states (0VLA, PVHA,
NVHA, PVLA, NVLA) and also the baseline (forming a six-class classification problem, in
effect), the following sequence of steps for data processing was applied:

1. Feature extraction from particular regions of interest of the signals. A problem we had
was defining the length (in seconds) of the region of interest, as there is no specific rule
for choosing this length. We assessed distinct empirical combinations as described in
Table 1, where similar and distinct periods for baseline and evoked emotions were
adopted based on the assumption that evoked emotion could induce early (< 2s) and/or
late (> = 2 s) changes in the observed time series.

Fig 3. Diagram of EMG signal acquisition, processing, data reduction, and classification.

doi:10.1371/journal.pone.0146691.g003

Table 1. Period of time adopted for feature extraction from baseline and evoked emotional periods.

Label Window length (in seconds) for
the baseline period

Window length (in seconds) for
evoked emotional period

Description

1–1 1 s 1 s Features were extracted from the first second for both the baseline
and evoked emotional periods

1–2 1 s 2 s Features were extracted from the first second for the baseline and
the first two seconds for evoked emotional periods

1-10-f 1 s 10 s Features were extracted from the first second for the baseline and
the first ten seconds for evoked emotional periods

1-10-l 1 s 10 s Features were extracted from the first second for the baseline and
the last ten seconds for evoked emotional periods

2–2 2 s 2 s Features were extracted from the first two seconds for both the
baseline and evoked emotional periods

2-10-f 2 s 10 s Features were extracted from the first two seconds for the baseline
and the first ten seconds for evoked emotional periods

2-10-
1

2 s 10 s Features were extracted from the first two seconds for the baseline
and the last ten seconds for evoked emotional periods

doi:10.1371/journal.pone.0146691.t001
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In total, 16 features were estimated from each region of interest, yielding a 16-D feature vec-
tor that was properly labeled according to the possible classes (0VLA, PVHA, NVHA, PVLA,
NVLA, and baseline). Because two muscles (corrugator and zygomaticus) were examined in
this study, the resulting feature vector had 16 (from corrugator or zygomaticus) or 32 (from
corrugator and zygomaticus) features. These features were employed according to the literature
[47]. The aim of feature extraction was to capture changes in the signals related to their ampli-
tude, frequency, predictability, and variability. Table 2 presents a summary of the employed
features, and a comprehensive description of the features is provided in a previously published
study [48].

2. Features extracted from all subjects were organized in a table in which each column rep-
resented a feature or variable. Prior to classification, each feature was standardized to have
zero mean and unit variance. Classification was performed with the machine learning
toolbox available in Matlab 2015Ra (Mathworks). The support vector machine (SVM)
classifier was used with a Gaussian kernel (i.e, templateSVM['KernelFunction','gaussian']
in the Matlab environment.) The fitcecocmethod available in Matlab, which fits multiclass
models for support vector machines or other classifiers, was employed, and 10-fold cross-
validation was used for classifier assessment.

Table 2. Feature descriptions.

Feature
group

Feature Description

Amplitude Mav mav = mav(signal)

Mavfd mavfd = mavfd(signal)

Mavsd mavsd = mavsd(signal)

Peak peak = max(signal); index(max(signal))

Rms rms = rms(signal)

Frequency Zc Calculated by comparing each point of the signal with the next; if there is a crossing by zero then it is accounted.

Fmed To obtain the median frequency, find the value of the frequency that bisects the area below the X waveform.

Fmode This fast Fourier transformation equation is valid for this and the following frequency features:.

XðkÞ ¼
XN

j¼1
xðjÞoN

ðj�1Þðk�1Þ, where oN ¼ e �2pi
Nð Þ. To find the mode, find the maximum value of X.

Fmean XNFFT

k¼1
XðkÞ:fðkÞX
XðkÞ

Cf The central frequency is simply the mean of the frequencies that delimit the bandwidth: cf ¼ fh�fl
2
.

Predictability Fuzzy entropy Saenðm; s;dÞ ¼ ln ComðsÞ
Comþ1ðsÞ

h i
, where m is the window size, s is the similarity standard and d is the signal. It is calculated

in a very similar way to the Sample Entropy. The only similarity between the groups is computed by means of a
Fuzzy membership function.

Approximate
entropy

For a temporal series with N samples {u(i): 1 � i � N} given m, create vectors Xm
j for each Xm

N�mþ1 as
Xm

j ¼ fuðiÞ;uði þ 1Þ; uði þm� 1Þg; i ¼ 1; . . .;N�mþ 1, where m is the number of points to group together for the
comparison. For each k � N − m + 1 groups, do Cm

k ðrÞ which is the number of times the groups had distance less

than tolerance r. Then compute the value φm as φmðrÞ ¼

XN�mþ1

i¼1

lnCm
j ðrÞ

N�mþ1
. The Approximated Entropy is: ApEn(m,r) =

limN!1[φm(r) − φm+1(r)].

Variability Var

s2 ¼

XN

i¼1

ðxi � x
� Þ2

N�1

Std S ¼ ffiffiffiffiffi
s2

p

Range R = MAX(U) − MIN(U)

Intrange SI ¼ Q3�Q1
2

doi:10.1371/journal.pone.0146691.t002
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3. We estimated the success rate of each class, defined as the number of correctly classified
patterns divided by the total number patterns of the class. The entire classifier-training
procedure and performance assessment was repeated 10 times to estimate the mean and
the standard deviation of the rate of success.

Results

Classification Results
The classification results are presented from Tables 3–7, where results are presented for each
specific condition listed in Table 1.

Table 3 describes the mean (M) and standard deviation (SD) of classification accuracies
(ten-fold cross-validation) of five affective states and the baseline, based on the combined cor-
rugator and zygomaticus EMG data. The classification accuracy reached 100% for the baseline
in all seven conditions, where the five affective states ranged from 87.04% to 88.47% in 1–1,
from 87.92% to 90.65% in 1–2, from 84.81% to 88.75% in 1-10-f, from 84.58% to 88.75% in 1-
10-l, from 75.69% to 80.69% in 2–2, from 85.19% to 89.07% in 2-10-f, and from 85.05% to
88.47% in 2-10-l.

Table 4 presents the M and SD classification accuracies of baseline and the five affective
states based on the combined corrugator and zygomaticus EMG data according to age. For the
baseline, the classification accuracy hit 100% for all conditions except in 2–2 in young groups;
the five affective states ranged from 77.06% to 90.74% in the young group and from 86.25% to
90.25% in the senior group. The classification rates for senior adults were higher than young
adults in all seven conditions.

As far as gender, as Table 5 shows, classifying the combination of corrugator and zygomati-
cus EMG showed similar results regardless of age; the baseline was nearly 100% in all condi-
tions except in 2-2in the female group. The five affective states ranged from 81.18% to 90.59%
in the female group and from 85.00% to 90.38% in the male group.

Tables 6 and 7 show where the M and SD of classification accuracy for the baseline reached
nearly 100% with either single corrugator or zygomaticus EMG; all five affective states are rela-
tively low (from 13.19% to 69.86%).

Table 3. M and SD of classification accuracy across baseline and five affective states via the combination of corrugator and zygomaticus EMG
data for all participants.

Baseline (%) 0VLA (%) PVHA (%) NVHA (%) PVLA (%) NVLA (%)

1–1 M 100.00 88.47 88.38 87.31 88.47 87.04

SD 0.00 0.60 0.63 0.54 0.41 0.49

1-10-f M 100.00 88.75 86.02 84.95 84.81 86.90

SD 0.00 0.73 0.87 0.82 0.81 0.90

1-10-l M 100.00 88.75 86.20 84.58 85.28 87.36

SD 0.00 0.82 0.65 1.18 1.11 0.76

1–2 M 100.00 90.65 89.44 87.92 89.72 89.95

SD 0.00 0.48 0.65 0.63 0.68 0.62

2–2 M 100.00 75.69 77.13 80.69 79.72 76.57

SD 0.00 1.47 0.98 0.58 0.89 1.00

2-10-f M 100.00 89.07 85.88 85.19 85.46 87.27

SD 0.00 1.03 1.05 0.87 1.10 0.91

2-10-l M 100.00 88.47 86.81 85.05 85.37 87.45

SD 0.00 0.91 0.82 0.66 0.73 1.49

doi:10.1371/journal.pone.0146691.t003
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Statistical Results
To compare the effects of single corrugator and zygomaticus and the combination of corruga-
tor and zygomaticus EMG for affect recognition, data from Tables 3, 6 and 7 were submitted to
repeated measures ANOVA analysis. The results demonstrated a significant primary effect (F
(1,41) = 87.34, p< 0.001), and multiple comparisons with Bonferroni revealed significant dif-
ferences between the combination of corrugator and zygomaticus and the single corrugator,
the combination of corrugator and zygomaticus and single zygomaticus, and the single corru-
gator and zygomaticus (p< 0.001).

As far as age, data from Table 4 was subjected to the independent T-test, and results showed
significant differences between young and senior participants (t = -2.67, p< 0.01, two-tailed).

Data from Table 5 was subjected to independent T-test, with no pronounced difference
between female and male subjects (t = -1.58, p> 0.05, two-tailed).

Discussion and Conclusions
The interaction between humans and machines will, in future, most likely be an empathic rela-
tionship resembling the “companionship” observed in HMI research. In such a

Table 4. M and SD of classification accuracy across baseline and five affective states via the combination of corrugator and zygomaticus EMG
data for young and senior participants.

Baseline (%) 0VLA (%) PVHA (%) NVHA (%) PVLA (%) NVLA (%)

1–1 Young M 100.00 88.60 87.87 88.82 88.01 87.13

SD 0.00 0.39 0.79 0.47 0.70 0.62

Senior M 100.00 90.00 90.00 90.00 90.00 90.00

SD 0.00 0.00 0.00 0.00 0.00 0.00

1-10-f Young M 100.00 88.75 85.96 83.82 84.78 85.96

SD 0.00 1.73 1.32 0.78 1.04 1.45

Senior M 100.00 89.63 89.75 88.50 90.13 89.88

SD 0.00 0.84 0.53 0.79 0.40 0.71

1-10-l Young M 100.00 88.75 86.69 84.41 85.96 85.81

SD 0.00 0.98 1.17 1.54 1.68 1.63

Senior M 100.00 90.25 89.88 89.00 90.00 90.13

SD 0.00 0.79 0.40 0.79 0.83 0.71

1–2 Young M 100.00 90.74 89.19 88.46 89.63 90.00

SD 0.00 0.71 0.36 0.36 0.54 0.38

Senior M 100.00 90.00 90.00 90.13 90.00 90.00

SD 0.00 0.00 0.00 0.40 0.00 0.00

2-10-f Young M 100.00 89.04 86.62 84.26 86.32 86.47

SD 0.00 0.64 1.38 0.86 0.86 1.05

Senior M 100.00 90.00 89.50 89.13 89.88 89.88

SD 0.00 0.59 0.65 0.60 0.71 1.38

2-10-l Young M 100.00 88.97 86.69 83.75 85.22 86.10

SD 0.00 0.60 1.36 1.12 1.36 1.32

Senior M 100.00 90.13 89.38 88.75 89.38 90.00

SD 0.00 0.92 0.88 0.00 1.35 1.02

2–2 Young M 99.99 77.65 78.31 81.76 77.06 78.46

SD 0.05 1.21 1.05 0.90 1.62 1.55

Senior M 100.00 89.00 88.63 87.88 88.88 86.25

SD 0.00 1.15 0.71 0.84 0.92 1.02

doi:10.1371/journal.pone.0146691.t004
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Table 5. M and SD of classification accuracy across baseline and five affective states via the combination of corrugator and zygomaticus EMG
data for female andmale participants.

Baseline (%) 0VLA (%) PVHA (%) NVHA (%) PVLA (%) NVLA (%)

1–1 Female M 100.00 90.07 89.56 89.49 89.41 89.49

SD 0.00 0.39 0.58 0.36 0.38 0.36

Male M 100.00 88.88 90.00 90.00 90.00 88.75

SD 0.00 0.40 0.00 0.00 0.00 0.00

1-10-f Female M 100.00 87.65 87.06 86.25 87.28 86.62

SD 0.00 1.24 1.16 1.20 0.92 1.19

Male M 100.00 89.38 88.00 89.88 89.38 90.00

SD 0.00 1.06 1.05 0.71 0.66 0.59

1-10-l Female M 100.00 86.76 87.94 86.40 87.06 86.91

SD 0.00 1.73 1.21 1.05 1.21 1.09

Male M 100.00 89.00 88.00 90.13 89.38 90.25

SD 0.00 0.79 0.65 0.40 1.06 1.29

1–2 Female M 100.00 90.59 90.59 90.00 89.71 89.85

SD 0.00 0.31 0.47 0.62 0.00 0.31

Male M 100.00 90.00 90.00 90.38 89.88 89.00

SD 0.00 0.00 0.00 0.60 0.40 0.53

2-10-f Female M 100.00 86.25 87.94 85.44 87.43 86.47

SD 0.00 1.20 0.93 1.38 1.12 1.11

Male M 100.00 88.88 88.38 90.13 89.50 90.00

SD 0.00 0.71 1.03 0.92 0.87 0.83

2-10-l Female M 100.00 87.43 87.50 85.81 87.43 86.91

SD 0.00 0.88 1.20 1.04 1.07 1.62

Male M 100.00 89.13 88.75 90.00 89.38 89.88

SD 0.00 1.03 0.83 0.59 0.66 1.09

2–2 Female M 99.97 81.18 84.04 81.32 82.57 79.41

SD 0.06 0.71 1.04 1.11 1.15 0.98

Male M 100.00 87.63 87.25 85.00 85.50 87.38

SD 0.00 0.40 0.99 1.32 1.05 0.92

doi:10.1371/journal.pone.0146691.t005

Table 6. M and SD of classification accuracy across baseline and five affective states via solely corrugator EMG data for all participants.

Baseline (%) 0VLA (%) PVHA (%) NVHA (%) PVLA (%) NVLA (%)

1–1 M 99.87 22.22 34.07 38.94 34.68 30.83

SD 0.10 1.43 1.97 1.84 1.60 2.27

1-10-f M 100.00 55.23 61.20 56.34 60.19 62.87

SD 0.00 2.58 3.04 2.70 2.43 2.50

1-10-l M 100.00 56.53 62.18 56.81 60.14 61.85

SD 0.00 3.58 1.50 2.40 1.41 2.78

1–2 M 100.00 68.10 69.86 65.42 63.89 65.88

SD 0.00 2.74 1.55 1.73 2.82 3.18

2-10-f M 100.00 55.83 61.67 56.71 59.12 61.90

SD 0.00 3.17 2.44 2.19 3.13 3.19

2-10-; M 100.00 55.60 61.25 56.57 58.80 61.94

SD 0.00 3.64 2.91 2.33 2.56 3.06

2–2 M 99.91 14.03 23.38 34.31 25.09 25.46

SD 0.04 1.00 1.24 1.71 1.23 1.84

doi:10.1371/journal.pone.0146691.t006
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companionship, the ability to perceive a user’s current physical conditions and emotional state
is highly desirable [1]. In other words, the ideal companion system is able to fully empathize
with its individual user [3–5]. To achieve this, artificial “eyes” and “ears” such as cameras,
microphones, and sensors are required. These physical devices, including psychobiological sen-
sors, provide accurate signals that allow the machine to gain access to human emotional states.

The primary goal of this study was to investigate the performance of facial EMG for recog-
nizing valence-arousal affective states, in effort to bridge the gap between machine and human
emotional experiences. We specifically focused on the classification of intensive valence and
arousal affective states on facial EMG activities captured over corrugator supercilii and zygo-
maticus major, as well as age and gender differences.

Future, successful application of facial EMG for identifying affective states in HMI must be
in real-time–the machine-learning system could offer us the opportunity to classify affective
states automatically. With the combination of corrugator and zygomaticus EMG data, the clas-
sification rate achieved high accuracies from 75.69–100.00% for the baseline, 0VLA, PVHA,
PVLA, NVHA, and NVLA in all individuals, young and senior groups, female and male partic-
ipants. In contrast, by using single corrugator or zygomaticus EMG data, the classification rate
for the baseline reached a perfect level while the other five affective states reached only a very
low level. Basically, combining a separated corrugator as well as azygomaticus EMG would be
the better way for affect classification.

One interesting finding of this study is that the classification accuracy for senior adults was
significantly higher than that for young adults. To our knowledge, there has been no consensus
achieved for age differences on emotion recognition, especially for combined intensive valence
and arousal states. As such, our findings provide valuable new information on the topic.

No significant difference due to gender was found in the classification results, which con-
firms published findings that though women may recognize emotion more accurately, they
show no difference in intensive affective states compared to men [48].

One limitation of this study is that it only employed facial EMG; other psychobiological
channels such as skin conductance level (SCL), supposedly associated with arousal, could help
to differentiate valence and arousal affective states. Future research should consider these
shortcomings and increase the sample size. Moreover, similar to the interpersonal interaction

Table 7. M and SD of classification accuracy across baseline and five affective states via solely zygomaticus EMG data for all participants.

Baseline (%) 0VLA (%) PVHA (%) NVHA (%) PVLA (%) NVLA (%)

1–1 M 99.95 19.68 17.55 19.31 20.65 19.17

SD 0.09 0.88 1.41 1.38 1.59 1.35

1-10-f M 100.00 54.81 52.69 55.93 52.50 61.67

SD 0.00 3.63 1.59 3.24 1.35 4.05

1-10-l M 100.00 54.58 52.96 56.44 50.65 62.92

SD 0.00 1.83 2.12 3.21 1.79 3.43

1–2 M 100.00 60.00 54.81 57.36 54.81 65.93

SD 0.00 2.18 1.97 3.14 2.12 2.50

2-10-f M 100.00 54.40 52.87 56.34 51.20 63.01

SD 0.00 3.10 1.41 2.13 1.29 3.00

2-10-l M 100.00 54.44 52.45 55.79 51.30 64.58

SD 0.00 1.59 0.90 3.08 1.32 3.64

2–2 M 99.94 13.19 18.24 20.93 17.59 18.61

SD 0.09 2.35 1.18 0.72 1.43 1.56

doi:10.1371/journal.pone.0146691.t007
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situation, in HMI, users’ expectations regarding cooperation and competition affect their emo-
tional responses [49]. Future studies investigating possible confounds of expectation, motiva-
tion, personality, gender, and neurological or psychiatric conditions are necessary due to the
complexity of individuals and machine companionship goals.

The emotion dimension, in which valence emotions have received much attention using
facial EMG, is predominantly employed. One dimension is not enough, though, so this study
went beyond the single dimension of valence. To the best of our knowledge, no study has inves-
tigated the effect of dominance on facial EMG, even though dominance is assumed to strongly
correlate with valence. This should also be considered in future studies of emotion recognition
through facial EMG.

In conclusion, the facial EMG technique for differentiating valence-arousal emotions was
indeed confirmed by the results of our experiments. Similar to conditions in natural circum-
stances, in HMI, emotional experiences consist of many elementary emotions that may rapidly
change. Thus, facial EMG response patterns may indicate dynamic emotional states [50].
Moreover, the procedure employed to measure emotions induced by a standardized set of
affective visual stimuli in this study may contribute to methods for successfully identifying
individual situations in HMI. Future applications, such as real-time calibration methods for
emotion recognition in machines or even in companion robotic systems and for users with per-
sonalized needs in healthcare settings, may be informed by the results of this study [51].

Supporting Information
S1 Data. Data of features for 7 conditions. In this dataset, there are 7 excel files. Each of them
includes 32 features (from corrugator and zygomaticus EMG) for certain combination of dif-
ferent period of baseline and evoked emotions.
(RAR)

S2 Data. Data of classification results. In this dataset, there are 3 excel spss files: Classification
Results vs. Age, Classification Results vs. Gender, Classification Results vs. Corrugator, Zygo-
maticus, Corrugator and Zygomaticus.
(RAR)
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