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Abstract Peroxynitrite is formed in biological systems

when nitric oxide and superoxide rapidly interact at near

equimolar ratio. Peroxynitrite, though not a free radical by

chemical nature, is a powerful oxidant which reacts with

proteins, DNA and lipids. These reactions trigger a wide

array of cellular responses ranging from subtle modulations

of cell signaling to overwhelming oxidative injury, com-

mitting cells to necrosis or apoptosis. The present review

outlines the various peroxynitrite-induced DNA modifica-

tions with special mention to the formation of 8-nitrogua-

nine and 8-oxoguanine as well as the induction of DNA

single strand breakage. Low concentrations of peroxynitrite

cause apoptotic death, whereas higher concentrations cause

necrosis with cellular energetics (ATP and NAD?) serving

as control between the two modes of cell death. DNA

damage induced by peroxynitrite triggers the activation

of DNA repair systems. A DNA nick sensing enzyme,

poly(ADP-ribose) polymerase-1 (PARP-1) becomes acti-

vated upon detecting DNA breakage and it cleaves NAD?

into nicotinamide and ADP-ribose and polymerizes the

latter on nuclear acceptor proteins. Over-activation of

PARP induced by peroxynitrite consumes NAD? and

consequently ATP decreases, culminating in cell dysfunc-

tion, apoptosis or necrosis. This mechanism has been

implicated in the pathogenesis of various diseases like

diabetes, cardiovascular diseases and neurodegenerative

diseases. In this review, we have discussed the cytotoxic

effects (apoptosis and necrosis) of peroxynitrite in the eti-

ology of the mentioned diseases, focusing on the role of

PARP in DNA repair in presence of peroxynitrite.
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Introduction

The two major pathways involved in the nitric oxide (NO)

induced DNA damage involve a reaction of NO with

molecular oxygen, yielding N2O3 with subsequent nitro-

sation of secondary amines and the formation of N-nitr-

osoamines or nitrosation of primary amines and nucleic

acid bases [1] and the production of peroxynitrite through

the reaction of NO with superoxide radical (O2
•-). Perox-

ynitrite (ONOO-) is a potent oxidant and nitrating agent

with a short half life (*10 ms) [2, 3]. The peroxynitrite

formation sites are considered to be spatially associated

with the sources of superoxide (such as the plasma mem-

brane NAD(P)H oxidases and the mitochondrial respiratory

complexes). Since NO is a relatively stable and highly

diffusible free radical while superoxide is much short lived

and has restricted diffusion rates across biological mem-

branes. The rate of peroxynitrite production in vivo has

been estimated to be as high as 50–100 lM per min. Inspite

of the short half-life of peroxynitrite at physiological pH,

its ability to cross cell membranes [4] influences the sur-

rounding target cells within one to two cell diameters

(*5–20 lm).

The oxidant reactivity of peroxynitrite is highly pH-

dependent and both peroxynitrite anion (ONOO-) and

peroxynitrous acid (ONOOH) can participate directly in
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one- and two-electron oxidation reactions with biological

macromolecules (Fig. 1), where many of them have tran-

sition metal centres and thiols. The one of the fundamental

reactions of ONOO- in biological systems is the fast

reaction with carbon dioxide (in equilibrium with physio-

logical levels of bicarbonate anion), which leads to the

formation of carbonate (CO3
•-) and nitrogen dioxide

(•NO2) radicals (yield *35 %), which are one-electron

oxidants [5]. Nitrogen dioxide can undergo diffusion-con-

trolled radical–radical termination reactions with biological

macromolecules, while in nitrated compounds alternatively

ONOOH can undergo homolytic fission to generate one-

electron oxidants, hydroxyl (•OH) and •NO2 radicals (with

a 30 % yield). Nonetheless, this reaction is slow compared

with the other reactions of ONOO- and ONOOH in bio-

logical systems and therefore considered as a modest

component of the in vivo reactivity of peroxynitrite. The

proton-catalysed decomposition of ONOO- to form •OH

and •NO2 radicals becomes relevant in hydrophobic phases

and results in the initiation of lipid peroxidation processes

[5, 6].

Various biological macromolecules including proteins,

DNA and unsaturated fatty-acid-containing phospholipids

are oxidized and/or nitrated by peroxynitrite derived radi-

cals. In fact, tyrosine nitration, dimerization and hydrox-

ylation caused by peroxynitrite to form 3-nitrotyrosine,

3,30-dityrosine and 3,40-dihydrophenylalanine, respec-

tively, are totally dependent on free-radical pathways [7].

Thiols can be oxidized through one-electron reactions by

peroxynitrite-derived radicals and initiate radical-depen-

dent chain reactions to produce higher oxidation states of

sulphur, including sulphinic and sulphonic acid derivatives

[8, 9]. In DNA, purine nucleotides are susceptible to oxi-

dation and adduct formation [10–13], with 8-oxo and

8-nitroguanine existing as two of the major products. Per-

oxynitrite can also cause deoxyribose oxidation and strand

breaks [14].

Peroxynitrite induced oxidative and nitrosative changes

in lipids result in peroxidation [5] and the formation of

nitrito-, nitro-, nitrosoperoxo- and/or nitrated lipid oxida-

tion adducts (malondialdehyde, conjugated diene and lipid

hydroperoxide formation) [15–17]. Peroxynitrite also cau-

ses the oxidation of arachidonic acid and leads to the for-

mation of F2-isoprostanes through the oxidation of low-

density lipoprotein [18]. The nitration of fatty acids may

lead to the secondary inhibition of protein function via

thiol-based modifications [19].

Exposure of DNA to peroxynitrite has been shown to

lead to the formation of 8-hydroxydeoxyguanosine [20]

and 8-nitroguanine from guanosine [21].

Peroxynitrite-Induced DNA Damage

The DNA damage caused by peroxynitrite is mostly oxi-

dative. DNA treatment with peroxynitrite usually leads to

much more damage than treatment with an equivalent dose

of nitric oxide. Besides the higher levels of damage present

in DNA after ONOO- treatment, the scale of damage also

tends to be much more complex. This gives the assumption

that peroxynitrite is intrinsically much more reactive than

nitric oxide. Ischiropoulos and co-workers were among the

Fig. 1 Effects of peroxynitrite

on DNA. The superoxide (O2
•-)

and nitric oxide (NO) reacts to

form peroxynitrite, which

attacks DNA resulting in

(i) oxidation of deoxyribose, (ii)

formation of 8-Nitro-Guanine,

ultimately result in single strand

breaks, (iii) oxidation of

guanine owing its fragmentation
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first to observe the formation of peroxynitrite from acti-

vated macrophages [22]. They detected significant con-

centration of peroxynitrite (as high as 0.11 nmol/

106 cells min-1) using the nitration of 4-hydroxyphenyl-

acetate in the media as a marker of peroxynitrite activity.

Another group led by Lewis performed a kinetic analysis of

the fate of NO• synthesized by activated macrophages

using end product measurements of nitrite and nitrate

(N2O3 hydrolysis forms nitrite while ONOO- decay leads

to nitrate formation) [23]. Their results showed that

approximately half of the released nitric oxide forms N2O3

while the remainder combines with O2
•- to form ONOO-.

Interestingly, from this study, it comes into view that that

ONOO- formation occurs partially extracellularly and not

exclusively inside the macrophage. This can be assumed

from the observation that adding SOD to the media sig-

nificantly reduced ONOO- formation. If peroxynitrite

would have been formed only within the cell, it would have

not been influenced by the extracellular addition of

superoxide dismutase.

Modification of Bases in DNA

The reaction of peroxynitrite with purine bases, such as

guanine and adenine, resulted in the production of a strong

yellow color, whereas pyrimidine bases, such as thymine,

cytosine, 5-methylcytosine, and uracil, did not [21] because

guanine (G) has the lowest reduction potential among the

four normal DNA bases (E8 = 1.29 V [24] ), and its reaction

with the peroxynitrite-derived HO• (E8 = 1.9–2.1 V) [25]

and CO3
•- (E8 = 1.5 V) [26] radicals is thermodynamically

favorable. Furthermore, the bimolecular rate constants for

reaction of these radicals with G (7.8 9 109 M-1 s-1 for

HO•) [27] and (7 9 107 M-1 s-1 for CO3
•-) [28] dictate

extremely fast kinetics for the initial oxidation event. The

yellow coloured compound formed by the reaction between

guanine and peroxynitrite has been identified by HPLC as

8-nitroguanine (first nitration product) and its formation was

most favorable at pH 8 and increased dose-dependently with

peroxynitrite concentration, but was not dependent on the

concentration of guanine. It was proposed that either het-

erolytic cleavage of peroxynitrite to form a nitronium ion

(NO2
?) or a high energy intermediate (ONOOH) derived

from trans-peroxynitrite (pKa 7.9) [29] could be involved in

the formation of 8-nitroguanine [21]. The reaction of 20-
deoxyguanosine with peroxynitrite yields several com-

pounds, two of which were identified as 4,5-dihydro-5-

hydroxy-4-(nitrosooxy)-20-deoxyguanosine (nox-dG) and

8-nitroguanine [30]. The 8-nitroguanine could be formed

either from guanine (depurination of dG) by peroxynitrite or

depurination of 8-nitro-20-deoxyguanosine generated with

peroxynitrite. The reaction of various deoxyribonucleosides

with peroxynitrite was also shown to yield 2-thiobarbituric

acid (TBA)-reactive substances dose-dependently [31, 32].

Yermilov et al. have shown the formation of 8-nitroguanine

dose-dependently in calf thymus DNA when incubated with

low concentrations of peroxynitrite [33]. Among peroxyni-

trite, nitrous acid, tetra-nitromethane, and NO-releasing

compounds, only peroxynitrite was responsible for the for-

mation of 8-nitroguanine. This reaction was inhibited by

antioxidants like urate, ascorbate, N-acetylcysteine and

desferrioxamine [33]. Studies have shown that 8-Nitrogua-

nine was depurinated rapidly from DNA incubated at phys-

iological conditions (t1/2 = *4 h), suggesting its formation

inDNA is potentiallymutagenic because depurination yields

apurinic sites, which can induce G:C ? T:A transversions

[33]. Spencer et al. have shown increased levels of both

oxidized and deaminated base products, including 5-hy-

droxyhydantoin, 5-(hydroxymethyl)uracil, thymine glycol,

4,6-diamino-5-formamidepyrimidine (FAPy-adenine), 2,6-

diamino-5-formamidepyrimidine (FAPy-guanine), 8-ox-

oadenine, 8-oxoguanine, hypoxanthine and xanthine in

addition to 8-nitroguanine [34]. Among these, 8-nitrogua-

nine and xanthine were formed in 100–1,000 times greater

concentrations than other modified bases.

During the peroxynitrite-induced oxidation of guanine,

two main oxidation products namely, 2,5-diamino-4H-

imidazol-4-one (Iz) [30] and 8-oxoG [14] were formed. Iz

has previously been identified as a product of Type I G

photooxidation which undergoes hydrolysis to form 2,2,4-

triamino-5(2H)-oxazolone (Oz) at physiologic pH [35]

(Fig. 2). Oz is expected to accumulate in tissues under

oxidative stress in which Iz is initially formed. Niles et al.

have isolated and identified two highly oxidized products

namely spiroiminodihydantoin, Sp and guanidinohydan-

toin, Gh [36]. 8-oxoG was detected in genomic DNA iso-

lated from tissues not under chronically elevated levels of

oxidative stress ranging from 4 to 11 in 107 bases [37].

Uppu et al. have showed that 103-fold excess of G over

8-oxoG protected only half of the 8-oxoG from reacting

with peroxynitrite implying that 8-oxoG is inherently more

reactive than G with peroxynitrite [38].

There is substantial controversy existing regarding whe-

ther synthesized peroxynitrite reacts with guanine to form

8-oxoguanine in DNA. On one hand, Yermilov et al., Douki

and Cadet, and Uppu et al. reported no significant increase in

8-oxoguanine in calf thymus DNA treated with synthesized

peroxynitrite, compared to non-treated DNA orDNA treated

with decomposed peroxynitrite [30, 33, 38]. While on the

other hand, Inoue and Kawanishi, Fiala et al. and Spencer

et al. showed considerable increase in 8-oxoguanine in calf

thymus DNA treated with peroxynitrite [34, 39, 40]. The

formation of 8-oxoguanine in peroxynitrite-treated DNA

was inhibited by hydroxyl radical scavengers like ethanol

and sodium formate [39]. Kennedy and co-workers also

reported that low doses of peroxynitrite in pUC19 plasmid
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formed 8-oxoguanine dose-dependently, where its level

being decreased with a high dose of peroxynitrite [14]. A

similar decrease in 8-oxoguanine formation at high con-

centrations of peroxynitrite was also reported [30, 33].

Some possible reasons for this discrepancy could be that

(i) 8-oxoguanine formation is mediated by contaminants

(e.g., hydrogen peroxide and metal ions), the concentra-

tions of which may fluctuate in different preparations of

peroxynitrite; (ii) 8-oxoguanine may be formed artificially

during isolation, hydrolysis, and analyses of DNA (e.g.,

conversion of 8-nitroguanine to 8-oxoguanine) and (iii)

under certain circumstances, especially with high concen-

trations of peroxynitrite, the 8-oxoguanine produced may

be further oxidized into the ring cleavage product by per-

oxynitrite [14, 38, 39].

Human skin epidermal keratinocytes exposure to pre-

formed peroxynitrite or SIN-1 led to extensive DNA base

modification [34]. Large increases in xanthine, hypoxan-

thine and 8-nitroguanine were observed, while only small

increases in some oxidized bases including 8-oxoguanine

and FAPy-guanine were found in the DNA from kerati-

nocytes [34]. A variety of DNA base modifications have

also been depicted in immunostimulated macrophages

which produce oxy-radicals and NO, as well as peroxyni-

trite. Levels of xanthine, 5-(hydroxymethyl)uracil, and

8-oxoguanine were found elevated in the DNA of macro-

phages activated with lipopolysaccharide and interferon-c,
which were indicative of both oxidative and deaminative

DNA damage [41, 42]. Both xanthine and 8-oxoguanine

formation was inhibited by an NO synthase inhibitor,

suggesting that NO plays a role in both deamination and

oxidation reactions [42].

Kaneko et al. showed that 8-nitroguanosine induced

oxidative damage and formation of abasic sites in DNA in

AS52 cells [43]. Formation of 8-nitroguanosine has been

considered as mutagenic lesion because of its rapid

removal from DNA strand by depurination to form muta-

genic abasic sites, that can possibly induce G-to-T trans-

versions [44].

Single Strand Breaks in DNA

Over the past few years, several studies have shown the

induction of single strand breakage in DNA upon exposure

to peroxynitrite or to NO and superoxide parallel in dif-

ferent systems. In vitro, peroxynitrite can induce DNA

strand breaks in plasmid DNA such as pBR322, PM2,

CMV and pUC19, converting the supercoiled form to

relaxed or linear forms, which can be separated by agarose

gel electrophoresis [31, 32, 41]. A significant induction of

single strand breakage was observed in pBR322 plasmid

treated with low peroxynitrite, whereas much higher con-

centrations of peroxynitrite [31] or the presence of a cat-

alyst such as manganese porphyrin [45] were required to

induce double strand breakage. DNA breakage caused by

peroxynitrite or SIN-1 (donor of peroxynitrite) was

observed at almost every nucleotide with a dominance at

guanine residues [39]. Peroxynitrite stimulated consider-

ably more single strand breaks at acidic pH than at neutral

or alkaline pH, suggesting that hydroxy radical-like inter-

mediate(s) (ONOOH•) or peroxynitrous acid (ONOOH) are

responsible for the damage [32]. Salgo et al. reported that

benzoate and dimethyl sulfoxide amplified the breakage by

reacting with peroxynitrite to form NO2, which is respon-

sible for the increased DNA damage indicating that the free

hydroxyl radical is not involved in the damage [46].

Manganese porphyrins have been shown to catalyze the

peroxynitrite-induced DNA single strand breakage in an

in vitro system [45]. SIN-1 induced strand breakage was

Fig. 2 Formation of major

products from the reaction of

peroxynitrite and guanine

residue. The reaction between

peroxynitrite (ONOO-) and

guanine (G) residue forms

8-nitroguanine (8-nitroG),

8-oxoguanine (8-oxoG),

5-guanidino-4-nitroimidazole

(NI) and 2,5-diamino-4H-

imidazol-4-one (Iz) and it

undergoes hydrolysis to form

2,2,4-triamino-5(2H)-oxazolone

(Oz) at physiologic pH
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inhibited by superoxide dismutase [41] as well as NO-

trapping agents such as oxyhemoglobin and carboxy-PTIO

[47], suggesting that simultaneous generation of NO and

superoxide is necessary to cause strand breaks, supporting

the assumption that these radicals react with each other to

form peroxynitrite or other oxidant(s). Most of the above

mentioned studies were not performed in intact cells.

However, DNA single strand breakage has also been

reported in intact cells exposed to peroxynitrite [10, 48,

49], indicating that extracellular peroxynitrite has the

ability to enter the cells and reach the nucleus. More

notably, indirect evidence supports the observation that

endogenously produced peroxynitrite can also cause DNA

single strand breakage during immunostimulation of vari-

ous cells in addition to DNA base modifications [34, 50].

For example, the generation of DNA single strand breaks in

immunostimulated macrophages parallels the production of

peroxynitrite [50].

The mechanism for the formation of strand breaks by

peroxynitrite includes its reaction with 20-deoxyribose and

deoxynucleosides to form malondialdehyde and base-

propenals, respectively [2, 31, 32]. The initial reaction

could involve hydrogen abstraction and O2 attack at either

deoxyribose C40 or C50 by hydroxyl radical-like interme-

diate(s) (ONOOH•) or peroxynitrous acid (ONOOH). After

the modification at C40, the strand breakage can be induced

either by C30–(phosphate-O) cleavage or C30–C40 plus C10–
(ring-O) bond cleavages [51]. The strand breakage could

also be induced by cleavage between C40 and C50, fol-
lowing the damage at C50 [52]. Studies by Habib et al. and

Dixit et al. have shown the single breaks resulted from

peroxynitrite upon exposure to DNA. Due to this exposure,

neo-epitopes were generated in the modified DNA owing to

its antigenicity [53, 54].

Biological Effects of Peroxynitrite-Induced DNA

Damage

Apoptosis Induced by Peroxynitrite

Once the level of cellular damage imposed by peroxynitrite

supercedes any possibility of repair, the cell eventually dies

through one of the two main pathways of cell demise,

necrosis or apoptosis. Necrosis is associated with loss of

cellular ATP, leading to membrane disruption, release of

noxious cellular debris, and the development of secondary

inflammation. On the contrary, apoptosis occurs in a well-

strategized sequence of morphological events characterized

by nuclear and cytoplasmic condensation with blebbing of

the plasma membrane. The dying cell ultimately breaks up

into membrane-enclosed particles termed apoptotic bodies,

which are rapidly ingested and degraded by professional

phagocytes or neighboring cells, without inducing any

inflammatory response. Apoptosis is organized by the

proteolytic activation of cysteine proteases known as

caspases, that requires preserved ATP levels to proceed

properly, and which may be triggered either by the acti-

vation of death receptors (extrinsic pathway) or by the

permeabilization of the outer membrane of mitochondria

(intrinsic pathway) [55, 56].

Several studies have shown that NO and peroxynitrite

either cause acute cell death (necrosis) or delayed cell

death (apoptosis) in various cell types [2, 57–59]. Sustained

low level exposure of NO or peroxynitrite cause apoptosis,

whereas cell necrosis results from sudden exposure to high

concentrations of peroxynitrite or NO. Therefore, necrosis

induced by peroxynitrite has been suggested to play an

important role in inflammation.

The cellular mechanisms of peroxynitrite-induced

apoptosis have not been clearly explained which is dem-

onstrated in CHO-Em9 cells defective in their ability to

repair DNA single strand breaks and unrepaired single

strand breaks lead to the formation of double strand breaks

ultimately resulting in cell death [60]. There are number of

regulatory factors such as p53 and CPP32 which appears to

determine the fate of the cell [61, 62] in relation to NO or

peroxynitrite induced DNA damage.

It is noteworthy that different types of DNA injuries can

cause cell cycle arrest in different phases which consecu-

tively can affect the fate of the cell [61, 62]. It is quite clear

that the NO-induced apoptosis associated with proteolytic

cleavage of PARP [63], involves mechanisms that vary

from the apoptosis triggered by potent DNA single strand

breaking agents, such as peroxynitrite and hydroxyl

radical.

Poly(ADP-ribose) Polymerase PARP Activation

and Acute Cell Injury

The post-translational modification of nuclear proteins that

results in the poly-adenosine diphosphate (ADP) ribosyla-

tion is called as PARylation. PAR polymerase (PARP)

enzymes initiate the reaction by converting the substrate

nicotinamide adenine dinucleotide (NAD?) to ADP-ribose

and nicotinamide, and then catalyze ADP-ribose polymer-

ization on nuclear acceptor proteins [64, 65]. The major

acceptors of poly(ADP-ribose) are PARP itself (automodi-

fication domain), topoisomerase I and II, DNA polymerases

a and b, and DNA ligase 2. The ADP-ribosylation reduced

the catalytic activities of these enzymes [66]. Chromatin

relaxation is also caused by the presence of ADP-ribose on

histones (mainly histone H1) [66]. PAR turnover is regu-

lated by PAR glycohydrolase (PARG), which catalyzes the

degradation of poly(ADP ribose) into free ADP-ribose

(ADPr) and adenosine monophosphate [67].
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So far, about 17 isoforms of PARP with different

structural domains and functions have been identified:

PARP-1, PARP-2, PARP-3, PARP-4 (Vault-PARP),

PARP-5 (Tankyrases-1 and 2), PARP-6, PARP-7 (tiPARP),

PARP-8, PARP-9 (BAL1), PARP-10, PARP-11, PARP-12,

PARP-13 (ZAP), PARP-14 (CoaSt6), PARP-15, and

PARP-16 [68, 69]. PARP-1 is the most abundant and best

characterized isoform of the PARP enzyme family. This

nuclear enzyme is a highly conserved protein of 116 kDa.

This protein is composed of three primary functional

domains: an N-terminal DNA-binding domain (46 kDa),

including a nuclear localization signal, a central auto

modification domain (16 kDa), and a C-terminal catalytic

domain (55 kDa). The DNA binding domain contains two

zinc-finger motifs that help in binding to both single and

double-stranded DNA breaks [70].

Poly ADP-ribosylation has been associated in the reg-

ulation of several physiological cellular functions such as

DNA repair, gene transcription, cell cycle progression, cell

death, chromatin function and genomic stability [71].

PARP-1 becomes hyperactivated in response to free radi-

cals, reactive oxygen species and peroxynitrite resulting in

the depletion of NAD? and adenosine triphosphate (ATP)

and ultimately cell death and organ dysfunction. Also,

PARP-1 upregulates the expression of pro-inflammatory

genes by transcription factors activation. Hence, PARP-1

plays important roles in the pathogenesis of many diseases

such as stroke, myocardial infarction, circulatory shock,

diabetes, neurodegenerative disorders including Parkin-

son’s and Alzheimer’s diseases, autoimmune diseases,

allergy, asthma, colitis and other inflammatory disorders

[72, 73].

Peroxynitrite has been identified as a pathophysiologi-

cally relevant trigger of PARP activation [72, 74] and it can

also induce pathophysiological alterations independently

from PARP as well. These alterations are numerous and

include protein modifications (of which the most studied is

tyrosine nitration), DNA modifications, alterations in cel-

lular signal transduction pathways, leading to changes in

inflammatory responses and promotion of cell death via

apoptotic and necrotic routes [75, 76]. The pathway of cell

injury involving the pronounced activation of PARP can

rapidly deplete the intracellular concentration of its sub-

strate, NAD?, retarding the rate of glycolysis, electron

transport and, therefore, ATP formation resulting in acute

cell dysfunction and cell death. It develops rapidly and is

apparently distinguishable from apoptosis (Fig. 3). It has

been suggested that there is an additive or synergistic

relationship involving the PARP-dependent and the PARP-

independent pathophysiological actions [76–78].

PARP activation can contribute to the development of

disease through two main mechanisms: by driving the cell

into an energetically deficit state of dysfunction and by

catalyzing the activation of proinflammatory pathways. In

the first pathway, PARP-1 functions as a DNA damage

sensor and signaling molecule, binding to both single and

double-stranded DNA breaks. PARP-1 forms homodimers

on binding to damaged DNA and catalyzes the cleavage of

NAD? into nicotinamide and ADP-ribose to form long

branches of ADP-ribose polymers on target proteins such

as histones and PARP-1 itself, resulting in cellular ener-

getic depletion, mitochondrial dysfunction and ultimately

necrosis [72, 74]. But in second pathway, various tran-

scription factors, DNA replication factors and signaling

molecules have also been shown to become poly(ADP-

ribosylated) by PARP-1, but a PARP-mediated activation

of the pluripotent transcription factor nuclear factor-jB
(NF-jB) appears to be of crucial importance [72, 79].

Notably, recent studies have suggested that PARP-1

activity can be modulated by several endogenous factors

and PARP-1 can also modulate important signaling path-

ways [78].

The main evidence on the role of peroxynitrite and

PARP in the development of disease is based on in vitro

studies (including studies in human primary cells and cell

lines), as well as on various animal models of disease [78,

80–86]. Evidences were accumulating on the pathophysi-

ological pathways associated with the production of per-

oxynitrite and the activation of PARP specifically in human

disease. The relationship between these two pathophysio-

logical pathways is close and diverse, well supported by

in vitro data and preclinical animal studies using various

pharmacological inhibitors. The pathological activation of

PARP requires the development of DNA single-strand

breaks in vivo [87]. Theoretically, breaks in the DNA can

be brought about by a range of oxidant and free radical

species, including hydroxyl radical and peroxynitrite (but

not by superoxide or nitric oxide alone). From numerous

studies, however, it is quite clear that peroxynitrite is the

key pathophysiological species that can trigger such DNA

injury in vivo. Peroxynitrite can cross cell membranes,

enter the nucleus and cause breaks in the strands of the

DNA [74–76]. Presently, no other species is known with

the capacity of travelling within and between cells and

having the ability to break the DNA [76]. In vitro studies

clearly demonstrate that exogenously applied or endoge-

nously produced peroxynitrite induces DNA strand break-

age and PARP activation, and peroxynitrite-induced cell

death can be attenuated by pharmacological inhibition of

PARP or specifically by genetic inactivation of PARP

isoform [49, 88].

Besides, above mentioned roles, a new role of PARP has

been discovered in regulating the mitochondria-to-nucleus

translocation of apoptosis-inducing factor (AIF). AIF is a

67-kDa mitochondrial flavoprotein that is involved in cel-

lular metabolism and apoptotic pathways [89]. It maintains
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mitochondrial structure [90] and plays a necessary role in

oxidative phosphorylation [91] under physiological condi-

tions where it acts as a key mediator of caspase-indepen-

dent cell death under pathological conditions.

The translocation of AIF from the mitochondria to the

nucleus appears to be the central event, leading to induc-

tion of chromatin condensation and large-scale (& 50 kb)

DNA fragmentation and ultimately cell death [92]. AIF

plays a pivotal role in mediating PAR polymerase-1

(PARP-1)-dependent cell death. Activation of PARP

induces cell death by a mechanism that differs from

apoptosis, necrosis and autophagy [93, 94]. This process

involves translocation of AIF from mitochondria to the

nucleus [95]. Harraz et al. coined the term ‘‘parthanatos’’ to

PARP-1-mediated cell death in order to differentiate this

process from other forms of cell death [96]. PARP-1 does

not cause apoptotic body formation (unlike apoptosis), cell

swelling (unlike necrosis) and also does not involve auto-

phagic vacuole formation and lysosomal degradation like

autophagy. Parthanatos results in phosphatidylserine flip-

ping onto the outer plasma membrane, dissipation of the

mitochondrial membrane potential, chromatin condensa-

tion and large DNA fragmentation [97]. Reduction in AIF

nuclear translocation has been shown by pharmacological

inhibition of PARP activity [98].

Peroxynitrite-Induced DNA Damage: Aspect

in Inflammation-Linked Cancer

Several risk factors that are recognized for human cancers

at various sites include chronic infection by bacteria, par-

asites, or viruses and tissue inflammation such as gastritis,

Fig. 3 Peroxynitrite mediated downstream caspase dependent and independent apoptotic pathways
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hepatitis and colitis [99, 100]. Nitric oxide and other

oxygen radicals generated in infected and inflamed tissues

have been suggested as one of the contributing factors to

the multistage process of carcinogenesis by damaging

DNA and tissues. Since peroxynitrite is currently consid-

ered to be a major compound responsible for tissue damage

caused by inflammation, it may also play an essential role

in carcinogenesis [101].

Peroxynitrite causes numerous types of modifications in

DNA and induces strand breakage. The transversions

comprising of G:C ? T:A are very common in a variety of

genes from all types of human cancers [102] and these

transversions account for 30 % of all p53 gene mutations in

lung cancer and are also high in liver and breast cancer. It

has been suggested that G:C ? T:A transversions are

mostly caused by polycyclic aromatic hydrocarbons such

as benzo(a)pyrene present in tobacco smoke. Nonetheless,

peroxynitrite also caused G:C ? T:A transversions. NO

(formed endogenously by NO synthase in the lung) and

superoxide may react to form peroxynitrite in the lungs of

smokers and play an essential role in smoking-related

diseases like lung cancer. Similarly, the reaction between

catechol–estrogens and nitric oxide can generate oxidants

which are analogous to peroxynitrite [103]. NO is produced

by constitutive and inducible types of NO synthases in

human breast tissues [104, 105] which may react with

superoxide generated from catechol–estrogens to produce

peroxynitrite and can induce the G:C ? T:A transversions

observed commonly in breast tumors.

There are other numerous sites where inflammation,

peroxynitrite production and DNA injury have been linked

to carcinogenesis which include Helicobacter pylori

infection, gastritis and gastric cancer [106–109], as well as

ulcerative colitis and colon cancer [110–112].

Role in Diseases

Various diseases such as diabetes, atherosclerosis, ischemic

heart diseases, stroke, autoimmune and neurodegenerative

diseases are resulted from the disruption of mitochondrial

functions. Peroxynitrite may be either directly produced

within the mitochondria or may reach mitochondria from

extra mitochondrial compartments. Consecutively, perox-

ynitrite nitrates and inhibits Mn-SOD [113] and therefore

preventing the breakdown of locally produced superoxide,

which further increases the formation of peroxynitrite. The

peroxynitrite toxicity in mitochondria results from both

direct oxidative reactions and free radical-mediated damage

[114, 115], secondary to peroxynitrite reacting with CO2,

giving rise to CO3
•- and NO2

• radicals. The latter reaction is

largely favored within mitochondria, which are the main

organelles where CO2 is produced during decarboxylation

reactions [114, 115]. Peroxynitrite further reduces energy

metabolism by inhibiting the tricarboxylic acid cycle

enzyme aconitase, located in the mitochondrial matrix,

through oxidative disruption of the 4Fe–4S center of the

enzyme [116, 117], as well as mitochondrial creatine

kinase, which is present in the intermembrane space [118].

Diabetes

Diabetes is one of the major chronic diseases with an

estimated worldwide dominance of 170 million in 2002

and is expected to double by 2030 according to the World

Health Organization [119]. In this disorder, system’s ability

to regulate blood glucose level in a physiological (5 mM)

range is altered, either by a reduced production of insulin

as a result of pancreatic b-cell destruction (Type 1) or by

insulin resistance (Type 2). Primary Diabetes (Type 1

diabetes) is caused by the autoimmune destruction of

insulin producing b-cells of the pancreatic islet resulting in

prolonged periods of hyperglycemia via reduced uptake of

glucose and relative increase in glucagon secretion and

gluconeogenesis. However, the resulting long-term effects

are far more dangerous than acute hyperglycemia itself.

The endothelial cells are damaged in the vessels by chronic

hyperglycemia and in fact most of the diabetic chronic

complications result from pathological alterations of the

micro and macrovascular system, leading to increased risk

of blindness, infarction of brain and heart, kidney failure

and impaired wound healing [120–122].

Atherosclerosis is the most common macrovascular

complication of diabetes which increases the risk for

myocardial infarction, stroke and peripheral artery disease,

the latter being the principal cause of limb amputation in

civilized countries whereas microvascular complications

consist of retinopathy and nephropathy which are the

leading causes of blindness and renal failure respectively

[123]. Diabetic cardiomyopathy is a complication resulting

from diabetes and is characterized by complex changes in

the mechanical, structural, biochemical and electrical

properties of the heart, which may underlie the develop-

ment of an early diastolic and a late systolic dysfunction, or

both, and increased incidence of cardiac arrhythmias in

diabetic patients [124].

Considerable evidences support the pathogenetic role of

endogenous peroxynitrite formation in diabetic cardiovas-

cular complications both in experimental animals and in

humans [125–127]. Peroxynitrite has been reported to

attack different biological macromolecules, leading to

compromised cardiovascular function in diabetes through

numerous mechanisms. One of these pathways involves

DNA strand breakage and consequent activation of the

nuclear enzyme PARP. This PARP activation (specifically

PARP-1 isoform) is a crucial process in the development of
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diabetic cardiovascular dysfunction both in diabetic ani-

mals and humans [128–130] and may also contribute to the

progress of other diabetic complications such as neuropa-

thy, nephropathy and retinopathy [84]. The kidney biopsies

of patients having diabetic nephropathy and of diabetic

animals have shown increased peroxynitrite formation and

oxidative stress [131, 132]. There is an elevation of

superoxide anion and peroxynitrite formation in retinal

endothelial cells maintained in high glucose [133] and in

retinas of diabetic animals [133, 134] and these alterations

could be attenuated with various antioxidants like NOS

inhibitors or peroxynitrite scavengers [133–135]. Also,

increased formation of peroxynitrite has been documented

in both experimental [135] and clinical diabetic neuropathy

[136]. A novel mechanism has been identified in which

PARP activation induces various pathways leading to

diabetic complications [137]. According to this concept,

hyperglycemia induced superoxide generation from the

mitochondria (directly or indirectly via generation of per-

oxynitrite) induces DNA strand breaks and PARP activa-

tion which, in turn, induces the poly ADP-ribosylation of

glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

The resulting metabolic alterations activate NFjB, polyol
pathway and aldose reductase leading to increased oxida-

tive stress [137]. Studies have shown that inhibition of

PARPs diminished the concomitant NAD? loss and pre-

vented PAR formation [138]. Similarly, isolated b-cells
from Parp1 knockout animals were protected from cell

death induced by ROS [139]. In streptozotocin-induced

diabetes, Parp1 knockout mice were protected from b-cell
loss and subsequent type 1 diabetes. Gene dosage appeared

to be essential as Parp1?/- animals were partially protected

[140].

Animals were also protected after altering the applica-

tion of streptozotocin from a single high dose to multiple

low-dose injections, if PARP enzymes were inhibited or

the Parp1 gene was disrupted [141]. Hence, inhibiting

PARP activity directly suppresses islet cell loss and

therefore prevents the onset of type 1 diabetes. The

increased cellular damage also induces DNA strand breaks,

which in turn activates PARP. PARP inhibitors signifi-

cantly improved diastolic dysfunction of the heart and loss

of endothelium-dependent vasodilation [129]. The admin-

istration of PARP inhibitor PJ34 even one week after onset

of diabetes was effective in spite of persistent hypergly-

cemia [129]. Rats with streptozotocin-induced diabetes

showed increased heart dysfunction and a larger infarcted

area after myocardial ischemia–reperfusion injury as well

as higher mortality rates during reperfusion. Blocking

PARP activity with the inhibitor INO-1001 improved

myocardial function in both groups. In diabetic rats, INO-

1001 significantly lowered the mortality during the exper-

iment [142]. The increase in nuclear AIF after ischemia–

reperfusion was prevented in both control and diabetic

groups. These potent PARP inhibitors reduce the clinical

complications usually seen in diabetes and therefore con-

sidered to be therapeutically good candidates. But PARP

inhibition has been shown to promote cancer formation

under genotoxic stress [143]. Likewise, because many of

the cellular functions are regulated by poly ADP-ribosyl-

ation, very specific inhibitors against few isoforms of

PARP have to be designed [144].

Cardiovascular System Diseases

The one of the major causes of death in developed coun-

tries are diseases of cardiovascular system. Therefore,

improvement in treatment will have a great impact on

mortality rates and average life span. After challenge with

oxidants like peroxynitrite and hydrogen peroxide, PARP

activation was detected in cardiomyoblasts, but not with

NO-donors (S-nitroso-N-acetyl-DL-penicillamine, diethyl-

triamine NONOate) [145]. All these chemicals cause

reduction in mitochondrial respiration. Furthermore,

hypoxia and re-oxygenation stimulated PAR formation.

Unsurprisingly, PARP activity was suppressed by addition

of 3AB and nicotinamide in all cases. In Parp-1 knockout

mouse fibroblasts, NO-donors diminished mitochondrial

respiration, whereas peroxynitrite and hydrogen peroxide

did not. In brief, PARP activation depends on DNA dam-

age induced by peroxynitrite or hydrogen peroxide. In this

case, mitochondrial respiratory failure can be rescued by

PARP inhibitors, but not if reduction of mitochondrial

respiration is achieved by NO-donors, which do not acti-

vate PARPs.

Thiemermann and co-workers showed that PARP

inhibitors (3AB, nicotinamide and 5-ISO, 1,5-isoquino-

linediol) improved heart functionality and reduced infarct

size after occlusion and reperfusion of the left coronary

artery in ischemia–reperfusion of rabbit hearts whereas

structurally similar compounds like 3-AB (3-aminobenzoic

acid) and nicotinic acid, which did not inhibit PARPs, were

not effective [146]. Similarly, Zingarelli and colleagues

reported similar effects in rats, and additionally elevated

necrosis, neutrophil infiltration and nitrotyrosine formation

with loss of ATP. 3AB diminished neutrophil activation

and partially preserved myocardial ATP levels [147]. The

application of 3AB also proved effective in reducing

infarct size and contractile dysfunction in different animal

model (pigs) [148].

In the Parp1 knockout mouse model, it was shown that

INO-1001 attenuated heart remodeling after ischemia–

reperfusion injury (hypertrophy and formation of collagen

in the hearts) in addition to preserving functionality and

translocation of AIF into the nucleus [149]. In a cell cul-

ture-model of cardiomyoblasts, hypoxia followed by re-
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oxygenation led to oxidative stress, PARP activation and a

drop in energy-metabolite levels (NAD? and ATP) [150].

Therefore, necrosis was the common pathway of death and

AIF dependent apoptosis was increased. The administering

of PJ34 attenuated the decline in levels of NAD? and ATP,

possibly due to reduced PAR formation. A shifting took

place from caspase-independent to caspase-dependent

apoptosis. Besides cell survival, PARP inhibition also

modulates the way in which cells die, changing it from the

pro-inflammatory necrosis to the less harmful apoptosis.

Pacher and co-workers showed that inhibition of poly(-

ADP-ribose) polymerases is also effective in a chronic

heart-failure model [151]. They ligated the left anterior

descending coronary artery in rats and tested functionality

and stress parameters. The levels of nitrotyrosine and PAR

were increased in controls and the performance of the left

ventricle was reduced and relaxation was impaired (mea-

sured ex vivo). PJ34 facilitated the reduction of PAR

amount (as expected) but had no significant impact on ni-

trotyrosine formation. Hence, it was not the early damage

(nitrotyrosine level), but the activity of PARPs (polymer

amount) that was suppressed.

In conclusion, PARP inhibition possibly does not reduce

initial damage, but diminishes the ongoing formation of

reactive compounds like NO• and subsequently peroxyni-

trite. This results in preservation of energy metabolites and

blocks the translocation of AIF from the mitochondria into

the nucleus. As a result, necrosis is reduced as well as

overall cell death. Inflammation (neutrophil activation) is

suppressed and the resulting morphological changes like

hypertrophy are reduced. These all collectively lead to an

improved functionality of the heart and a reduction in

infarct size [86, 152, 153].

Neurodegenerative Diseases

Neurodegenerative diseases consist of different conditions

which primarily affect the neurons in the human brain and

spinal cord leading to either functional loss (ataxia) or

sensory dysfunction (dementia). Peroxynitrite formation

has been associated to neurodegenerative diseases like

Alzheimer’s disease, Parkinson’s disease, Amyotrophic

lateral sclerosis (ALS) and other brain pathologies like

Huntington’s disease, multiple sclerosis (MS) [154–157].

The immunoreactivity of nitrotyrosine was established in

early stages of all of these diseases in human autopsy

samples as well as in experimental animal models. Ele-

vated levels of nitrite, nitrate and free nitrotyrosine have

been found to be present in the cerebral spinal fluid (CSF)

and proposed to be useful marker of neurodegeneration

[154–157]. When peroxynitrite is formed in diseased brain,

it may exert its toxic effects through multiple mechanisms,

including lipid peroxidation, mitochondrial damage,

protein nitration and oxidation, depletion of antioxidant

reserves (especially glutathione), activation or inhibition of

various signaling pathways, and DNA damage followed by

the activation of the nuclear enzyme PARP [155–158].

Alzheimer’s Disease (AD)

It is a progressive neurodegenerative disorder which is

characterized by the formation of neuritic plaques rich in b-
amyloid (Ab) peptide, neurofibrillary tangles rich in

hyperphosphorylated tau protein, gliosis and a neuroin-

flammatory response involving astrocytes and microglia,

certainly leading to progressive global cognitive decline,

and accounting for the vast majority of age-related

dementia [159]. This disease is known to cause loss of

functional neurons from several regions of the brain,

although the precise mechanisms of cell loss are still

unclear, but several proposed mechanisms ultimately con-

verge on disrupted calcium signaling [160].

It appears that increased oxidative stress is an early

event in the process of neurodegeneration associated with

Alzheimer’s disease [161–166] and both neuronal and glial

NOS may play a role in the pathogenesis of AD and per-

oxynitrite formation. Expression of nNOS was increased in

neurons with neurofibrillary tangles in the hippocampus

and enthorinal cortex of AD patients as well as in reactive

astrocytes near amyloid plaques [167, 168].

Neuropathological studies have revealed fragmentation

of nuclear DNA (by use of in situ end-labelling, ISEL) in a

much higher proportion of neurons, oligodendrocytes,

astrocytes and microglia in the brains of patients with

Alzheimer’s disease than in age-matched controls [169–

172]. This led to the interpretation that the loss of neurons

is due to apoptosis, probably initiated by Ab-protein or

other inducers of oxidative stress. The extent of apoptosis

which is morphologically evident in Alzheimer’s disease is

very limited and difficult to reconcile with the high density

of ISEL-positive cells. It remains unconfirmed that the

fragmentation of nuclear DNA in Alzheimer’s disease

denotes apoptosis, particularly in the context of non-mitotic

cells.

The connection between DNA damage and oxidative

stress is known to activate DNA repair proteins, including

poly(ADPribose) polymerase (PARP). PARP is stimulated

in response to free radical-mediated injury to DNA after

brain ischaemia and reperfusion [173]. Its overactivation in

injured cells can cause massive consumption of NAD? and

finally resulting in cell death due to energy depletion [173–

175]. Love and co-workers have shown that increased

expression of PARP and intranuclear accumulation of its

end-product poly(ADP-ribose) in neurons in brains from

patients with Alzheimer’s disease than of control brains.

So, there may be the possibility that overactivation of
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PARP may contribute to neuronal loss in Alzheimer’s

disease [176].

Parkinson Disease (PD)

It is the second most common neurodegenerative disease of

adult onset, characterized by progressive loss of dopami-

nergic neurons within substantia nigra pars reticulata

(SNr), resulting in reduced dopamine levels and a loss of

dopaminergic neurotransmission in the striatum, which

interferes with the function of the basal ganglia critical to

motor function and coordination [177, 178]. The common

symptoms are hypokinesia, rigidity, resting tremor and

postural instability. The characteristics of the disease are

Lewy body inclusions in the dopaminergic cells and cell

loss in the substantia nigra (SN). Similar characteristics are

accompanied by Lewy bodies in the cortical neurons and

consequent dementia in diffuse Lewy body disease

(DLBD). Both oxidative stress and excitotoxic injury play

a significant role in the degeneration mechanism of the

dopaminergic neurons in the SN in PD [179], resulting in

intraneuronal calcium level increase and can lead to the

activation of PARP to repair DNA damage. The excessive

activation of PARP leads to massive consumption of

NAD? and subsequently of ATP resulting in cell death due

to energy depletion [180]. PARP is needed as co-activator

for the nuclear translocation and transcriptional activation

of NF-jB in the nuclei of the dopaminergic neurons in PD

[181], which has been involved in the regulation of genes

involved in immune and inflammatory responses, cell

survival, apoptosis, development, differentiation, cell

growth and neoplastic transformation [182]. This ulti-

mately leads to apoptosis by its influence on p53 gene

expression [183].

Soós and co-workers using immunohistochemical

methods confirmed that the expression of PARP is

increased together with the nuclear translocation of NF-jB
in the dopaminergic cells in the SN in PD and DLBD

patients as compared with age-matched control patients

with other neurodegenerative diseases and with normal

controls [184]. This significant increase in PARP expres-

sion in the nuclei of a subset of dopaminergic neurons in

the SN in PD and DLBD can reflect both oxidative damage

and an increased intracellular calcium level leading to

neuronal death by over-activation of PARP.

Besides PARP, peroxynitrite may also induce nitration

of tyrosine hydroxylase, the initial and rate-limiting

enzyme in the biosynthesis of dopamine, leading to inhi-

bition of enzyme activity and consequent failure in the

synthesis of dopamine [185]. The nitration of tyrosine

residues in tyrosine hydroxylase paralleled the decline in

dopamine levels in mouse striatum following 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration

[185]. Tyrosine residues are also crucial for the substrate

specificity of monoamine oxidase B (MAO B) resulting in

impaired dopamine catabolism once nitrated [186]. Per-

oxynitrite also involved in the loss of intracellular gluta-

thione from substantia nigra (an early event in PD) by

inactivating glutathione reductase, the enzyme responsible

for the regeneration of glutathione from its oxidized form

[187, 188], and to induce apoptosis in dopaminergic neu-

rons in PD [189]. Some recent evidences suggested that

mitochondrial complex I inhibition may be the central

cause of sporadic PD and these derangements in complex I

lead to a-synuclein aggregation, which contributes to the

demise of dopamine neurons [190]. Accumulation and

aggregation of a-synuclein may further assist the death of

dopamine neurons through impairments in protein handling

and detoxification [190].

Amyotrophic Lateral Sclerosis (ALS)

It is also known as Lou Gehrig’s disease or motor neuron

disease and most common adult-onset progressive fatal

neurodegenerative disease, which is characterized by rapid,

progressive degeneration of both upper and lower motor

neurons in the motor cortex, brain stem, and spinal cord.

This finally leads to progressive weakness, paralysis and

premature death within 3–5 years after the onset of

symptoms [191, 192]. Patients are cognitively intact and

therefore completely aware of their progressive disability.

About *10 % have familial inheritance, usually with an

autosomal dominant pattern, while most ALS cases are

sporadic with no genetic basis. Various mechanisms like

neuroinflammation, oxidative stress (in sporadic ALS,

sALS), autoimmunity, defect in neuronal glutamate trans-

port, neurofilament accumulation, exogenous factors

(viruses, toxins), mitochondrial dysfunction and mutations

in the SOD gene were implicated to play a role, but the

pathogenesis of ALS is incompletely understood [164,

192–195].

Protein and lipid oxidation markers are elevated in

postmortem tissues of sALS [196–199]. Additionally, the

level of 8-hydroxy-20-deoxyguanosine (8OH20dG), a mar-

ker of oxidative injury of DNA, increases with disease

progression [197] and correlates with disease severity

[200]. These alterations were originally supposed to be

mostly confined to neurons. But, recent studies using spinal

cords of sALS patients or ALS animal models exhibit that

markers of oxidative stress have been localized not only to

motor neurons but also astrocytes, microglia, and macro-

phages [198–203].

DNA damage as a result of oxidation, alkylation or

ionizing radiation is associated with activation of PARP

[204–207]. When PARP is activated by DNA strand

breaks, it subsequently transfers branched chains of ADP-
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ribose to a variety of nuclear proteins, including PARP

itself [208]. It can also be activated by inositol 1,4,5,-tri-

phosphate-Ca2? mobilization without DNA damage [209].

Ca2? promotes PARP activation and Ca2? acts as an

activating factor in PARP-mediated cell killing [210, 211].

Even though PARP facilitates DNA repair [212], excessive

PARP activation can cause massive consumption of its

substrate NAD? and results in cell death due to energy

depletion [205, 208, 210, 213–215]. Recently, studies have

shown that FUS (fused-in-sarcoma, member of the heter-

ogeneous nuclear ribonucleoprotein family of proteins that

bind thousands of pre-mRNAs and can regulate their

splicing) is a component of the PARP-1 dependent

response to oxidative chromosomal DNA damage and

defect in this response might contribute to ALS [216].

Protein nitration may also play a role in ALS patho-

genesis, acting directly by inhibiting the function of spe-

cific proteins and indirectly interfering with protein

degradation pathways and phosphorylation cascades [217].

Peroxynitrite can participate in the pathogenesis of ALS,

because it can activate spinal cord astrocytes, which nor-

mally provide excellent trophic support to motor neurons,

to assume a reactive phenotype that induces the death of

motor neurons [218]. Reactive astrocytes are common

characteristic of neurodegeneration. The transformation of

astrocytes into reactive astrocytes is the reason behind

progressive nature of ALS and cause the relentless death of

neighboring motor neurons.

The involvement of PARP has been emphasized as a

pathogenic mechanism in MPTP-induced Parkinson’s dis-

ease [219–221], Alzheimer’s disease [222] and ischemic

brain injury [174, 222]. Moreover, PARP inhibitors have

been proposed as potential therapies in neurodegenerative

diseases in which oxidative stress is suspected to play an

important pathogenic role [207, 219–226].

Conclusions

Peroxynitrite is a charged strong oxidant capable of modi-

fying various types of biological macromolecules to produce

variety of products. It primarily acts as a trigger for multiple

forms of DNA damage (Base modifications, single strand

breakage, and apoptotic double strand breakages). It is known

to inducedamage in theDNAbases predominantly at guanine

and 8-oxoG nucleobases through thermodynamically and

kinetically favorable oxidation reactions. Peroxynitrite

induced DNA damage activates PARP and it catalyzes ADP-

ribose polymerization on nuclear acceptor proteins by con-

verting the substrateNAD? to ADP-ribose and nicotinamide,

triggering caspase-independent cell death through Apoptosis

Inducing Factor. It helps in upregulation of pro-inflammatory

genes expression by activating transcription factors. As a

result, activated PARP plays an important role in pathogen-

esis of numerous diseases like diabetes, cardiovascular dis-

eases and neurodegenerative diseases. Several strategies

were suggested for the inhibition of peroxynitrite-induced

damage. One of them involves targeting of cytotoxic path-

ways stimulated by peroxynitrite which is now becoming a

feasible approach to alleviate disease signs in numerous

disorders. Controlled blocking of the activity of PARP could

provide a possible direction to overcome such oxidative and

nitrosative damages. But excess of DNA damage results in

over stimulation of PARP, leading to an energy deficit state

and ultimately necrsosis. So, there is a need for exploration of

more beneficial approaches in future.
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48. Kennedy M, Szabó C, Salzman AL. Activation of poly(ADP-

ribose) synthetase mediates hyperpermeability induced by per-

oxynitrite in human intestinal epithelial cells. Crit Care Med.

1997;5(Suppl):A68.
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126. Pacher P, Szabó C. Role of peroxynitrite in the pathogenesis of

cardiovascular complications of diabetes. Curr Opin Pharmacol.

2006;6:136–41.

127. Giacco F, Brownlee M. Oxidative stress and diabetic compli-

cations. Circ Res. 2010;107:1058–70.

128. Du X, Matsumura T, Edelstein D, Rossetti L, Zsengellér Z,
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