Skip to main content
. 2015 Apr 24;95(5):545–568. doi: 10.1007/s13594-015-0227-4

Table 1.

Comparison of next-generation sequencing technologies adapted from Metzker (2010)

Platform Library preparation Chemistry Consensus accuracy Average read length (bp) Reads per run Run time Pros Cons Application References
Roche 454 GS FLX Titanium+ Fragment, Mate Pair/ emPCR Pyrosequencing 99.997% ~700, maximum 1000 ~1,000,000 23 h Long read length High reagent cost, homopolymer repeat errors De novo assemblies, metagenomics http://454.com/products/gs-flx-system/index.asp
Illumina- Solexa MiSeq Fragment, Mate Pair/ Solid phase Reversible terminator 98% 2 × 300 ~25,000,000 ~55 h 300 bp reads Widely used platform Short read length Small genomes, 16s amplicon, improving coverage http://systems.illumina.com/systems/miseq.html
Life Technologies SOLiD 5500 Series Fragment, Mate Pair/ emPCR Sequencing by ligation (Cleavable probe) 99.99% Mate-paired 2 × 60, Paired-end 75 × 35 Fragment 75 1.2–1.4 billion 1–2 weeks Low-cost Slow, issues with palindromic sequences reported Whole genome re-sequencing, variant analysis http://www.lifetechnologies.com/ (Huang et al. 2012)
Life Technologies Ion Torrent Fragment, Mate Pair/ emPCR Sequential ion detection 98% 35–400 80,000,000 90 min Fast and inexpensive Reported homopolymer errors Small genomes, gene expression, ChiP-SEQ http://www.lifetechnologies.com/
Pacific Biosciences SMRT RS II Fragment only/ Single molecule Real-time 99.999% N50 14,000, maximum >40,000 ~50,000 30 min–4 h Longest read length, detects base modifications, fast Low single sequence accuracy 87% De novo assemblies, Base modification detection, Transcriptome sequencing (Murray et al. 2012; Chin et al. 2013) http://www.pacificbiosciences.com/