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Abstract

Growing recognition of the numerous, diverse and important roles played by non-coding RNA in 

all organisms motivates better elucidation of these cellular components. Comparative genomics is 

a powerful tool for this task and is arguably preferable to any high-throughput experimental 

technology currently available because evolutionary conservation highlights functionally 

important regions. Conserved secondary structure, rather than primary sequence, is the hallmark of 

many functionally important RNAs, since compensatory substitutions in base-paired regions 

preserve structure. Unfortunately, such substitutions also obscure sequence identity and confound 

alignment algorithms, greatly complicating analysis. This paper surveys recent computational 

advances in this difficult arena, which have enabled genome-scale prediction of cross-species 

conserved RNA elements, suggesting that a wealth of these elements indeed exist.

Introduction

Non-coding RNAs (ncRNAs) are functional transcripts that do not encode proteins. A 

handful of examples, such as transfer and ribosomal RNAs, have been well known since the 

dawn of molecular biology, and probably have existed since the dawn of life. These few 

examples have critical and deeply central roles, but, ironically, elucidating the full spectrum 

of ncRNA activity has received relatively little attention. Within the last 10-15 years, 

however, a number of striking discoveries including RNA interference, microRNAs and 

riboswitches have demonstrated that RNAs have unexpectedly diverse, sophisticated and 

important roles in all living organisms, sparking renewed interest in the “modern RNA 

world” [1]. To hint at the scope of the issue, only 1.2% of the human genome encodes 

protein [2], but recent data suggest that 90% of the genome is transcribed on one or both 
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strands, to some extent, at some time, in some tissue [3]. The significance of this observation 

remains unclear and controversial, but a growing body of evidence points to the presence of 

many functionally important non-coding transcripts [4]. Even if the bulk of the non-coding 

transcription is “noise,” this still provides a vast substrate upon which natural selection may 

have acted to generate a multitude of biologically important non-coding RNAs. Thus, even 

striking ncRNA-related discoveries, such as microRNAs, may only be the “tip of the 

iceberg.”

Interest in conducting computational screens for functional RNAs has risen with their 

increased prominence [5]. However, in contrast to protein coding genes, whose regular 

codon structure provides strong signals aiding their computational recognition within 

nucleotide sequences, the signals for ncRNAs are subtler. For example, many ncRNAs are 

believed to be processed out of longer primary transcripts—including introns of protein-

coding genes—hence lack features such as proximal promoters in addition to codon 

structure [1]. There is, however, one general characteristic shared by many (but not all) 

known ncRNAs: they fold into complex shapes that are critical to function and thus 

conserved. While prediction of RNA 3D structure is less well developed than protein 

structure prediction, the prediction of RNA secondary structure—the set of intramolecular, 

largely Watson-Crick, base pairs defining the fundamental units from which the tertiary 

structure is formed—is reasonably well understood and computationally tractable. 

Furthermore, secondary structure also tends to be conserved, while primary sequence often 

evolves more rapidly (see Figure 1) and is of limited use except when searching for close 

homologs. These facts make secondary structure the key signal to be exploited in ncRNA 

prediction. Although secondary structure (henceforth, simply structure) prediction is 

tractable, it is not trivial (e.g., involving interactions between nucleotides at variable and 

sometimes large distances in the primary sequence), which makes the problem challenging 

intellectually and computationally [5].

Most RNA will fold into some secondary structure, but given the importance of secondary 

structure in functional ncRNAs, it is reasonable to ask whether they have more stable 

structures than random genomic sequences. A negative answer to this question was provided 

about a decade ago. That is, the folding energy of RNA genes is not easily distinguished 

from that of appropriately chosen background sequences, such as randomly shuffled 

versions of the RNA gene itself [6, 7]. Therefore, a simple screening approach that seeks 

unusually stable genomic segments, will generally not work. MicroRNAs, whose precursors 

form unusually stable stem-loops, are a notable exception [8, 9]

Although searching for possible structured elements in one nucleotide sequence is generally 

ineffective, as discussed above, searching in multiple (orthologous) sequences can be highly 

effective, since evolutionary conservation highlights functionally important regions of all 

kinds. Importantly, such searches leverage the rapidly increasing body of comparative 

genomic sequence data. A key issue, however, is that the evolutionary signature of an RNA 

gene is quite different from that of a protein-coding gene. In particular, as noted earlier, the 

nucleotide sequence of an ncRNA might evolve relatively rapidly, making identification and 

alignment of orthologous sequences difficult or impossible, especially when using tools that 

focus only on sequence. However, patterns of compensating base changes, for example, an 
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A–U base pair in a human RNA sequence corresponding to a C–G pair in mouse, can 

provide evidence supporting both the existence of a conserved RNA structure (without 

requiring conserved sequence; see Figure 1) and insight into the structure itself. Indeed, 

short of X-ray crystallography, this type of comparative analysis, done carefully by human 

experts [10], has been the gold standard for RNA secondary structure prediction for more 

than forty years. In a nutshell, this highlights the key challenges in computational prediction 

of ncRNAs: to find orthologous regions, expose the common structure therein, and do so 

both rapidly and accurately.

The comparative approach is important for an additional reason. Over the next few years, we 

expect that emerging technologies such as high throughput sequencing of RNA (RNAseq 

[11]) will reveal the transcriptomes of many organisms with unprecedented depth and 

precision. Yet, given the extensive breadth of genomic transcription now observed at least in 

mammals, evidence of transcription can no longer be taken as proof of functional 

importance. Any observed transcript might just be “noise” or incompletely degraded detritus 

arising from the expression of some nearby, functionally important RNA. Furthermore, 

experimental protocols will remain limited with regard to the diversity of species, cell types, 

states, growth and stress conditions that are probed. Consequently, lack of measured 

expression of a given genomic segment is not proof of lack of function. In contrast, 

evolutionary conservation strongly suggests functional importance, whether or not 

expression has already been experimentally verified. This does not deny the value of 

experimental evidence, of course, nor deny the existence of functionally important species-

specific ncRNAs, but merely argues that detection of evolutionarily conserved ncRNAs by 

comparative genomics is a powerful tool, and belongs in any effort to understand living 

systems.

Computational search for conserved RNA structure does have certain important limitations. 

We highlight two of them here, since they color much of what follows. First, these searches 

are computationally expensive, principally due to the nature of the underlying RNA folding 

algorithms [12, 13] that need to be applied to these multiple sequences. Even single-

sequence folding algorithms have run times that grow as the cube of the sequence length. 

Applied naively, however fast screening of a sequence of one kilobase is, it will be a 

thousand times slower for 10 kilobases and a million times slower for 100 kilobases. Hence, 

all successful programs in this arena are carefully engineered to control runtime, which 

entails some, hopefully modest, loss of accuracy on long genomic sequences. For example, 

one simple, widely used strategy is the “sliding window” approach, wherein the genomic 

sequence is cut into multiple, overlapping, fixed-length segments (“windows”) that are 

processed separately. This obviously limits the cubic runtime penalty to the length of the 

window, but, unfortunately, also limits the lengths of discoverable structures and risks 

arbitrarily truncating them. Even using substantially more sophisticated techniques, genome-

scale ncRNA analyses often consume tens to hundreds of computer-years. These high 

computational costs are one reason why ncRNA gene finding is still in its infancy.

The second significant limitation of the general searches for conserved RNA secondary 

structures we will describe is more conceptual. It is natural to want to think of each element 

discovered as a “non-coding RNA gene”, but the truth is more complex since the approaches 
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described here might generate only a partial picture for each ncRNA. For example, technical 

limitations related to “window” boundaries or splicing could result in partial or fragmentary 

predictions. More intrinsically, some ncRNAs lack conserved secondary structures, or may 

have only patches of conserved structure embedded in longer, largely unstructured 

transcripts. Additionally, conserved, functionally important RNA structures, such as the 

selenocysteine insertion sequence (SECIS element), are known to exist in messenger RNAs, 

usually in their untranslated regions. Therefore, identification of RNA structures in genomic 

data should trigger post-processing steps and follow up experiments to more precisely 

characterize transcript boundaries (and function!). For reasons of simplicity, however, in the 

following we will refer to individual conserved structures as “ncRNA genes.”

This review focuses explicitly on computational prediction of non-coding RNA elements by 

comparative genomics, i.e., the discovery of conserved structured elements in multiple 

genomic sequences. Other methods for de novo prediction have succeeded in some contexts 

(e.g., exploiting organism-specific differences in mono- or dinucleotide frequencies of 

ncRNAs versus background [14-16]), but the comparative approach appears to be the most 

broadly applicable. We will say little about the related ncRNA homology search problem—

finding new instances of a particular RNA family given one or more examples—but this 

equally important task comes with its own set of issues [17], especially the difficulty of 

finding homologs outside the phylogenetic range of known examples.

From RNA folding to gene finding

Even though RNA structure cannot reliably be detected by merely folding single sequences, 

the principles obtained from folding single sequences are fundamental and often constitute 

an implicit part of more elaborate methods. For example, to date, no large-scale RNA 

structure screens have accounted for so-called pseudoknots, since the underlying RNA 

folding algorithms do not do so. Without pseudoknots, RNA secondary structure can be 

represented by nested parentheses. For example, the hairpin structure of the sequence 

AAAAUUCGGCAAUUUU with base pairs exactly between A's and U's can be written as 

((((((….)))))). Although most large RNA structures do contain pseudoknots, they make 

up a relatively small portion of the overall structure. Algorithms that account for these more 

general cases are dramatically more complex (and slower) for seemingly modest gains in 

accuracy.

Folding of sequences is typically performed through energy minimization, whereby different 

structural elements are associated with experimentally measured energy parameters. Well-

known programs for this task are mfold [18] and RNAfold [19]. Rather than minimizing the 

free energy, folding can also be carried out in a probabilistic framework, wherein the 

structure with the highest probability is sought. This is achieved through a so-called 

Stochastic Context-Free Grammar (SCFG), see e.g., [20, 21], typically using probabilities 

extracted from curated rRNA and tRNA alignments [22, 23]. The probabilistic and energetic 

frameworks are intimately connected, since one expects energetically destabilizing 

substitutions to be evolutionarily disfavored. Indeed, recent work shows that statistics 

derived from good structural alignments can be used to improve upon experimentally 

measured energy parameters [24]. Both energy-based and SCFG based methods are now 
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part of the core inventory of ncRNA gene prediction methods. These principles for folding 

single sequences are variously employed on multiple sequences as well, often together with 

schemes that simultaneously search for compensating base changes.

In silico screening for RNA structures

Predicting RNA structure in genomic sequence is of course closely related to the existing 

methods for RNA structure prediction. As indicated above, multiple sequences are needed to 

reliably predict RNA structures. Several strategies exist for RNA structure prediction based 

on multiple sequences [25], which can be loosely categorized as “align-first,” “fold-first” 

and “joint.” As the name suggests, align-first strategies start by aligning all sequences using 

standard multiple sequence alignment tools, followed by inference of their presumed 

common structure. That inference typically proceeds by some combination of folding energy 

prediction and detection of compensatory base changes, e.g., as quantified by high mutual 

information [20, 22] between pairs of columns in the alignment. These methods work best 

when sequence conservation is sufficiently low that compensatory changes are not rare, but 

high enough that they are generally bracketed by well-conserved patches, which constrain 

the changes to be correctly aligned (and hence visible as a high mutual information score 

between paired columns). Dual to align-first strategies, fold-first strategies fold individual 

sequences separately, and then align the structures to each other. These strategies can be 

expected to excel where sequence conservation is low, but structure is clear-cut, stable and 

well-conserved. Joint strategies, such as approaches based on Sankoff's algorithm [26], 

simultaneously align and fold their input sequences. In a sense, the align-first and fold-first 

strategies are aimed at opposite evolutionary extremes. The joint approach, with an 

appropriate joint model for sequence and structure evolution, subsumes the other two, as 

shown in [27]. In practice, however, both high computational costs and difficulties in 

appropriately specifying such an evolutionary model have hindered the joint methods, 

leaving viable niches for all three approaches. Current approaches for de novo genomic 

screening mostly utilize methods based on the fold-first and joint strategies, as exemplified 

in Figure 2, in which prediction is based on finding structures within relatively short 

sequences locally, rather than globally. Meanwhile, fold-first methods have mainly been 

applied in homology searches [28, 29].

Besides ignoring pseudoknots, another crucial limitation of current genomic screening 

methods is their inability to cope with structural variation. That is, they assume that the 

individual RNA sequences share a conserved structure with little variation. In particular, 

structural inserts, resulting in large length differences, are poorly handled by current 

programs. Such structural inserts are, however, frequently observed in evolutionarily old 

ncRNAs, such as RNaseP [30]. Even the state-of-the-art SCFG-based homology search 

program Infernal deals only indirectly with structural inserts through its ability to match a 

local substructure [31]. Recent programs for comparison of RNA structure, such as 

LocARNA [32], point out some ways to address the problem. Additionally, the presence of 

two nearby structural alignments might suggest an intervening structural insertion/deletion 

in some of the sequences, a situation that potentially could be detected in a post-processing 

step. However, none of these approaches fully overcomes this limitation of the current de 

novo screening methods.
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In the following we provide an overview of the main methodologies applied for de novo 

RNA structure discovery. These are also listed in Table 1.

Exploiting sequence-based multiple alignments for ncRNA screens

A natural approach for de novo structure-based search is to exploit existing sequence based 

alignments, i.e., the align-first strategy outlined above. QRNA [33] was an early tool of this 

kind. It screened pairwise BLASTn [34] alignments using three probabilistic models: a pair-

SCFG for detecting RNA structures, and two pair-HMMs (hidden Markov models) for 

detecting coding and background sequences, respectively. QRNA screens on sequences 

from Escherichia coli and Saccharomyces cerevisiae resulted in the detection of several 

novel ncRNA candidates, some of which were subsequently verified experimentally [35, 

36].

Given the apparent importance of a stable structure, it is reasonable to speculate that the 

predicted folding energy of a given sequence would be a useful clue for the detection of 

putative ncRNAs. This appears to be true, but proved difficult to verify, requiring careful 

statistical analysis and the consideration of both mono- and dinucleotide frequencies, as the 

latter affect stacking energies [6, 7, 37]. The magnitude of the energy difference between 

“random” sequence and functional ncRNAs, while generally not sufficient for reliably 

detecting them based on the genome of a single species, becomes more pronounced in 

multiple alignments. AlifoldZ [38] introduced this approach. It compared the folding energy 

resulting from a consensus structure prediction on the native alignment with those of 

shuffled alignments, i.e., those arising from randomly shuffling the columns of the native 

alignment. More recently, the RNAz framework [39, 40] improved speed and sensitivity by 

introducing a fast regression to estimate the stability of a native RNA compared to shuffled 

sequences, together with a new measure for structural conservation and a support vector 

machine (SVM) classifier to predict whether an alignment contained an ncRNA.

None of the methods discussed so far directly exploit phylogenetic information, e.g., the tree 

structure and branch lengths that relate individual sequences in the alignment. Pfold [41, 42] 

and EvoFold [43] do so. These methods compare two alternative statistical models—a 

background model for unstructured sequence versus an SCFG model of RNA sequence and 

structure, both evaluated with respect to the given phylogeny. A section of the alignment is 

predicted to be an ncRNA if it is more likely under the RNA model than under the 

background model. In particular, a pattern of substitutions in putatively base-paired columns 

favoring structure-preserving compensatory changes tends to support the RNA model over 

the background model.

QRNA, RNAz and EvoFold all use “sliding window” strategies. The main advantage of this 

approach is speed; its major disadvantage is its potential for misprediction near the window 

boundaries, including the possibility of missing RNAs that are longer than the windows' 

overlap. These drawbacks might be ameliorated by adjusting window lengths dynamically, 

but to the best of our knowledge, this has not been attempted.

The University of California Santa Cruz (UCSC) genome browser provides whole-genome 

MULTIZ alignments of vertebrates [44]. Initial screens of their 8-way alignments (human, 
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chimp, dog, mouse, rat, chicken, zebra fish and fugu) using RNAz and EvoFold resulted in 

an unexpectedly large number of ncRNA candidates: 36,000 [40] and 48,000 [43], 

respectively. In both cases, candidates were widely distributed throughout the genome, as 

illustrated in Figure 3 for the RNAz screen. One of the EvoFold candidates, the ncRNA gene 

HAR1F (Human Accelerated Region 1F), was the subject of an in-depth follow-up study 

[45] that demonstrated its specific expression during cortical development and accelerated 

evolution along the human lineage. RNAz and EvoFold have since been applied in several 

other screens of diverse organisms. For example, an RNAz screen on porcine EST 

(Expressed Sequence Tag) sequences allowed for direct comparison to expression data 

(ESTs) in 92 cDNA libraries from 35 tissues and different developmental stages [46]. The 

screen found brain and developmental tissues to host the highest relative numbers of 

predicted ncRNAs structures (∼2% of genes expressed at detectable levels) whereas ncRNA 

content for the other tissues amounts to about 1%. A summary of other screens can be found 

on the ‘RNA Structure in Genomic Sequence’ supplementary web-page: http://

genome.ku.dk/resources/rsgs.

It has proven difficult to estimate the reliability of these predictions. The standard method of 

comparing predictions to some “gold standard” is problematic, since the available “true 

positives,” i.e., known ncRNAs, while generally well-recovered by these methods, are 

potentially not representative of yet undiscovered ncRNAs. Furthermore, there is no 

satisfactory, biologically justifiable set of “true negatives,” particularly in light of the 

widespread transcription observed in mammals. Instead, studies generally estimate their 

false discovery rate (FDR) by comparison to randomly shuffled sequences or alignments. 

Based on this approach, the human screens described above were estimated to have FDRs of 

15–50% for RNAz and up to 70% for EvoFold [47]. This emphasizes the need for continued 

development of ncRNA prediction methods, as well as for follow-up experiments. However, 

even if the true FDR in these studies were 90%, the remaining 10% still constitute thousands 

of novel ncRNAs in the human genome. One technical point that is worth noting is that the 

accuracy of the FDR estimation itself will depend on how well the randomized data reflect 

the complexities of real genomes. For example, the dinucleotide composition of an RNA 

sequence affects its stacking energy, thus randomizations that do not control for this yield 

biased FDR estimates [48]. Recent work [48-50] provides procedures that generate 

randomized multiple sequence alignments that approximately preserve dinucleotide-, gap-, 

and other statistics observed in the native alignments, thus providing a more appropriate null 

distribution for FDR estimation, but the FDR estimates reported in the ncRNA screens 

discussed here generally are not based on these improved methods.

Genomic screening by pairwise local structural alignments

While exploiting multiple alignments saves computational costs, there is the significant 

disadvantage that alignments might simply be incorrect, which will become increasingly 

likely as the sequence similarity drops. For example, the sensitivity of AlifoldZ drops 

sharply for pairwise sequence similarities below 60% [38]. This limitations can, at the 

expense of computational costs, be addressed within the above-mentioned joint approaches, 

e.g., the Sankoff framework for simultaneously folding and aligning sequences [26]. 

Available methods using this strategy include FOLDALIGN [51, 52], Dynalign [53, 54], 
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and LocARNA [32], which are all energy-based, as well as Consan [55] and StemLoc [56], 

which are SCFG-based. Furthermore, alternatives to the Sankoff framework have also been 

developed, such as SCARNA [57], which compares stem fragments to construct pairwise 

structural alignments.

The latest version of Dynalign [54] predicts ncRNAs using its own Sankoff-based pairwise 

structural alignments [53] and an SVM classifier trained on those alignments. In a pairwise 

analysis of E. coli and Salmonella typhi, its additional alignment flexibility appears to have 

resulted in improved sensitivity compared to RNAz, at least for regions that exhibited low 

sequence similarity (<50% identity). Using a sliding window approach based on genome-

wise BLAST and MUMmer [58] alignments, approximately 1000 novel candidates were 

reported in these two genomes [54].

To detect remotely homologous ncRNAs, it is desirable to extend such searches to directly 

perform local structural alignments, rather than relying on purely sequence-based tools such 

as BLAST. To illustrate this, we have examined a 500 nucleotide region from the human 

genome containing one known tRNA and a 500 nucleotide region from the distant Euglena 

gracilis chloroplast genome containing three tRNAs. BLAST reports no significant match 

between them. FOLDALIGN, however, detects one human subregion that structurally aligns 

to three different locations within the chloroplast sequence, exactly corresponding to the 

tRNAs therein, despite the low (40–50%) sequence identities among these matching regions 

(Figure 4). Note the importance, and difficulty, of local alignment here, which allows a 

structure common to a small portion of each input sequence to be detected amidst 

extraneous flanking sequences; the algorithm must thus identify element boundaries as well 

as structure. The FOLDALIGN screen takes ∼2 minutes, however, compared to ∼0.03 

seconds for BLAST, further motivating the desire to accelerate these methods.

FOLDALIGN has also been used to screen regions of low sequence similarity between 

human and mouse [59]. These were selected by choosing corresponding, but unaligned 

regions as identified via the UCSC genome browser's [60] MULTIZ alignments. A total of 

37,000 such regions were screened, each in both forward and reverse directions. The screen 

resulted in ∼1300 candidates, with an FDR of ∼50% as estimated from dinucleotide-

controlled shuffled data. This particular screen took 5 months of computer time using 70 

CPUs (Pentium IV, 2.4 GHz) with an earlier version of FOLDALIGN [61]. The current 

version of FOLDALIGN is estimated to be 20 times faster (i.e., one week on similar 

hardware), largely due to its ability to discard poor intermediate alignments, but even after 

this improvement in speed, an all-to-all comparison of two mammalian genomes remains 

highly impractical. Other applications of FOLDALIGN for genomic sequence analyses can 

be found at: http://genome.ku.dk/resources/rsgs.

Employing local multiple structural alignments for screening

Using more than two organisms will potentially yield more accurate predictions. Extending 

the FOLDALIGN pairwise screen, CMfinder [62] was applied to the 44 ENCODE regions 

[3], which cover 1% of the human genome. CMfinder discovers structured RNA motifs in a 

set of unaligned sequences. It builds local alignments, i.e., flanking regions that do not 

appear to contain RNA are ignored. Furthermore, entire sequences that do not appear to 
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contain RNA are ignored, which is valuable since the phylogenetic range of a given ncRNA 

is typically not known in advance. CMfinder builds an initial heuristic local alignment using 

both sequence- and energy-based seed structures from which it derives a covariance model 

[20, 22, 63] (a specialized SCFG). The alignment and model are then refined jointly, using 

an approach akin to that of [22], but extended to local alignments. While the approach is free 

of any constraints imposed by fixed window sizes and pre-computed alignments, in order to 

control run time, there are some a priori, user-specified restrictions with regard to the 

complexities of motifs (e.g., number of hairpins) that can be discovered. In the CMfinder 

ENCODE screen[64], precomputed MULTIZ sequence alignments for the ENCODE 

regions were used, but, in contrast to “align-first” methods discussed earlier, they were only 

used to indicate orthology, not alignment at the nucleotide level. Repetitive sequences were 

included, but exons and PhastCons [65] elements were omitted. The average sequence 

identity of the 56,017 input alignments was 50%, with an average sequence length of 155 

nucleotides. The screen resulted in 6587 ncRNA candidates, with an estimated FDR of 50% 

[64]. About 60% of the candidates were located in non-coding parts of protein-coding genes. 

Of these, 83% were located in introns, 14% in 5′ UTRs and the remainder in 3′ UTRs, an 

interesting bias perhaps due to poor annotation of UTRs. A small number of candidates were 

experimentally tested. Most of these showed tissue-specific expression in humans. For one 

67 nucleotide candidate in a 4KB intron of the neuron-specific Synapsin 3 gene, northern 

blot analysis confirmed expression of a 2.8Kb ncRNA in brain [64].

One key observation from this study was that the lower the identity of the input sequences, 

the more they were realigned—i.e., the structure-driven alignments produced by CMfinder 

differed more from the MULTIZ sequence-based alignments as sequence identity declined. 

While not surprising, the extent of this trend suggests that standard alignments might be 

misleading unless well-conserved in primary sequence. The issue is significant since 25% of 

candidates had more than 50% of their positions realigned when compared to the original 

MULTIZ alignments. Furthermore, many regions with identities above 70% were realigned, 

and even small realignments can have an impact, as illustrated in Figure 5.

The RNAZ, EvoFold and CMfinder screens processed slightly different subsets of the 

ENCODE regions, but their predictions on the common subset can be directly compared 

[47]. For example, 330 genomic loci were predicted by both RNAz and EvoFold. This 

degree of overlap, as well as the other overlaps quantified in Figure 6, is highly unlikely to 

occur purely by chance, given the lengths of the predictions in comparison to the total size 

of the ENCODE regions. Nevertheless, this numerically modest level of concordance among 

methods appears somewhat disappointing. However, further investigation has shown that 

this was mainly due to different sensitivities in different regimes of sequence composition 

and sequence similarity [47]. Whereas EvoFold candidates primarily lie in highly conserved, 

AU-rich regions, RNAz (and CMfinder) candidates tend to be slightly GC-rich and exhibit 

more sequence variation. We speculate that RNAz and EvoFold might be missing candidates 

due to their reliance on sequence-based alignments, particularly in diverged regions, 

whereas CMfinder favors such regions, while ignoring evolutionary relationships exploited 

by EvoFold, and energetically stable candidates lacking strong covariance patterns favored 

by RNAz. Thus, overall, these methods can be considered as complementary, with each of 
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them able to predict a fraction of the ∼20,000 unique candidate loci found in total in the 

ENCODE regions.

Applications of CMfinder to prokaryotes (emphasizing riboswitch discovery) are also listed 

at: http://genome.ku.dk/resources/rsgs.

Future development of current methods for local structural RNA alignments is highly 

anticipated. For example, an extension of SCARNA [57], called SCARNA_LM, has been 

published recently [66]. It creates local multiple alignments using the same principles of 

comparing fixed size stem fragments that are separated into their 5′ and 3′ parts, 

respectively. We hope that other methods will follow as well.

Conclusions and perspectives

To date, annotation in the genome databases relates almost exclusively to protein coding 

genes. In contrast, the computational screens for non-coding RNAs described here suggest 

that a large number of functional ncRNAs still remain to be found. This is consistent with 

the observation that most of the non-coding mammalian genome is transcribed. 

Computational de novo discovery of non-coding RNAs within genomic sequences is still in 

its infancy. Nevertheless, these screens provide a valuable starting point for subsequent 

studies of specific genomic regions and their functional characterization.

In silico screens are useful as the information generated can be correlated to other studies, or 

to obtain a more general picture of the putative RNA structure content. Currently, screens 

essentially only address RNA secondary structure, with the numerous limitations discussed 

above, leaving much room for improvement. Another major issue is their high 

computational cost (i.e., their time and memory requirements). Their high false discovery 

rates also make them inappropriate for systematic annotation and necessitate experimental 

follow-up. There is clearly a demand for faster, better computational approaches. 

Nonetheless, present methods have already demonstrated their value and have opened an 

entirely new branch within comparative genomics. For instance, simple extrapolation from 

the ENCODE studies suggests prediction of ∼2 million RNA structures within the human 

genome, albeit potentially with many structures per transcript, high FDR and other caveats 

discussed above. Computational methods should, however, be developed beyond searching 

for local RNA structures, in part because some ncRNAs might either have no structure (e.g., 

piRNAs [67]), or only partial structures (e.g., Evf-1 [68, 69]; see also [70]). Additionally, 

ncRNAs are known to vary considerably in size, ranging from ∼20 nucleotides to ∼100,000 

nucleotides, contributing significantly to the challenge at hand. Fusion transcripts also pose 

a serious computational challenge that the community has not yet addressed. An example of 

such a transcript (the cDNA KIAA0510) involving segments from different chromosomes 

was reported a few years ago [71], a story echoed by the ENCODE project [3]. Experimental 

approaches continue to lead to novel discoveries. The lincRNAs [72] are one recent 

example. Identified by a combination of ChIP-Seq and custom tiling array technologies, 

they include 1600 large, multiexon RNAs, evidently under purifying selection and expressed 

in multiple mouse cell types. Information obtained from such studies can in turn be 

incorporated into computational methods, which then might lead to further discoveries of 
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novel ncRNAs. Methods to predict mRNA-like ncRNAs [73] promise to contribute to this. 

Another challenge is to unravel the significance of conserved structures in UTRs of protein 

coding genes, which constitute a sizeable fraction of predictions. For example, CMfinder 

candidate r-6354 ([64], see http://genome.ku.dk/resources/cmf_encode/pages/candidate.php?

id=r-6354) found in a 5′ UTR in several mammals, might have a role in regulating its own 

mRNA, but is also a predicted microRNA precursor. In this situation, comparing to known 

elements in UTR databases and/or attempting de novo motif finding in UTRs are plausible 

approaches [74, 75].

Putative ncRNAs are available from various sources, including the UCSC browser [60] and 

(with some degree of overlap) RNAdb [76]. In our online supplement at http://

genome.ku.dk/resources/rsgs, we provide links to files defining the genomic locations of 

many of the ncRNAs candidates described here. These files may be directly passed to the 

UCSC genome browser, so that the candidates may be viewed in context with other genomic 

features such as gene predictions and sequence-based multispecies conservation 

information.

Novel strategies are also emerging for post-clustering of predicted RNA structures. In 

particular, LocARNA [32], a Sankoff-based approach for structural alignment, grouped 

structurally related ncRNAs in an RNAz screen of Ciona intestinalis and C. savignyi, 

identifying known RNA families, such as tRNAs, microRNAs, and spliceosomal RNAs, and 

furthermore suggested additional groups consisting of novel, so far unannotated RNAs. 

Moreover, clustering based on FoldalignM detects novel relationships among microRNA 

family members [77]. Another clustering approach using RNAforester suggests some of the 

structural characteristics that distinguish microRNA precursors from the enormous number 

of other transcribed RNA stem-loops in mammalian genomes [78].

The increased availability of genome sequences has exposed sufficient nucleotide variation 

to allow the detection of patterns of RNA structure in sequence based-alignments, but has 

also revealed that sequence-based alignments alone might not be sufficient for detection of 

ncRNAs. The computational screens performed so far have pushed the limits of comparative 

genomics and pointed (perhaps unsurprisingly) towards structural alignments as an essential 

corequisite for detection of ncRNAs. As we have seen, this is not only the case for those 

orthologous genomic regions whose sequences are poorly conserved across related 

organisms, but might also be true for small portions of otherwise well conserved regions. 

This in turn poses new challenges in addressing comparative genomics from an RNA 

perspective. Furthermore, despite remarkable progress in both computer hardware and 

algorithms, even faster tools are highly desirable. With this in mind, tools for integrating 

new genomic sequence with existing de novo ncRNA predictions would be valuable, both 

for annotating the new genome and for strengthening or dismissing previously marginal 

predictions. As these predictions only need to be carried out in limited regions, they should 

be fast.

Even though further advances of methods for predicting RNA structures within genomic 

sequences are expected, the field is also developing tools to predict RNA interactions, with 

many utilizing the same principles as for RNA folding. Being able to predict RNA 
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interactions will be an essential component in assigning a putative functional context for 

predicted RNA structures in the future.
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Figure 1. Compensating base changes
Changes in base pairing might preserve structure, but not the primary sequence. In addition 

to the usual Watson-Crick base pairs, less stable G-U pairs (sometimes called “wobble 

pairs”) are often seen in RNAs and are evolutionarily important since they allow single base 

substitutions that are not structurally disruptive. This might allow sequences to accumulate 

substitutions much more rapidly than would be the case if both nucleotides in a base pair 

needed to be changed more or less simultaneously. Adapted with permission from [79].

Gorodkin et al. Page 17

Trends Biotechnol. Author manuscript; available in PMC 2016 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Strategies for ncRNA screening
The upper path illustrates RNA structure prediction using existing sequence alignments that 

are divided into overlapping windows (an “Align first” strategy). In contrast, in the lower 

path, “Fold and align,” sequence and structure alignments are performed directly from 

unaligned sequence data (a “joint” strategy) searching simultaneously for conserved 

structure and sequence, resulting in structural alignments. To date, alternative “fold-first” 

strategies have not been applied to genome-scale screening.
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Figure 3. RNAz screen
(A). Genomic locations of RNAz predictions from [40] compared to annotated protein-

coding genes. As illustrated here, ncRNA candidates are widely distributed in the genome. 

For example, 16860 of the RNAz predictions lie more than 10 kilobases from the nearest 

annotated protein-coding gene. It is plausible that the fraction of ncRNAs in this category is 

underestimated, since alignments tend to be less reliable in these regions, and this screen's 

“align-first” strategy depends on them. Of the 15380 predictions that lie within annotated 

protein-coding genes, the majority (11205) lie in introns flanked by coding exons, but a 

significant fraction lie in 5′- and 3′-untranslated regions (UTRs), or their introns. (Some 

candidates were counted in multiple categories due to ambiguous gene annotation. Coding 

exons were not screened.) (B): Detailed view of a genomic region on human chromosome 7 

identified in the ENCODE screen [47]. It contained overlapping predictions from RNAz 

(red) and EvoFold (green), as well as an unusually high AlifoldZ Z-score (-9.5). In addition, 

the region corresponds to an island of high conservation. The RACEfrags track verifies that 

an ncRNA element from this locus is expressed in testis. (C) The predicted structure of a 

portion of the element is shown underneath. Adapted with permission from [40].
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Figure 4. The value of local, structural alignments
(A) Two genomic sequences of 500 nucleotides are shown. This segment of V00158, from 

Euglena gracilis chloroplast, contains three annotated tRNAs; AC069454, from human 

chromosome 17, contains one. The sequences are relatively dissimilar, as is apparent from 

the nucleotide color-coding; e.g., the former has a G+C content of 35% while the human 

sequence is 63% G+C. When comparing the sequences via standard pairwise BLAST (using 

default parameters) the result is “No significant similarity found.” (B) Comparing the 

sequences using FOLDALIGN [51, 52], a local, structural alignment tool, results in three 

pairwise structural alignments of the red region in human to the three indicated E. gracilis 

regions, each corresponding to an annotated tRNA. The numbers in parentheses give the 

FOLDALIGN score ranking. The sequence identities of the three pairwise alignments are 

(1) 45%, (2) 48% and (3) 40%, respectively. (C) Secondary structure, as annotated in the 

tRNA database [80], of the human tRNA. (D) The structural alignment of region (3) with the 

human tRNA. The “Struct” lines give the structures of these two tRNAs, again from [80], 

where “matching” pairs of nested parentheses indicate canonical base pairs, dots indicate 

unpaired nucleotides, and dashes represent gaps. The middle line shows the consensus RNA 

structure predicted by FOLDALIGN from this pair of regions, which is in excellent 

agreement with [80].
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Figure 5. Sequence-based alignments can obscure ncRNA structure
Even small changes in a sequence-based multiple alignment can significantly affect the 

recognition of ncRNAs. The upper panel shows a six-species MULTIZ alignment of a 

region containing a box H/ACA snoRNA annotated in Rfam [81] (accession RF00402) that 

has been downloaded from the UCSC genome browser1. Using RNAz to search for ncRNAs 

in this alignment resulted in a low score of 0.132, suggesting “no RNA.” In the De novo 

prediction of structured RNAs from genomic sequences CMfinder. Although only a few 

positions are realigned (key changes indicated in red), RNAz gives this structurally revised 

alignment a relatively high score of 0.709, correctly suggesting the presence of a conserved 

RNA structure. Matching parentheses in the structure lines (Str; bottom line in each group) 

indicate base pairs in RNAz's consensus secondary structure predictions.

1http://genome.ucsc.edu/cgi-bin/hgTracks?
org=human&db=hg18&position=chr3:180369542-180369721&rnaGene=pack&ensGene=pack. This human sequence is annotated as 
a snoRNA pseudogene in the UCSC browser, although both it and its cow ortholog are high-scoring members of the manually 
annotated Rfam “seed” alignment for this family, and the other four sequences are included in the automatically generated Rfam “full” 
alignment.
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Figure 6. Comparison of ENCODE scans
The Venn diagram compares RNA elements in the ENCODE regions predicted by the three 

screening methods discussed here, CMfinder, RNAz, and EvoFold. Only predictions from 

input data that are common to all three studies are tallied, i.e., repeat, exon and PhastCons 

regions are excluded [64]. As illustrated here, of the 4933 candidates reported by CMfinder, 

3861 were reported by neither of the other methods, while 106 candidates were reported by 

all three. Adapted with permission from [64].
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