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Abstract
High-throughput sequencing of cDNA (RNA-seq) is used extensively to
characterize the transcriptome of cells. Many transcriptomic studies aim at
comparing either abundance levels or the transcriptome composition between
given conditions, and as a first step, the sequencing reads must be used as the
basis for abundance quantification of transcriptomic features of interest, such
as genes or transcripts. Several different quantification approaches have been
proposed, ranging from simple counting of reads that overlap given genomic
regions to more complex estimation of underlying transcript abundances. In this
paper, we show that gene-level abundance estimates and statistical inference
offer advantages over transcript-level analyses, in terms of performance and
interpretability. We also illustrate that while the presence of differential isoform
usage can lead to inflated false discovery rates in differential expression
analyses on simple count matrices and transcript-level abundance estimates
improve the performance in simulated data, the difference is relatively minor in
several real data sets. Finally, we provide an R package ( ) to help userstximport
integrate transcript-level abundance estimates from common quantification
pipelines into count-based statistical inference engines.
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Introduction
Quantification and comparison of isoform- or gene-level expression 
based on high throughput sequencing reads from cDNA (RNA-
seq) is arguably among the most common tasks in modern com-
putational molecular biology. Currently, one of the most common 
approaches is to define a set of non-overlapping targets (typically, 
genes) and use the number of reads overlapping a target as a meas-
ure of its abundance, or expression level. Several software pack-
ages have been developed for performing such “simple” counting 
(e.g., featureCounts1 and HTSeq-count2). More recently, the field 
has seen a surge in methods aimed at quantifying the abundances 
of individual transcripts (e.g., Cufflinks3, RSEM4, BitSeq5, kallisto6 
and Salmon7). These methods provide higher resolution than sim-
ple counting, and by circumventing the computationally costly 
read alignment step, some are considerably faster. However, iso-
form quantification is more complex than the simple counting, 
due to the high degree of overlap among transcripts. Currently, 
there is no consensus regarding the optimal resolution or method 
for quantification and downstream analysis of transcriptomic 
output.

Another point of debate is the unit in which abundance is given. The 
traditional R/FPKM8,9 (reads/fragments per kilobase per million 
reads) has been largely superseded by the TPM10 (transcripts per 
million), since the latter is more consistent across libraries. Regard-
less, both of these units attempt to “correct for” sequencing depth 
and feature length and thus do not reflect the influence of these 
on quantification uncertainty. In order to account for these aspects, 
most statistical tools for analysis of RNA-seq data operate instead 
on the count scale. While these tools were designed to be applied to 
simple read counts, the degree to which their performance is affected 
by using fractional estimated counts resulting from portioning reads 
aligning to multiple transcripts is still an open question. The fact 
that the most common sequencing protocols provide reads that are 
much shorter than the average transcript length implies that the 
observed read counts depend on the transcript’s length as well as 
abundance; thus, simple counts are arguably less accurate measures 
than TPMs of the true abundance of RNA molecules from given 
genes. The use of gene counts as input to statistical tools typically 
assumes that the length of the expressed part of a gene does not 
change across samples and thus length can therefore be ignored for 
differential analysis.

In the analysis of transcriptomic data, as for any other application, 
it is of utmost importance that the question of interest is precisely 
defined before a computational approach is selected. Often, the 
interest lies in comparing the transcriptional output between dif-
ferent conditions, and most RNA-seq studies can be classified as 
either: 1) differential gene expression (DGE) studies, where the 
overall transcriptional output of each gene is compared between 
conditions; 2) differential transcript/exon usage (DTU/DEU) stud-
ies, where the composition of a gene’s isoform abundance spec-
trum is compared between conditions, or 3) differential transcript 
expression (DTE) studies, where the interest lies in whether indi-
vidual transcripts show differential expression between condi-
tions. DTE analysis results can be represented on the individual 
transcript level, or aggregated to the gene level, e.g., by evaluating 

whether at least one of the isoforms shows evidence of differential 
abundance.

In this report, we make and give evidence for three claims: 1) gene-
level estimation is considerably more stable than transcript-level; 
2) regardless of the level at which abundance estimation is done, 
inferences at the gene level are appealing in terms of robustness, 
statistical performance and interpretation; 3) the magnitude of the 
difference between results obtained by simple counting and transcript- 
level abundance estimation is generally small in real data sets. 
However, despite strong overall correlations among results 
obtained from various quantification pipelines, taking advantage of 
transcript-level abundance estimates when defining or analyzing 
gene-level abundances leads to improved differential gene expres-
sion results compared to simple counting.

To facilitate a broad range of analysis choices, depending on the 
biological question of interest, we provide an R package, tximport, 
to import transcript lengths and abundance estimates from sev-
eral popular quantification packages and export (estimated) count 
matrices and, optionally, average transcript length correction terms 
(i.e., offsets) that can be used as inputs to common statistical 
engines, such as DESeq211, edgeR12 and limma13.

Data
Throughout this manuscript, we utilize two simulated data sets and 
four experimental data sets (Bottomly14 [Data set 3], GSE6457015 
[Data set 4], GSE6924416 [Data set 5], GSE7216517 [Data set 6], 
see Supplementary File 1 for further details) for illustration. Details 
on the data generation and full records of the analyses are pro-
vided in the data sets and Supplementary File 1. The first simu-
lated data set (sim1; Data set 1) is the synthetic human data set from 
Soneson et al.18, comprising 20,410 genes and 145,342 transcripts 
and is available from ArrayExpress (accession E-MTAB-3766). 
This data set has three biological replicates from each of two 
simulated conditions, and differential isoform usage was intro-
duced for 1,000 genes by swapping the relative expression levels 
of the two most dominant isoforms. For each gene in this data set, 
the total transcriptional output is the same in the two conditions 
(i.e., no overall DGE); it is worth noting that this is an extreme situ-
ation, but provides a useful test set for contrasting DGE, DTU and 
DTE. The second simulated data set (sim2; Data set 2) is a synthetic 
data set comprising the 3,858 genes and 15,677 transcripts from 
the human chromosome 1. It is available from ArrayExpress with 
accession E-MTAB-4119. Also here, we simulated two conditions 
with three biological replicates each. For this data set, we simulated 
both overall DGE, where all transcripts of the affected gene showed 
the same fold change between the conditions (420 genes), differen-
tial transcript usage (DTU), where the total transcriptional output 
was kept constant but the relative contribution from the transcripts 
changed (420 genes) and differential transcript expression (DTE), 
where the expression of 10% of the transcripts of each affected gene 
was modified (422 genes, 528 transcripts). The three sets of modi-
fied genes were disjoint. Again, this synthetic data set represents an 
extreme situation compared to most real data sets, but provides a 
useful test case to identify underlying causes of differences between 
results from various analysis pipelines.
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Data set 1.

http://dx.doi.org/10.5256/f1000research.7563.d109328 

Data set 1 (html) contains all the R code that was used to perform the 
analyses and generate the figures for the sim1 data set28.

Data set 2.

http://dx.doi.org/10.5256/f1000research.7563.d109329 

Data set 2 (html) contains all the R code that was used to perform the 
analyses and generate the figures for the sim2 data set29.

Data set 3.

http://dx.doi.org/10.5256/f1000research.7563.d109330 

Data set 3 (html) contains all the R code that was used to perform the 
analyses and generate the figures for the Bottomly data set30.

Data set 4.

http://dx.doi.org/10.5256/f1000research.7563.d109331 

Data set 4 (html) contains all the R code that was used to perform the 
analyses and generate the figures for the GSE64570 data set31.

Data set 5.

http://dx.doi.org/10.5256/f1000research.7563.d109332 

Data set 5 (html) contains all the R code that was used to perform the 
analyses and generate the figures for the GSE69244 data set32.

Data set 6.

http://dx.doi.org/10.5256/f1000research.7563.d109333 

Data set 6 (html) contain all the R code that was used to perform the 
analyses and generate the figures for the GSE72165 data set33.

Gene abundance estimates are more accurate than 
transcript abundance estimates
To evaluate the accuracy of abundance estimation with transcript 
and gene resolution, we used Salmon7 (v0.5.1) to estimate TPM val-
ues for each transcript in each of the data sets. Gene-level TPM esti-
mates, representing the overall transcriptional output of each gene, 
were obtained by summing the corresponding transcript-level TPM 
estimates. For the two simulated data sets, the true underlying TPM 
of each feature is known and we can thus evaluate the accuracy 
of the estimates. Unsurprisingly, gene-level estimates were more 
accurate than transcript-level estimates (Figure 1A, Supplementary 
Figures 1,2). We also derived TPM estimates from gene-level counts 

Figure 1 (sim2). A: Accuracy of gene- and transcript-level TPM estimates from Salmon and scaled FPKM estimates derived from simple 
counts from featureCounts, in one of the simulated samples (sampleA1). Spearman correlations are indicated in the respective panels. Top 
row: using the complete annotation. Bottom row: using an incomplete annotation, with 20% of the transcripts randomly removed. Gene-
level estimates are more accurate than transcript-level estimates. Gene-level estimates from Salmon are more accurate than those from 
featureCounts. B: Distribution of the coefficients of variation of gene- and transcript-level TPM estimates from Salmon, calculated across 30 
bootstrap samples of one of the simulated samples (sampleA1). Gene-level TPM estimates are less variable than transcript-level estimates. 
C: An example of unidentifiable transcript-level estimates, as uneven coverage does not cover the critical regions that would determine the 
amount that each transcript is expressed, while gene-level estimation is still possible.
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obtained from featureCounts by dividing each of these with a rea-
sonable measure of the length of the gene (the length of the union 
of its exons) and the total number of mapped reads, and scaling the 
estimates to sum to 1 million. The simple count estimates showed 
a lower correlation with the true TPMs than the Salmon estimates, 
in line with previous observations19. However, simple counts tended 
to show a high degree of robustness against incompleteness of the 
annotation catalog, as evidenced from estimation errors after first 
removing (at random) 20% of the transcripts (Figure 1A); in con-
trast, Salmon transcript estimate accuracies deteriorated. From the 
bootstrap estimates generated by Salmon, we also estimated the 
coefficient of variation of the abundance estimates. The gene-level 
estimates showed considerably lower variability in both simulated 
and experimental data (Figure 1B, Supplementary Figures 3,4). 
Taken together, these observations suggest that the gene-level esti-
mates are more accurate than transcript-level estimates and there-
fore potentially allow a more accurate and stable statistical analysis. 
A further argument in favor of gene-level analysis is the unidentifi-
ability of transcript expression that can result from uneven coverage 
caused by underlying technical biases (Figure 1C). Intermediate 
approaches, grouping together “indistinguishable” features are also 
conceiveable20, but not yet standard practice.

DTE is more powerful and easier to interpret on gene 
level than for individual transcripts
DTE is concerned with inference of changes in abundance at tran-
script resolution, and thus invokes a statistical test for each tran-
script. We argue that this can lead to several complications: the first 
is conceptual, since the rows (transcripts) in the result table will 
in many cases not be interpreted independently, but will rather be 
grouping transcripts from the same gene, and the second one is more 

technical, since the number of transcripts is considerably larger than 
the number of genes, which could lead to lower power due to the 
portioning of the total set of reads across a larger number of features 
and a potentially higher multiple testing penalty. We tested for DTE 
on the simulated data by applying edgeR12 to the transcript counts 
obtained from Salmon (the application of count models to estimated 
counts is discussed in the next Section), and represented the results 
as transcript-level p-values or aggregated these to the gene level 
by using the perGeneQValue function from the DEXSeq21 R pack-
age. The transcript-level DTE test assesses the null hypothesis that 
the individual transcript does not change its expression, whereas 
the gene-level DTE test assesses the null hypothesis that all tran-
scripts exhibit no change in expression. Framing the DTE question 
at the gene level results in higher power, without sacrificing false 
discovery rate control (Figure 2A). We note that this type of gene-
level aggregation may favor genes in which one transcript shows 
strong changes, and that other approaches to increase power against 
specific alternatives are conceivable, e.g., capitalizing on the rich 
collection of methods for gene set analysis.

While DTE analysis is more suitable than DGE analysis for detect-
ing genes with changes in absolute or relative isoform expression 
but no or only minor change in overall output (Supplementary 
Figure 5), we argue that even gene-level DTE results may suffer 
from lack of interpretability. DTE can arise in several different 
ways, from an overall differential expression of the gene or from 
differential relative usage of its transcripts, or a combination of the 
two (Figure 2B). We argue that the biological question of interest is 
in many cases more readily interpretable as a combination of DGE 
and DTU, rather than DTE. It has been our experience that results 
reported at the transcript level are still often cast to the gene level 

Figure 2 (sim2). A: DTE detection performance on transcript- and gene-level, using edgeR applied to transcript-level estimated counts from 
Salmon. The statistical analysis was performed on transcript level and aggregated for each gene using the perGeneQValue function from the 
DEXSeq R package; aggregated results show higher detection power. The curves trace out the observed FDR and TPR for each significance 
cutoff value. The three circles mark the performance at adjusted p-value cutoffs of 0.01, 0.05 and 0.1. B: Schematic illustration of different 
ways in which differential transcript expression (DTE) can arise, in terms of absence or presence of differential gene expression (DGE) and 
differential transcript usage (DTU).
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(i.e., given a differentially expressed transcript, researchers want 
to know whether other isoforms of the gene are changing), sug-
gesting that asking two specific gene-level questions (Is the over-
all abundance changing? Are the isoform abundances changing 
proportionally?) trumps the interpretability of one broad question 
at the transcript-level inference (Are there changes in any of the 
transcript expression levels?). Despite this, there are of course also 
situations when a transcript-centric approach is superior, for exam-
ple in targeted experiments where specific isoforms are expected to 
change due to an administered treatment.

Incorporating transcript-level estimates leads to 
more accurate DGE results
DGE (i.e., testing for changes in the overall transcriptional output 
of a gene) is typically performed by applying a count-based infer-
ence method from statistical packages such as edgeR12 or DESeq211 
to gene counts obtained by read counting software such as fea-
tureCounts1, HTSeq-count2 or functions from the GenomicAlign-
ments22 R package. A lot has been written about how simple count-
ing approaches are prone to give erroneous results for genes with 
changes in relative isoform usage, due to the direct dependence of 
the observed read count on the transcript length23. However, the 
extent of the problem in real data has not been thoroughly investi-
gated. Here, we show that taking advantage of transcript-resolution 
estimates (e.g., obtained by Salmon) can lead to improved DGE 
results. We propose two alternative ways of integrating transcript 
abundance estimates into the DGE pipeline: to define an “artificial” 
count matrix, or to calculate offsets that can be used in the statisti-
cal modeling of the observed gene counts from, e.g., featureCounts. 
Both approaches are implemented in the accompanying tximport 
R package (available from https://github.com/mikelove/tximport).

We defined three different count matrices for each data set: 
1) using featureCounts from the Rsubread1 R package (denoted 
featureCounts below), 2) summing the estimated transcript 
counts from Salmon within genes (simplesum), 3) summing the 
estimated transcript TPMs from Salmon within genes, and mul-
tiplying with the total library size in millions (scaledTPM). We 
note that the scaledTPM values are artificial values, transforming 
underlying abundance measures to the “count scale” to incorpo-
rate the information provided by the sequencing depth. We further 
used the Salmon transcript lengths and estimated TPMs to define 
average transcript lengths for each gene and each sample (normali-
zation factors) as described in the Supplementary material, to be 
used as offsets for edgeR and DESeq2 when analyzing the feature-
Counts and simplesum count matrices (featureCounts_avetxl and 
simplesum_avetxl).

Overall, the counts obtained by all methods were highly corre-
lated (Supplementary Figures 6–8), which is not surprising since 
any differences are likely to affect a relatively small subset of the 
genes. In general, the simplesum and featureCounts matrices led 
to similar conclusions in all considered data sets. However, there 
are differences between the two approaches in terms of how multi-
mapping reads and reads partly overlapping intronic regions are 
handled24. The concordance between simplesum and featureCounts 
results also suggests that statistical methods based on the Negative 
Binomial assumption are applicable also to summarized, gene-level 
estimated counts, which is further supported by the similarity 

between the p-value histograms as well as the mean-variance rela-
tionships observed with the three types of count matrices (Supple-
mentary Figures 9–14).

Accounting for the potentially varying average transcript length 
across samples when performing DGE, either in the definition of the 
count matrix (scaledTPM) or by defining offsets, led to consider-
ably improved false discovery rate (FDR) control compared to using 
the observed featureCounts or aggregated Salmon counts (sim-
plesum) directly (Figure 3A, Table 1). It is important to note that 
this improvement is entirely attributable to an improved handling of 
genes with changes in isoform composition between the conditions 
(Figure 3B, Supplementary Figure 15), that we purposely intro-
duced strong signals in the simulated data set in order to pinpoint 
these underlying causes, and that the overall effect in a real data set 
will depend on the extent to which considerable DTU is present. 
Experiments on various real data sets (Supplementary Figure 16) 
show only small differences in the collections of significant genes 
found with the simplesum and simplesum_avetxl approaches, sug-
gesting that the extent of the problem in many real data sets is limited, 
and that most findings obtained with simple counting are not induced 
by counting artifacts. Further support for this conclusion is shown in 
Figure 4 (see also Supplementary Figures 17–19 and Supplementary 
Table 1), where log-fold change estimates from edgeR, based on the 
simplesum and scaledTPM matrices, are contrasted. For the genes 
with induced DTU in the sim2 data set, log-fold changes based on 
the simplesum matrix are overestimated, as expected. However, this 
effect is almost absent in all the real data sets, again highlighting 
the extreme nature of our simulated data and suggesting that the 
effect of using different count matrices is considerably smaller for 
many real data sets. Table 1 suggests that the lack of error control for 
simplesum and featureCounts matrices is more pronounced when 
there is a large difference in length between the differentially used 
isoforms. In the group with smallest length difference, where the 
longer differentially used isoform is less than 34% longer than the 
shorter one, all approaches controlled the type I error satisfactorily. 
It is worth noting that among all human transcript pairs in which 
both transcripts belong to the same gene, the median length ratio is 
1.85, and for one third of such pairs the longer isoform is less than 
38% longer than the shorter one (see Data set 1).

Discussion
In this article, we have contrasted transcript- and gene-resolution 
abundance estimation and statistical inference, and illustrated that 
gene-level results are more accurate, powerful and interpretable 
than transcript-level results. Not surprisingly, however, accurate 
transcript-level estimation and inference plays an important role in 
deriving appropriate gene-level results, and it is therefore impera-
tive to continue improving abundance estimation and inference 
methods applicable to individual transcripts, since misestimation 
can propagate to the gene level. We have shown that when test-
ing for changes in overall gene expression (DGE), traditional gene 
counting approaches may lead to an inflated false discovery rate 
compared to methods aggregating transcript-level TPM values or 
incorporating correction factors derived from these, for genes where 
the relative isoform usage differs between the compared condi-
tions. These correction factors can be calculated from the output of 
transcript abundance programs, using e.g., the provided R package 
(tximport). It is important to note that the average transcript length 
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Figure 3 (sim2). A: DGE detection performance of edgeR applied to three different count matrices (simplesum, scaledTPM, featureCounts), 
with or without including an offset representing the average transcript length (for simplesum and featureCounts). Including the offset or using 
the scaledTPM count matrix leads to improved FDR control compared to using simplesum or featureCounts matrices without offset. The 
curves trace out the observed FDR and TPR for each significance cutoff value. The three circles mark the performance at adjusted p-value 
cutoffs of 0.01, 0.05 and 0.1. B: stratification of the results in A by the presence of differential isoform usage. The improvement in FDR control 
seen in A results from an improved treatment of genes with differential isoform usage, while all methods perform similarly for genes without 
differential isoform usage.

Table 1 (sim1). Observed false positive rates from a differential gene expression analysis using edgeR applied to 
various count matrices (with a nominal p-value cutoff at 0.05), limited to genes with true underlying differential 
isoform usage (recall that no genes are truly differentially expressed in this data set). The results are stratified 
by “effect size” (the difference in relative abundance between the two differentially used isoforms) and the length ratio 
between the longer and the shorter of the differentially used isoforms. FPRs below the nominal p-value threshold (0.05) 
are marked in bold. For more details, see Data set 1.

simplesum featureCounts simplesum_avetxl featureCounts_avetxl scaledTPM

[0,0.33], [1,1.34] 0.019 0.019 0.023 0.023 0.023

[0.33,0.67], [1,1.34] 0.059 0.059 0.059 0.059 0.059

[0.67,1], [1,1.34] 0.000 0.053 0.053 0.053 0.053

[0,0.33], [1.34,2.57] 0.075 0.070 0.070 0.065 0.065

[0.33,0.67], [1.34,2.57] 0.240 0.220 0.050 0.033 0.066

[0.67,1], [1.34,2.57] 0.420 0.540 0.038 0.077 0.038

[0,0.33], [2.57,35.4] 0.150 0.140 0.037 0.043 0.037

[0.33,0.67], [2.57,35.4] 0.650 0.650 0.060 0.060 0.034

[0.67,1], [2.57,35.4] 0.970 0.970 0.034 0.034 0.034

offsets must account for the differences in transcript usage between 
the samples and thus using (sample-independent) exon-union gene 
lengths will not improve performance.

All evaluated counting approaches gave comparable results 
for genes where DTU was not present. Thus, the extent of the 
FDR inflation in experimental data depends on the extent of DTU 
between the compared conditions; notably, our simulation intro-
duced rather extreme levels of DTU, hence the inflated FDR, and 

the difference between the approaches was considerably smaller 
in real data sets. Recent studies have also shown that many genes 
express mainly one, dominant isoform25 and for such genes, we 
expect that simple gene counting will work well.

Our results highlight the importance of correctly specifying 
the question of interest before selecting a statistical approach. 
Summarization of abundance estimates at the gene level before per-
forming the statistical testing should be the method of choice if the 
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interest is in finding changes in the overall transcriptional output 
of a gene. However, it is suboptimal if the goal is to identify genes 
for which at least one of the transcripts show differences in tran-
scriptional output, since it may miss genes where two transcripts 
change in opposite directions, or where a lowly expressed transcript 
changes. For gene-level detection of DTE (that is, whether any 
transcript showed a change in expression between the conditions), 
statistical testing applied to aggregated gene counts led to reduced 
power and slightly inflated FDR compared to performing the 

statistical test on the transcript level and aggregating results within 
genes (Supplementary Figure 5). Statistical inference on aggre-
gated transcript TPMs (scaledTPM) showed low power for detect-
ing changes that did not affect the overall transcriptional output of 
the gene, as expected. An alternative to DTE analysis, for potential 
improved interpretability, is to perform a combination of DGE and 
DTU analyses, both resulting in gene-level inferences. Table 2 sum-
marizes our results and give suggested workflows for the different 
types of analyses we have considered.

Figure 4. Comparison of log-fold change estimates from edgeR, based on simplesum and scaledTPM count matrices, in four different 
data sets. For the simulated data set (sim2), where signals have been exaggerated to pinpoint underlying causes of various observations, 
genes with induced DTU (whose true overall log-fold change is 0) show a clear overestimation of log-fold changes when using simplesum 
counts. However, none of the real data sets contain a similar population of genes, suggesting that for many real data sets, simple gene 
counting leads to overall similar conclusions as accounting for underlying changes in transcript usage.
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Of course, there may be situations where a direct transcript-level 
analysis is appropriate. For example, in a cancer setting where a 
specific deleterious splice variant is of interest (e.g., AR-V7 in pros-
tate cancer26), inferences directly at the transcript level may be pre-
ferred. However, while this may be preferred for individual known 
transcripts, transcriptome-wide differential expression analyses 
may not be warranted, given the associated multiple testing cost.

Finally, we note that estimation at the gene level can reduce the 
problem of technical biases on expression levels and unidentifiable 
estimation. Current methods for transcript-level quantification (e.g., 
Cufflinks, RSEM, Salmon, kallisto) do not correct for amplification 
bias on fragments, which can lead to many estimation errors, such 
as expression being attributed to the wrong isoform27. Non-uniform 
coverage from amplification bias or from position bias (3’ coverage 
bias from poly-(A) selection) can result in unidentifiable transcript-
level estimation. Such errors and estimation problems are mini-
mized when summarizing expression to the gene level.
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Table 2. Summary of suitable analysis approaches for the three types of comparative analyses 
discussed in the manuscript (DGE, DTE and DTU).

Task Input data Software (examples) Post-processing

DGE Aggregated transcript counts + 
average transcript length offsets, or 
simple counts + average transcript 
length offsets

Salmon, kallisto, BitSeq, 
RSEM

tximport

DESeq2, edgeR, voom/
limma

DTE Transcript counts Salmon, kallisto, BitSeq, 
RSEM

Optional gene-level 
aggregation

tximport

DESeq2, edgeR, sleuth, 
voom/limma

DTU/DEU Transcript counts or bin counts, 
depending on interpretation potential18

Salmon, kallisto, BitSeq, 
RSEM

Optional gene-level 
aggregation

DEXSeq
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In this manuscript, the authors address a few questions of considerable (and perennial) interest in the
analysis of RNA-seq data. Specifically, they provide evidence that, using available methods (e.g. DESeq2
/ edgeR), assessing differential expression at the gene-level (DGE) is more robust than at the transcript
level (DTE). Further, they convincingly argue that estimating abundance at the level of transcripts, and
then aggregating these abundances to the gene level leads to improved estimation of differential gene
expression. They demonstrate that one of the major factors in this improved estimation is the availability
of a sample-specific feature length for each gene (derived from the abundance-weighted length of the
expressed transcripts of this gene), which is not possible to obtain with any fixed gene model used by
count-based methods. Finally, the authors argue that much of the analysis of interest at the transcript
level does not actually require differential transcript expression testing, but rather can be inferred from a
combination of DGE and differential transcript usage (DTU); this is an interesting proposition that merits
further discussion and analysis. Overall, this is a well-written paper, with extensive and compelling
supplementary and supporting data, that addresses a ubiquitous analysis task involving RNA-seq.  It
should be of broad interest to the community and makes a valuable contribution. The accompanying
software, , is user-friendly and makes it easy to apply the type of analysis recommended herein; ittximport
too should be widely useful.

Major comments:

It would be very useful to provide the equations used for calculating each of the abundance measured
considered directly. Section 4 of the supplementary information is useful to this end, but the reader still
has to search a bit to see exactly how each metric is computed (though the fantastic R-Markdown
included with the figures means that these computations can be found explicitly).

Similarly, it would be useful to the reader to provide a description, in prose, of how specific experiments
were performed (again, the reproducible nature of most of these experiments makes tracking down this
information possible, but sometimes time-consuming). For example, how, precisely, was removal of
transcripts handled at the level of the genome annotation? If a transcript consists only of constitutive
exons, were all of those exons retained in the genome annotation used for STAR + featureCounts, while
the transcript was removed in the Salmon index?  

The result that transcript-level abundance estimation is more sensitive to the removal of transcripts than
gene-level abundance estimation — this seems intuitive. However, I agree with Dr. Floor’s suggestion
that:
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that:

"The assertion that “simple counts tended to show a high degree of robustness against incompleteness of
the annotation catalog, as evidenced from estimation errors after first removing (at random) 20% of the
transcripts” seems misleading since Salmon-derived gene-level abundances actually show a higher
Spearman correlation than count-derived gene-level abundances when subjected to removing a random
20% of transcripts.”

I would suggest rewording this sentence, as the main result seems to be that gene-level analysis is more
robust to an incomplete annotation than transcript-level analysis. Transcript-level abundance estimation
followed by gene-level analysis seems to perform just as well (actually, better) than gene-level counting in
this scenario.

The experiments in the section “Incorporating transcript-level estimates leads to more accurate DGE
results” suggests the (reasonable) interpretation that the main benefit of incorporating transcript-level
abundance estimates when assessing DGE is a more accurate measure of the “feature” length of the
gene. The authors state “ It is important to note that this improvement is entirely attributable to an
improved handling of genes with changes in isoform composition between the conditions.” This is
supported by the fact that using the abundance-weighted average transcript length (i.e. offsets) with
counting based approaches improves the results substantially.  However, one other place where
transcript-level abundance estimates are useful in the context of DGE is when assessing the expression
of paralogous genes. While most multi-mapping reads that derive from different isoforms of the same
gene will be uniquely mappable at the level of the genome, and hence will be included in the counts for
that gene, reads that map ambiguously among paralogs may not be. In such cases, count-based methods
do not have a principled way of apportioning a read between the paralogs involved, and discarding
multi-mapping reads may negatively affect estimation of the abundance of the paralogs, even at the gene
level. While this case is likely much less common than mis-estimation of DGE as a result of DTU, it is
certainly of biological interest. I would suggest adding an analysis, restricted to sets of paralogous genes,
comparing how the different approaches perform in this case. This may help to highlight the importance of
not only deriving appropriately weighted and sample-dependent lengths for genes, but also on resolving
multi-mapping ambiguity that occurs between genomically distinct loci.

The argument that most transcript-level analyses of interest may be addressed by looking at DGE in
conjunction with DTU is an interesting one. It is certainly that case that not all tasks for which DTE is used
actually require assessing differential expression at the transcript level. One issue with the DGE +
DTU-based analysis which warrants further discussion in the manuscript is that I believe that this
approach, too, would require correcting for multiple hypothesis testing. Specifically, one is testing both the
DGE and the DTU hypotheses for each gene (or for a relevant subset of interest). The correction here is
likely to be less harsh than in the case of assessing DTE, but is still worth discussing.

Minor comments:

As per Dr. Floor’s statement, Salmon (and Sailfish) also incorporate sequence-specific bias correction.
Further, RSEM and Salmon (and a few other transcript-level abundance estimation tools) also incorporate
the modeling of non-uniform fragment start position distributions. Of course, modeling a non-uniform start
position distribution cannot overcome a complete lack of sampling in critical regions that might make
determining transcript-level fragment assignment impossible, but it may help in properly apportioning an
ambiguously-mapped fragment between transcripts depending on its relative position in each.

One potential added source of variability here is that all Salmon estimates presented in the manuscript

make use of Salmon’s quasi-mapping of reads, while the STAR + featureCount pipeline makes use of
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make use of Salmon’s quasi-mapping of reads, while the STAR + featureCount pipeline makes use of
“traditional” alignments. This is the primary intended usage mode of Salmon, and absolutely does
represent a “typical” pipeline for methods that avoid alignment (Salmon, Sailfish, kallisto). However, it
would probably be best to mention this as a potential (though likely negligible) additional source of
variability.

In the discussion, the authors argue that “... it is therefore imperative to continue improving abundance
estimation and inference methods applicable to individual transcripts, since misestimation can propagate
to the gene level.” This is, of course, an important and valid suggestion. Another direction, on which it
would be useful to get the authors’ thoughts and suggestions, is the development of differential
expression tools (at either the transcript or gene level) that can make use of the variance estimates that
some tools (like Salmon) can provide. To what extent might incorporating this information help control
false positive rates and improve DTE or even DGE estimates?

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 04 January 2016Referee Report

doi:10.5256/f1000research.8143.r11761

 Stephen N. Floor
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA

Soneson, Love and Robinson tackle a crucial question for analysis of RNA deep sequencing data in this
manuscript: what is the role of transcript diversity in the accuracy and statistical power associated with
measurements of gene expression? The authors make and convincingly show three claims: gene-level
estimation and inferences are more robust than those at the transcript-level, and incorporating
transcript-level quantification into gene-level abundance leads to improved differential expression testing. 
The claims are convincingly proven, the manuscript is well written, and the subject matter is of
considerable interest. Furthermore, the described R package should be of broad interest to thetximport 
RNA deep sequencing community.
 
Overall comments:
 
It may be useful to indicate explicitly in the text that the methods are contained within the (excellently
written and formatted) supplementary material, as this was not apparent. It might be clearest to create a
specific methods section that just references supplementary file 1.
 
The clarity of scatter plots with more than ~hundreds of points (e.g. Figure 1A) could be improved by
using partially transparent points to visualize density.
 
Introduction:
 
Paragraph 1: Cufflinks, RSEM and Bitseq are grouped with kallisto and Salmon and it is then stated that
some of these methods bypass read alignment. It would be clearer if this were reworded to avoid the
ambiguity as to which methods avoid read alignment.
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Paragraph 4: The third claim could be presented more clearly. While it is interesting that simple counting
performs similarly to transcript-level quantification procedures, it seems more interesting to this reviewer
that incorporating transcript-level information improves the accuracy of differential expression testing at
the gene level. Perhaps these two concepts can be combined into one more concise point?
 
Results:
 
The assertion that “simple counts tended to show a high degree of robustness against incompleteness of
the annotation catalog, as evidenced from estimation errors after first removing (at random) 20% of the
transcripts” seems misleading since Salmon-derived gene-level abundances actually show a higher
Spearman correlation than count-derived gene-level abundances when subjected to removing a random
20% of transcripts. Figure 1a bottom left shows that transcript-level abundances are strongly affected by
removal of 20% of transcripts, but that gene-level abundances are not strongly changed whether
estimated using counts or Salmon. This statement should be reworded.
 
Two concerns are raised about DTE. It is certainly true that reads are spread across more features when
performing DTE as opposed to DGE.However, it is not apparent why analysis of DTE involves grouping of
transcripts together for interpretation. DTE implies analysis at the transcript level and therefore no
grouping, while DGE could involve some level of grouping of transcripts or quantification at the gene level
from the start. The clarity of this could be improved.
 
It is a very interesting idea to separately frame questions regarding DGE and DTU, which should be
adopted widely, as the two are separable questions.
 
The authors state one possible workflow towards DGE analysis in the section “Incorporating
transcript-level estimates leads to more accurate DGE results.” Alternative pipelines (e.g. cuffdiff) could
be presented in brief.
 
The observation that simplesum and featureCounts results are highly correlated and therefore that
statistical methods based on the Negative Binomial distribution can be used on estimated counts seems
of greater importance than is emphasized in the text. This should be elaborated upon in the discussion,
since this means that estimated counts from kallisto, express, salmon, etc can be used directly by
statistical packages assuming a NB distribution (edgeR, DESeq2, etc). This point is frequently debated in
discussions of how to rigorously analyze sequencing data. The conclusion here that NB applies to
estimated counts is thus quite important.
 
Please explain the meaning of the name for each curve in the legend for Figure 3 (i.e. specify that “avetxl”
means using the offset corresponding to average transcript length.
 
Discussion:
 
The assertion that “gene-level results are more accurate, powerful and interpretable than transcript-level
results” seems an oversimplification given the result that incorporating transcript-level quantification leads
to improved DGE detection performance (e.g. Fig 3).
 
Please cite at minimum Roberts , (2011) regarding sequence bias correction as this has beenet al.
implemented in cufflinks, express and kallisto. Other relevant papers should also be included here, as
attempts have been made to address both positional and sequence-specific bias in RNA sequencing

data.
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data.
 
Supplement:
 
The usability of the supplemental info could be improved by substituting rasterized for vectorized plots for
those with ~hundreds of points.
 
Please explain the meaning of the name for each curve in the legend for Supplemental Figure 5.
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