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Abstract
Choices are made with varying degrees of confidence, a cognitive signal representing the subjective belief in the optimality of
the choice. Confidence has been mostly studied in the context of perceptual judgments, in which choice accuracy can be
measured using objective criteria. Here, we study confidence in subjective value-based decisions. We recorded in the
supplementary eye field (SEF) ofmonkeys performing a gambling task, where they had to use subjective criteria for placing bets.
We found neural signals in the SEF that explicitly represent choice confidence independent from reward expectation. This
confidence signal appeared after the choice and diminished before the choice outcome. Most of this neuronal activity was
negatively correlated with confidence, and was strongest in trials on which the monkey spontaneously withdrew his choice.
Such confidence-related activity indicates that the SEF not only guides saccade selection, but also evaluates the likelihood that
the choice was optimal. This internal evaluation influences decisions concerning thewillingness to bear later costs that follow
from the choice or to avoid them. More generally, our findings indicate that choice confidence is an integral component of all
forms of decision-making, whether they are based on perceptual evidence or on value estimations.
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Introduction

During decision-making, one option is selected among a number
of alternatives. However, the same option can be selected with
varying degrees of confidence, the belief that this choicewas cor-
rect. Confidence represents an evaluation of the choice process,
based on the balance of evidence supporting the alternatives
that were considered (Vickers 1979), and it may influence future
decisions that are contingent on the initial choice (Kiani and Sha-
dlen 2009; Kepecs and Mainen 2012).

Recently, neurophysiological evidence of confidence signals
has been reported using perceptual decision tasks (Kepecs et al.
2008; Kiani and Shadlen 2009). The confidence signals in these
studies reflect the belief in the accuracy of the judgment with re-
spect to the objectively given external stimuli or states. However,
studies on perceptual decision-making do not address how

confidence is represented in most real-life decisions, which
often have no obvious objective criteria for the accuracy of judg-
ments (Sugrue et al. 2005). An additional problem is that, in these
previous studies, the relation between confidence and expected
reward has not been straightforward (Mainen and Kepecs 2009).
In the perceptual decision tasks used in these studies, accurate
judgments were rewarded with a fixed amount of reward.
Hence, the degree of belief in the accuracy of a choice is highly
correlated with the probabilistic assessment of the chance to
get a reward.

A value-based decision framework can address both of these
issues. First, in value-based decision-making, choices are based
on a comparison of subjective value estimations, not of objective
sensory information. Choice confidence reflects the balance of
evidence in favor of the different response options. In our gam-
bling task, confidence depends therefore on the difference in
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subjective value of the 2 options. These value estimations are
noisy, due to the probabilistic nature of the gamble option’s out-
come and the resulting uncertainty about whether it is better or
worse than the alternative sure option. Secondly, in our gambling
task, we use gambles and sure reward options in 2 different value
ranges (Fig. 1A). Across high- and low-value trials, choices with a
similar degree of difference in their subjective value, and there-
fore a similar degree of confidence, are associated with different
reward expectations (Fig. 1B). Thus, our gambling task makes it
possible to disassociate confidence from reward expectation.

Using a standard decision-making model (Vickers 1979; Kiani
and Shadlen 2009), we show that choice confidence is monoton-
ically related to the difference in the value of the chosen and un-
chosen option. Using the difference in a subjective value as a
proxy for choice confidence,we found the corresponding neuron-
al signalswere represented in the supplementary eyefield (SEF), a
higher order oculomotor area that has been shown to represent
the signals relevant for the control and evaluation of saccades
(Amador et al. 2000; Stuphorn et al. 2000, 2010; Roesch and
Olson 2003; Stuphorn and Schall 2006; So and Stuphorn 2010,
2012). These signals were observed after the choice has been
made, and were mostly negatively correlated with the value
difference. In other words, most SEF neurons showed higher activ-
ity when the monkey made a less optimal choice. These signals
were stronger during those trials in which themonkeys eventually
brokefixationand aborted a trial. This suggests that the confidence
signals in SEF evaluate the quality of the choice process and are
used to avoid costs (such as having to fixate a target to wait for re-
ward) that arise from choices that were likely suboptimal.

Materials and Methods
General

Two rhesus monkeys (both male; monkey A: 7.5 kg and monkey
B: 8.5 kg) were trained to perform the tasks used in this study.

All animal care and experimental procedures were approved
by Johns Hopkins University Animal Care and Use Committee.
During the experimental sessions, each monkey was seated in
a primate chair, with its head restrained, facing a video screen.
Eye position was monitored with an infrared corneal reflection
system (Eye Link, SR Research Ltd, Ottawa, Canada) and recorded
with the PLEXON MAP system (Plexon, Inc., Dallas, TX, USA) at a
sampling rate of 1000 Hz. We used a newly developed fluid deliv-
ery system that was based on 2 syringe pumps connected to a
fluid container that were controlled by a stepper motor. This sys-
temwas highly accurate across the entire range of fluid amounts
used in the experiment.

Behavioral Task

In the gambling task, the monkeys had to make saccades to per-
ipheral targets that were associated with different amounts of
water reward (Fig. 1A). The targets were squares of various colors,
2.25° by 2.25° in size. They were always presented 10° away from
the central fixation point at a 45°, 135°, 225°, or 315° angle. The
task consisted of 2 types of trials, namely choice trials and no-
choice trials. In choice trials, 2 targets appeared on the screen
and the monkeys were free to choose between them by making
an eye movement to the target that was associated with the de-
sired option. In no-choice trials, only one target appeared on the
screen so that the monkeys were forced to make a saccade to the
given target. No-choice trials were designed as a control to com-
pare the behavior of the monkeys and the cell activities when no
decision was required.

Two targets in each choice trial were associatedwith a gamble
option and a sure option, respectively. The sure option always led
to a certain reward amount. The gamble option led to 1 of 2 pos-
sible reward amounts with a certain set of probabilities. We de-
signed a system of color cues, to explicitly indicate to the
monkeys the reward amounts and probabilities associated with
a particular target (Fig. 1B). Seven different colors indicated 7

Figure 1. Gambling task. (A) Sequence of events during choice trials and no-choice trials in the gambling task. In this study, we focused our analyses on choice trials and

excluded the neurons showing no significant difference in activity between choice and no-choice trials. Below is indicated the duration of various time periods in the

gambling task. The first line indicates the first fixation period. The second line indicates the post-choice delay, in which the monkey has to wait for the result of the

trial when he had made a saccade to a gambling option. The third line indicates the interval between visual indication of the gamble result and reward delivery. Note

that the decision time between target onset and saccade initiation depends on the monkey. (B) Visual cues used in the gambling task: (left) sure options and (right)

gamble options. The rewards are 1–7 units of a minimum unit of reward (30 µL). Note that across high- and low-value trials choices with a similar degree of

confidence are associated with different reward expectations. For instance, the choice of any low-value gamble (30 or 120 µL fluid reward) is clearly better than

receiving the smaller amount for sure (the sure 30-µL option). Thus, the monkey can be very confident that he made the right choice. A similar degree of confidence

should accompany the choice of a high-value gamble (120 or 210 µL fluid reward) over the option to receive the smaller amount for sure, despite the fact that the

monkey is expecting a much larger amount of reward.
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reward amounts (increasing from 1 to 7 units of water, where 1
unit equaled 30 µL). Targets indicating a sure option consisted
of only 1 color. Targets indicating a gamble option consisted of
2 colors corresponding to the 2 possible reward amounts. The
portion of a color within the target corresponded to the probabil-
ity of receiving that reward amount. In each trial, the exact color
configuration of the gamble target was randomized across 4 dif-
ferent variants that were derived from 90° rotations of the target
around its center. Thus, for 10% and 75% gamble targets, the
smaller color patch could appear in each of the 4 corners. For
50% gambles, the middle color partition could be horizontal or
vertical and each color could appear either on the right/left or
up/down.

In the task, we used 2 different reward amount sets for the
gamble options (minimum/maximum pair was either 1 vs. 4
[low-value gamble] or 4 vs. 7 [high-value gamble] units of
water). Each of the reward amount sets was offered with 3 differ-
ent probabilities of getting the maximum reward (10%, 50%, and
75%), resulting in 6 different gambles. In each choice trial, 1 of
these 6 gamble options was compared with 1 of 4 sure options,
ranging in a value from the minimum to the maximum reward
outcome of the gamble. This resulted in 24 different combina-
tions of options that were offered in choice trials.

A choice trial startedwith the appearance of afixation point at
the center of the screen (Fig. 1A). After the monkeys successfully
fixated for 800–900 ms, 2 targets appeared on 2 randomly chosen
locations among the 4 quadrants on the screen. Simultaneously,
the fixation point went off and the monkeys were allowed to
make their choice bymaking a saccade toward one of the targets.
Following the choice, the unchosen target disappeared from the
screen. The monkeys were required to keep fixating the chosen
target for 800–1000 ms, after which the target changed either
color or shape. If the chosen target was associated with a gamble
option, it changed from a two-colored square to a single-colored
square associated with the final reward amount. This indicated
the result of the gamble to the monkeys. If the chosen target
was associated with a sure option, the target changed its shape
from a square to either a circle or a triangle. This change of
shape served as a control for the change in visual display during
sure choices and did not convey any behaviorally meaningful in-
formation to the monkeys. Following the change in visual dis-
play, the monkeys were required to continue to fixate the target
for another 450 ms, until the water reward was delivered. If the
monkey broke fixation anytime before the reward delivery, the
trial was aborted and no rewardwas delivered. After the usual in-
tertrial interval, a new trial started. In this trial, the target or tar-
gets represented the same reward options as in the aborted trial.
In this way, the monkey was forced to sample every reward con-
tingency evenly. The location of the targets, however, was rando-
mized, so that the monkey could not prepare a saccade in
advance.

The sequence of events in no-choice trials was the same as in
choice trials, except that only one target was presented (Fig. 1A).
The location of the target was randomized across the same 4
quadrants on the screen that were used during choice trials. In
no-choice trials, we used individually all 7 sure and 6 gamble op-
tions thatwere presented in combination during choice trials.We
presented no-choice and choice trials interleaved in a pseudor-
andomized schedule in blocks of trials that consisted of all 24 dif-
ferent choice trials and 13 different no-choice trials. This
procedure ensured that the monkeys were exposed to all the
trial types equally often. Within a block, the order of appearance
was randomized and a particular trial was not repeated, so that
the monkeys could not make a decision before the targets were

shown. Randomized locations of the targets in each trial also pre-
vented the monkeys from preparing a movement toward a cer-
tain direction before the target appearance. In addition,
presenting a target associated with the same option in different
locations allowed us to separate the motor decision from the
value decision.

For reward delivery, we used an in-house built fluid delivery
system. The system was based on 2 syringe pumps connected
to a fluid container. A piston in the middle of the 2 syringes
was connected with the plunger of each syringe. The movement
of the piston in one direction pressed the plunger of one syringe
inward and ejected fluid. At the same time, it pulled the plunger
of the other syringe outward and sucked fluid into the syringe
from the fluid container. The position of the piston was con-
trolled by a stepper motor. In this way, the size of the piston
movement controlled the amount of fluid that was ejected out
of one of the syringes. The accuracy of the fluid amount delivery
was high across the entire range of fluid amounts used in the ex-
periment, because we used relatively small syringes (10 mL). Im-
portantly, it was also constant across the duration of the
experiment, unlike conventional gravity-based solenoid sys-
tems. During an experimental or training session, we delivered
a total amount offluid reward (150–300 mL), whichwasmuch lar-
ger than the capacity of a single syringe. The fact that a second
syringe was filled, while the first syringe was emptied allowed
us to overcome this limitation.Wemoved the piston in one direc-
tion until the corresponding syringewas almost empty, beforewe
reversed the direction of the piston movement and started to
empty the other syringe.

Estimation of Subjective Value of Gamble Options

In everyday life, a behavioral choice can yield 2 ormore outcomes
of varying value with different probabilities. A decision-maker
that is indifferent to risk should base his decision on the sum
of values of the various outcomesweighted by their probabilities,
that is, the expected value of the gamble. However, humans and
animals are not indifferent to risk and their actual decisions
deviate from this prediction in a systematic fashion. Thus, the
subjective value of a gamble depends on the risk attitude of a de-
cision-maker. In this study, we measured the subjective value of
a gamble and the risk attitude of the monkeys with the following
procedures.

We described the monkey’s behavior in the gambling task by
computing a choice function for each of the 6 gambles from each
day’s task session. The choice function of a particular gamble
plots the probability of the monkey to choose this gamble as a
function of the reward amount of the alternative sure option
(Fig. 2A). When the amount of the alternative sure option is
small, monkeys are more likely to choose the gamble. As the
sure option’s reward amount increases, monkeys increasingly
choose the sure option. We employed a logistic regression ana-
lysis to estimate the probability of choosing the gamble as a con-
tinuous function of the reward amount, or value, of the sure
option [EVs], that is, the choice function:

log[PðGÞ=1� PðGÞ� ¼ b0þ b1�EVs: ð1Þ

The choice function reached the indifference point (ip) when
the probability of choosing either the gamble or the sure option
are equal [P(G) = 0.5]. By definition, at this point, the subjective
value of the 2 options must be equal, independent of the under-
lying utility functions that relate physical outcome to value.
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Therefore, the subjective value of the gamble [SVg] is equivalent
to the sure option value at the indifference point [EVs(ip)]. This
value, sometimes also referred to as the certainty equivalent
(CE; Luce 2000), can be estimated by using equation (1) at the
indifference point

EVs(ip) ¼ SVg ¼ �b0=b1: ð2Þ

During the initial training stages, we observed that, overall,
the monkeys preferred gambles over sure options. To offer com-
binations of gamble and sure options that elicited a varied set of
responses ranging from preference of sure to preference of gam-
ble options, we opted for gamble options with a 10%, 50%, and

75% chance of winning. The asymmetry in thewinning probabil-
ities reflects the overall gamble preference of the monkeys.

Relationship Between Confidence and Value Difference

Any type of decision process can be understood as the compari-
son of the various factors that support or oppose a particular
choice (“the evidence in favor of choosing x”). In the case of per-
ceptual decisions, the evidence is primarily the sensory informa-
tion that supports hypothesis x about the state of theworld being
true (Gold and Shadlen 2007). In value-based decision-making,
the evidence supporting an option x is primarily the subjective
value that the agent expects to receive following choosing x. If
an option x is chosen over an alternative y that was supported

Figure 2. Subjective value estimation. (A) Choice functions ofmonkeys A (left) and B (right). The probability that themonkey chooses a particular gamble option is plotted

as a function of the value of the alternative sure option. The reward size is indicated as multiples of a minimal reward amount (30 µL). The left column shows gamble

options that yield either 30 µL (1 unit) or 120 µL (4 units) with a 10% (light gray line), 50% (dark gray line), and 75% (black line) chance of receiving the larger outcome. The

right column shows gamble options that yield either 120 µL (4 units) or 210 µL (7 units) with a 10% (light gray line), 50% (dark gray line), and 75% (black line) chance of

receiving the larger outcome. All trials are split so that the upper row shows behavior from the first half of each experimental session, while the lower row shows

behavior from the second half of each session. There is no difference in the choice functions, indicating that the overall preferences are conserved throughout each

session. Also, note that the choice functions for most gambles indicate that the monkeys had variable preferences with respect to a wide range of alternative sure

options. (B) Comparison between subjective value (utility) and expected value of a gamble option. The subjective value of a gamble option was estimated from

behavior and plotted against its expected value (the weighted average of the 2 possible outcomes). The subjective value is consistently larger than the expected value,

indicating that the monkey overvalued the gamble options and behaved in a risk-seeking fashion. The figure represents the grand average over all choice trials recorded

across different sessions from monkeys A (left; 42 sessions with average 800 trials per session [SEM= 64.3]) and B (right; 29 sessions with average 1030 trials per session

[SEM= 81.9]).
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by substantially less evidence, the choice is likely to be optimal
and confidence in the choice should be high. Conversely, if the
same option x is chosen over an alternative y′ that was supported
by an almost similar amount of evidence, the choice is less likely
to be optimal and confidence should be low. This relation be-
tween the balance of evidence and confidence is independent
of the particular outcome of the choice (e.g. reward amount),
since the confidence signal evaluates the quality of the decision
process, not its eventual outcome.

It is important to distinguish choice confidence from response
conflict, another monitoring signal that is also related to the dif-
ference in evidence supporting the generation of competing re-
sponses. Response conflict is thought to be a cognitive signal
that monitors the degree to which mutually exclusive responses
are prepared by the brain and is used to regulate the level of ex-
ecutive control over response selection (Botvinick et al. 2001). In
the context of value-based decision-making, response conflict is
therefore defined as the absolute difference in value (|Vd|), inde-
pendent of which option is chosen. Response conflict should be
maximal when both options are likely to be chosen. In this
case, both alternatives are supported by similar amounts of evi-
dence, so that choice confidence should be low. Conversely, re-
sponse conflict should be minimal, when choice confidence is

high. However, the 2 signals are not simply the inverse of each
other, since their function and timing is different. Since response
conflict is defined independent of the eventual choice, it can be
computed instantaneously during the ongoing decision process
to evaluate the “momentary” difficulty in making a choice. In
contrast, choice confidence is defined with respect to the actual
choice and can therefore only be computed after the decision
process is finished as a post hoc evaluation.

In our data set, the difference of evidence on which the deci-
sionwas based, that is, value difference, was not immediately ob-
servable on a trial-by-trial basis. Instead, using a simple choice
model (Fig. 3), we could predict how mean confidence in a par-
ticular choice chosen over a particular alternative should be re-
lated to observable task variables.

The decision process in our task was modeled as a race be-
tween 2 accumulators, namely the sure and the gamble choice
accumulators. In accumulatormodels, the increase in activity re-
flects the integrated information supporting a particular choice.
For value-based decisions, the rise in activity is therefore propor-
tional to the subjective value of each option, which takes the
place of sensory evidence in similar models of perceptual deci-
sion-making (Gold and Shadlen 2001, 2007). The monkeys
showed a highly consistent preference ranking of the sure

Figure 3. A schematic diagram relating choice confidence to the value difference between the chosen and unchosen target. (A) The competition between the gamble and

the sure option is modeled as a race between 2 competing linear ballistic accumulators. The expected value of the gamble option varies across trials (family of red lines),

whereas the expected value of the sure option is constant (single blue line). The gamble accumulator is matched against a sure accumulator representing a value that is

smaller (A), equal to (A′), or larger (A″) than the average gamble value. (B) Probability of choosing the sure option as a function of mean difference in the value of sure and

gamble options. (C) Confidence as a function of mean difference in the value of sure and gamble options. (D) Confidence as a function of mean difference in the value of

chosen and unchosen options.
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options reflecting the increasing reward amounts. Accordingly,
the variability of the value estimate for the sure option across
trials should be very small. For simplicity, we presume here
that the slope of the sure accumulator is constant across trials
(indicated by the thick blue line in Fig. 3A–A″). In contrast,
when comparing a gamble against sure options, the monkeys
often varied their preferences across trials (Fig. 2A). This variabil-
ity did not depend on perceptual uncertainty, since the stimuli
indicating the different options were easily distinguishable. It is
unlikely that themonkeyswere uncertain about which outcomes
were associated with which visual stimuli, since their behavioral
variance did not reduce even after months of exposure to the
task. Instead, the behavioral variance is likely to be caused by a
changing estimation of the gamble option’s value across trials.
We presume here that this value is drawn from a Gaussian distri-
bution (indicated by the family of red lines in Fig. 3A–A″).

One reason for this persistent uncertainty about the value of
the gamble optionsmight be that they vary across 2 independent
dimensions, reward amount and probability, both of which can
affect the overall value. Options can be attractive for different rea-
sons, for example, either because of low risk or high payoff.
Hence, assessing the value of a gamble option requires a trade-
off between the different attributes that should be integrated in
a weighted fashion in order to generate a one-dimensional deci-
sion variable, the subjective value of the option. This process has
no obvious best solution and agents can remain ambivalent with
respect towhich of the options is optimal. In addition, there are a
number of other psychological factors that could increase the
variability of the subjective value estimate for gambles, such as
different states of arousal or attention to the task set.

In themodel (Fig. 3A–A″), the choice is determined by the race
between the gamble and the sure accumulator. Whichever accu-
mulator reaches the decision threshold first determines the
choice on that trial. Varying choices result from the noisy esti-
mates in the subjective value of the gamble option, and do not re-
flect errors in the decision process (in the sense that a target is
chosen, although it is believed to be of lesser value on average
across trials). In other words, the same choice (e.g. a sure option)
can be made, while different degrees of information supporting
the alternative option have been accumulated (e.g. the red lines
below the blue line in Fig. 3A). Accordingly, at the moment of
choice, there are varying degrees of difference in the accumu-
lated evidence across trials (Vickers 1979; Kiani and Shadlen
2009; Kepecs and Mainen 2012). The frequency distribution of
the resulting activity differences between the accumulators is
shown to the right in each of Figure 3A–A″. A positive activity dif-
ference between sure and gamble accumulator is indicated in
blue, and corresponds to the choice of the sure option. A negative
activity difference is indicated in red and corresponds to the
choice of the gamble option. In this case, the activity difference
between the winning gamble and the losing sure accumulator
(indicated by the hatched vertical line) is projected on top of
the threshold onto the negative part of the y-axis.

As in our experiment, each panel in Figure 3A–A″ depicts a
situation in which the same gamble accumulator is matched
against a sure accumulator, representing a value that is smaller
(Figure 3A), equal to (Figure 3A′), or larger (Figure 3A″) than the
average gamble value. For positive activity differences the sure
option was chosen, whereas for negative ones the gamble option
was chosen. Thus, the probability of choosing the sure option is
proportional to the fraction of the distribution of differences of
activity in the positive range (indicated in blue below the thresh-
old). The resulting choice probability varies as a function of the
difference between the mean value of the sure and the gamble

option (Fig. 3B), similar to the behavioral choice functions of
the monkeys in the gambling task (Fig. 2A).

A large activity difference between the sure and the gamble
accumulators allow for high confidence that the choice was opti-
mal, because it indicates a much larger amount of information
supporting the chosen option relative to the alternative. Con-
versely, small activity differences result in less confidence, be-
cause in this case the 2 options were supported nearly equally
strong, and the eventual choice might have been a result of
noise (Vickers 1979). Thus, the activity difference between the ac-
cumulators at the moment of choice serves as an estimate of
choice confidence, a measure of the likelihood that the choice
in the gambling task was optimal. While confidence will vary
from trial to trial, the average confidence is a function of the dif-
ference between the mean value of the sure and the gamble op-
tion, and relates to the average difference value in the blue and
red sections of the activity difference distributions depicted in
Figure 3A–A″. As a result, average confidence depends both on
the difference in the mean value of the 2 options and on the
choice, with a resulting four-fold pattern (Fig. 3C). The tendency
of the relationship between average confidence andmean value
difference is the same for sure and gamble choices. Therefore,
in a further simplification of their relationship, we can predict
that average confidence in the gambling task should be amono-
tonically increasing function of the difference in mean value of
the chosen and unchosen option (Fig. 3D). Similarmonotonical-
ly increasing relationships can be derived using other signal de-
tection or sequential sampling models of confidence (Vickers
1979; Kepecs et al. 2008; Kiani and Shadlen 2009; Kepecs and
Mainen 2012). Note that this relationship is very different
from response conflict, which should be maximal when the
mean value difference is zero, and then fall off symmetrically
for increasingly larger value differences, independent of their
direction.

Electrophysiology

After training,we placed a square chamber (20 × 20 mm) centered
over the midline, 25 mm (monkey B) and 27 mm (monkey A)
anterior to the interaural line (Fig. 4). During each recording
session, single units were recorded using a single tungsten mi-
croelectrode with an impedance of 2–4 MΩ (Frederick Haer, Bow-
doinham, ME, USA). The microelectrodes were advanced using a
self-buildmicrodrive system. Datawere collected using the PLEX-
ONMAP system. Up to four template spikes were identified using
template matching and principal component analysis, and the
time stamps were then collected at a sampling rate of 1000 Hz.
Data were subsequently analyzed offline to identify additional
units and to ensure only single units were included in conse-
quent analyses.

Spike Density Function

To represent neural activity as a continuous function, we calcu-
lated spike density functions by convolving the spike train with
a growth-decay exponential function that resembled a post-
synaptic potential. Each spike therefore exerts influence only
forward in time. The equation describes rate (R) as a function of
time (t):

RðtÞ ¼ ð1� expð�t=τgÞÞ � expð�t=τdÞ; ð3Þ

where τg is the time constant for the growth phase of the poten-
tial, and τd, is the time constant for the decay phase. Based on
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physiological data from excitatory synapses, we used 1 ms for the
value of τg and 20 ms for the value of τd (Sayer et al. 1990).

Task-Related Neurons

Since we focused our analysis on neuronal activities during the
delay after saccade and before the result disclosure, we restricted
our analyses on the population of neurons active during this time
period.We performed t-tests on the spike rates in 10 ms intervals
throughout the delay period, in comparisonwith the baseline ac-
tivity defined as the average firing rates during the 200–100 ms
prior to target onset. If P-values were <0.05 for 5 ormore consecu-
tive intervals, the cell was classified as task-related in the delay
period (So and Stuphorn 2010, 2012).

Choice-Selective Neurons

In a previous study (So and Stuphorn 2012), we analyzed out-
come-encoding neurons in the SEF. Outcome-encoding neurons
should show no difference in activity for choice and no-choice
trials, since both the expected and the actual outcomes are de-
fined with respect to the chosen target, independent of the pres-
ence of an alternative. In contrast, in this study, we are interested
in the neurons whose activity differed significantly between
choice- and no-choice trials. Neurons of this type are candidates
for carrying choice-evaluation signals, such as confidence. To
find such cells, we first analyzed the neurons using combinations
of outcome-encoding variables (subjective value of the chosen
target, uncertainty [i.e. a binary signal representing whether
the chosen option was a sure or a gamble option], and the

interaction of the choice value and the uncertainty) that we
used in a previous study (So and Stuphorn 2012). We searched
for a best model for each neuron, pooling all the choice and no-
choice trials. Next, we added a term identifying the trial type
(choice or no-choice) to the previously found best model and de-
termined whether this explained the variance in neuronal activ-
ity better, using the BIC comparison. All subsequent analyses
were conducted on the subset of neurons that showed a signifi-
cant activity difference for choice- and no-choice trials.

Although we identified task-related neurons by looking at the
entire delay period, we fit the neuronal activity separately for
early (300 ms after saccade onset) and late delay period (300 ms
prior to the outcome disclosure). We looked at those periods in-
dependently, since these 2 time periods might be functionally
different, onemore related to decision formation and its immedi-
ate evaluation, and the other to the outcome expectation. Among
the 227 neurons that showed task-related activity during the
delay period (out of 264 neurons recorded in total), 66 and 28 neu-
rons were found to be sensitive to the trial types during the early
and the late delay periods, respectively. This study analyzed spe-
cifically these neurons. Only 4 cells were choice-selective in both
periods.

Regression Analysis

To quantitatively characterize individual neuron’s modulation,
we designed groups of linear regression models, using linear
combinations of variables that were postulated to describe the
neuronal modulation: the value difference (Vd), the chosen op-
tion value (CV), the unchosen option value (UV), and their

Figure 4. Location of the SEF and choice-dependent neurons. The red dots indicate the localization of all neurons with saccade-related activity in the left hemispheres of

monkeys A (left) and B (right). The recording locations were superimposed onto a reconstruction of the cerebral cortex based on aMRI scan. The red circlewith black fill is

located 27 mm forward of the interaural line. The insets indicate subpopulations of cells encountered in the SEF with choice-dependent activity (red circle: Vd+; green

square: UV; blue triangle: Vd−; magenta star: CV). The marker sizes indicate the number of neurons (large: 9–12 cells, medium: 5–8 cells, and small: 1–4 cells). AS:

arcuate sulcus; PS: principal sulcus; CS: central sulcus; PCD: precentral dimple.
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interaction terms. In general, we treated the activity in each indi-
vidual trial as a separate data point for the fitting of the regres-
sion models.

Choice confidence is only defined in choice trials. To investi-
gate the neuronal correlates for the choice confidences signal,
therefore, we used the delay period activity in choice trials exclu-
sively from the choice-selective neurons that showed a signifi-
cant difference between choice and no-choice trials. To
quantitatively describe the choice-dependent neuronal activity
modulation, one model for the regression analysis was designed
as

FR(CV;Vd) ¼ b0þ b1�CVþ b2�Vdþ b3�ðCV�VdÞ; ð4Þ

where CV was the subjective value of the chosen option, and Vd
was defined as

Vd ¼ CV�UV, ð5Þ

where UV was the subjective value of the unchosen option. In
addition, we also designed an alternative model

FR(UV;Vd) ¼ b0þ b1�UVþ b2�Vdþ b3�ðUV�VdÞ; ð6Þ

in which UV was exchanged for CV. We did not include CV, UV,
and Vd into onemodel, since they are not independent of one an-
other. The 2 alternative models and all their derivative models,
including a simple constant baselinemodel (b0), were used to de-
scribe each neuron’s mean neuronal activity during the first
300 ms after saccade initiation (early delay period), and the last
300 ms before the result disclosure (late delay period). Depending
on which variables were found in the best model (see the “Model
Fitting” section below), we classified the activity as carrying a
chosen value (CV) signal, an unchosen value (UV) signal, and
value difference (Vd)-sensitive signals (Vd, CV * Vd, or UV * Vd).

Coefficient of Partial Determination

To determine the dynamics of the strengthwithwhich the differ-
ent signals modulated neuronal activity, we calculated the coef-
ficient of partial determination (CPD) for each variable from each
neuron’s mean activity during different time bins (50 ms width
with 10 ms step size; Neter et al. 1996). As we had 3 variables in
each of the full regression models, CPD for each variable (X1)
was calculated as:

CPDX1 ¼ SSEðX2, X3Þ � SSEðX1;X2;X3)
SSEðX2;X3Þ ð7Þ

For each neuron and time bin, we calculated the CPDusing the
best one of the 2 full model alternatives (see the “Model Fitting”
section below), and set the CPD value for the variable that was
not contained in the model to zero.

Model Fitting

To determine the best fitting regression model, we searched for
themodel that was themost likely to be correct, given the experi-
mental data. This approach is a statisticalmethod that has its ori-
gin in Bayesian data analysis (Gelman et al. 2004). Specifically, we
used a form of model comparison, whereby the model with the
smaller Bayesian information criterion (BIC) value was chosen.
For each neuron, BIC valueswere calculated for all of the different

regression models:

BIC ¼ n � log(RSS=nÞ þ K � log(nÞ ð8Þ

where n was the total trial number and K was the number of fit-
ting parameters (Burnham and Anderson 2002; Busemeyer and
Diederich 2010). By comparing the BIC values, the best model
was determined as the one having the lowest BIC.

This procedure is related to a likelihood-ratio test, and equiva-
lent to choosing a model based on the F-statistic (Sawa 1978). It
provides a Bayesian test for nestedhypotheses (Kass andWasser-
man 1995). Importantly, we included a baseline model in our set
of regressionmodels. Thus, amodelwith one ormore signalswas
compared against the null hypothesis that none of the signals ex-
plained any variance in neuronal activity. An alternative proced-
ure, a series of sequential F-tests, while exact, requires the
assumption of data with a normal distribution. We decided to
use the BIC test, because it was computationally straightforward
and more robust. An additional advantage was that we could
compare all models simultaneously, using a consistent criterion
(Burnham and Anderson 2002).

Residual Firing Rate Analysis

The activity of any given neuron may be influenced by many dif-
ferent variables. To better visualize themodulation that could be
contributed by only one of the variables (variable of interest), we
performed the following procedure to subtract the influence of all
other variables (controlled variables). First, we determined for
each trial the spike density function expected from the modula-
tion by the controlled variables by averaging the spike density
function of all trials that had the same set of values for the con-
trolled variables as the ones in the particular trial. Secondly, we
subtracted this spike density function from the spike density
function of the given trial. Hence, the resulting residual firing
rate represented the activity modulation on that trial due to the
variable of interest as the modulation due to the controlled vari-
ables was taken into account. Thirdly, we computed the average
residual firing rate across all trials belonging to a given condition.

We decided to control only the CV, UV, and saccade direction,
which are related to the major alternative hypotheses to explain
our Vd signals, and to ignore a number of other variables. It is im-
portant for this analysis that the spike density function of the ref-
erence trials is as smooth as possible, so that the resulting
difference (the residual firing rate) reflects mostly the variance
in the individual trial activity, not thenoise in the reference trials.
As the spike density function of individual trials is very noisy, it
requires that the reference activity is constructed on as large
number of trials as practical. We will discuss the practical impli-
cations of this limitation of the analysis in the context of the ac-
tual results.

Results
Subjective Value of Gamble Options

We trained 2 monkeys in a gambling task (Fig. 1A), which re-
quired them to choose between a sure and a gamble option by
making an eyemovement to 1 of the 2 targets. Behavioral results
showed that the monkeys’ choices were based on the relative
value of the 2 options. For each gamble, we plotted the probability
of choosing the gamble as a function of the alternative sure re-
ward amount (Fig. 2A). The probability of a gamble choice de-
creased as the alternative sure reward amount increased. In
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addition, as the probability of receiving themaximum reward (i.e.
“winning” the gamble) increased, themonkey showedmore pref-
erence for the gamble over the sure option. Themonkey’s prefer-
ences with respect to fluid reward might depend on his satiation
level (Minamimoto et al. 2009). We therefore divided the trials
into the first (Fig. 2A, upper row) and the second (lower row)
half of trials in each daily session. There was no difference in
the choice functions, indicating that the overall behavioral pre-
ferences were stable over the course of the session.

From these behavioral data, we estimated the choice function
for each gamble using a logistic regression function (equation 1).
The choice functions allowed us to estimate the subjective value
of the gamble to themonkeys, by finding the sure reward amount
at which the monkey chooses the gamble and the sure option
equally often. This sure reward amount (the CE) is presumably
equal in subjective value to the gamble. This procedure only de-
pends on the monkey’s own choice curves and is independent of
the exact shape of the underlying utility functions that relate
physical outcome to a value. The choice functions of both mon-
keys show a graded shift in the gamble option preference as the
alternative sure reward amount increases, rather than a sharp
shift in an all-or-none fashion (Fig. 2A). This indicates that the
monkeys have variable preferences with respect to gamble op-
tions over a range of sure values. This choice ambivalence is
not present when themonkeys had to compare different sure op-
tions only. In that case, the monkeys indicated clear preferences
and nearly always chose the option resulting in the larger reward
amount. Hence, the ambivalence during the gambling task indi-
cates uncertainty which of the 2 options is better. This ambiva-
lence persists despite long exposure to the task, and it is
systematically related to the alternative sure reward amount, ra-
ther than being random (Fig. 2A). It is therefore not likely to be the
result of simple lackof knowledge about the possible outcomes of
choosing each option, which can be overcome through learning
and exposure. Instead, it likely reflects the probabilistic nature
of the gamble options.

We plotted the subjective value of each gamble against its ex-
pected value, that is, the sum of the 2 possible reward amounts
weighted by the probability (Fig. 2B). Both monkeys chose the
gamble option more often than expected given the probabilities
and reward amounts of the outcomes, indicating that the sub-
jective value of the gamble option was larger than its expected
value (Fig. 2B). Thus, themonkeys behaved in a risk-seeking fash-
ion, similar to findings in other gambling tasks using macaques
(McCoy and Platt 2005; O’Neill and Schultz 2010). The reasons
for the general tendency for risk-seeking behavior are not clear.
Itmight be related to the specific requirements of our experimen-
tal set-up, that is, a large number of choices with small stakes.
From the point of view of the present experiment, the most im-
portant fact is that we can measure the subjective value of the
gambles, which is different from the “objective” expected value.

Monkeys Evaluate Their Choice During the Delay Period

In our gambling task, there is an approximately 1 s delay between
the choice (saccade onset) and the disclosure of its outcome
(Fig. 1A). Nevertheless, the likelihood that the choicewas optimal
(i.e. choice confidence) can be evaluated immediately. This is par-
ticularly important, since our task imposes a cost associatedwith
waiting for the outcome of the choice, due to the effort of keeping
the target fixated and the opportunity cost of not advancing to
the next trial sooner, which might offer potentially better op-
tions. The behavior of the monkeys strongly suggests that they
indeed evaluated their choice in this way.

During the delay period following the saccade, both monkeys
broke fixation more often the lower the reward amount they ex-
pect from the target (Fig. 5A,B). This trend was overall the same
during both no-choice (Fig. 5A) and choice trials (Fig. 5B). In
both monkeys, the fixation break rate is higher following the se-
lection of a sure over a gamble option. This difference might be
the result of the overall risk attitude of both monkeys. Since
both monkeys had a slight preference of gambles over sure op-
tions, they might have valued the offered gamble options higher
than the sure options (Fig. 2B). Since subjective value is negative-
ly correlatedwith afixation break rate, wewould expect fewer fix-
ation breaks following the choice of gamble options in general.

During choice trials, in addition to the chosen option value,
the monkeys were also sensitive to the value difference in the
chosen and unchosen option (Fig. 5C). Both monkeys broke fix-
ation more often when the chosen option held less subjective
value than the alternative (i.e. more negative value difference).
This trend was significant even after the value of the chosen op-
tion was taken into account. Linear regression analyses showed
that the fixation break rate of both monkeys was significantly re-
lated to the chosen option value, the value difference between
the chosen and unchosen option, and their interaction term (P <
0.001 for all 3 variables for both monkeys). During gamble choice
trials, the overall fixation break rate was lower than during sure
choice trials. We therefore repeated the linear regression specif-
ically for gamble choice trials, using CV, value difference, and
their interaction as dependent variables. We found both factors
and their interaction to be highly significantly (P < 0.001) related
to the rate of fixation breaks for both monkeys. To further test
the influence of value difference independent from the CV,we re-
peated our regression analyses within the trials where the mon-
key chose a particular option. This regression conditioned on the
chosen option value confirmed that value difference alone could
explain the frequency of themonkey’s fixation breaks (P < 0.05 for
both monkeys).

This analysis suggests that confidence in the choice and will-
ingness to wait for the outcome of the choice are related. How-
ever, the monkey might also break fixation following a
momentary lapse of attention or an impulsive saccade in a way
that is unrelated to the normal value comparison. While we can-
not rule out the possibility of such random lapses in the decision
process, they cannot explain the relationship between fixation
breaks and value difference. If we presume that the animal auto-
matically aborts the trial if such an error occurs, we should see a
constant rate of fixation breaks that is independent of value dif-
ference. As Figure 5C indicates, that is not the case. Fixation
breaks occur only, when the difference between the chosen and
unchosen option is negative and then their frequency gradually
increases as a function of increasing a value difference. It is pos-
sible that random errors occur, but only lead to fixation breaks, if
they cause a disadvantageous choice. However, in that case, it is
again necessary for the animal to compare the relative weight of
evidence (i.e. the value of the 2 options) in order to decide
whether it should break fixation or not. The relationship between
fixation breaks and value difference therefore indicates that fix-
ation breaks are related to choice confidence and are triggered
by low levels of confidence, and not by random breakdowns of
the normal decision process.

While the monkeys occasionally broke fixation and thereby
suggested that they had low confidence in the preceding choice,
most of the time the monkeys finished the trials; the number of
fixation breaks during the choice trials were 487/23191 (2%) in
monkey A and 514/21478 (2.4%) in monkey B. Indeed, the fixation
break itself was costly, since the monkeys forfeited any reward

772 | Cerebral Cortex, 2016, Vol. 26, No. 2



they would have received on that trial. Thus, the monkeysmight
be willing to await the consequence of a choice even if they had
low confidence. Hence, the fixation breaks are best understood as
a measure of the minimum amount of confidence below which
the monkey was no longer willing to invest time and effort in
his choice, rather than a measure representing the full spectrum
of confidence.

SEF Neurons Represent Choice Confidence

Many evaluative signals that are represented in the SEF, such as
reward expectations, or uncertainty about the reward amount, are
well defined even in the absence of an alternative option (So and
Stuphorn 2012). In contrast, without a choice between alternatives,
choice confidence cannot be defined. Hence, neuronal signals re-
flecting choice confidence should be present only during choice
trials, but not during no-choice trials, where only one option is
given (Fig. 1A). Indeed, immediatelyafter the choice (earlydelayper-
iod; 300 ms after the saccade onset), we observed a substantial
number of neurons (66/227; 29%) that showed a significant activity
difference forchoiceandno-choice trials (choice-selectiveneurons).
Thus, the activity of these neurons depended on the presence of an
alternative target. This study analyzed specifically these neurons.

Figure 6 shows an example of such a cell. Despite identical va-
lues of the saccade targets, this neuron showed a clear difference
in its activity during choice trials (“blue lines” during sure choice
trials; “red lines” during gamble choice trials) compared with no-
choice trials (“black lines”). In general, the neuron responded
more strongly and less stereotypically on choice trials; it did
not reflect only the chosen or unchosen option. The neuronal ac-
tivity for any given chosen option was very different depending

on what was offered as an alternative (different colored lines
within each plot). Likewise, the neuronal activity varied consider-
ably for the same unchosen option accompanying different cho-
sen options (the same colored lines across the plots). Thus, the
overall activity pattern of this neuron seems to reflect both the
value of the chosen and the unchosen option. More specifically,
for a particular chosen option, this neuron showedhigher activity
with an increasing value of the unchosen option (paler-colored
lines). This implies that the neuronal activity is inversely corre-
lated with the difference in the value between the chosen and
unchosen option.

We tested whether any of the choice-selective neurons car-
ried signals related to choice evaluation. We used a series of
nested regression models employing variables like value differ-
ence between the chosen and unchosen (Vd), CV, UV, and the
interaction between the value and the value difference (CV * Vd
and UV * Vd). Of the 66 choice-selective neurons in the early
delay period, 15 neurons (23%) represented the Vd signal, 7 neu-
rons (11%) the CV signal, 30 neurons (45%) the UV signal, 6 neu-
rons (9%) the CV * Vd signal, and 12 (18%) the UV * Vd signal.
Individual neurons often carried a combination of these signals
(19/54; 35%; Table 1). Interestingly, for the majority of neurons
carrying the Vd signal (11/15; 73%), the activity was negatively
correlated with a value difference. This tendency was similar
for the UV * Vd signal (10/12; 83%). On the other hand, the activity
of the neurons carrying CV, UV, and CV * Vd signals was often
positively correlated with each of the corresponding variables
(5/7; 71% for CV signal, 28/30; 93% for UV signal, 6/6; 100% for
CV * Vd signal). In total, 29 of the 66 (44%) choice-selective
neurons carried Vd-sensitive, that is, choice confidence-related
signals (either one of Vd, CV * Vd, and UV * Vd signals).

Figure 5. Rate of fixation breaks during the post-choice delay. (A) Fixation break rate as a function of the value of the saccadic target during no-choice trials. (B) Fixation

break rate as a function of the value of the chosenoption during choice trials. (C) Fixation break rate as a function of the value difference between the chosen andunchosen

option. Upper rows represent the results from monkey A and lower row the results monkey B. Error bars represent SEM.
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Figure 7 shows 2 example neurons carrying Vd-sensitive sig-
nals. The neuronal response in each spike density histogram is
sorted into 4 groups according to the amount and sign of the
value difference between the chosen and unchosen option. To
demonstrate the effect of the chosen or UV, the activity is
shown separately for the trials comparing high-value range op-
tions and low-value range options. An absolute value of both
the chosen and unchosen option is in the range of 30–120 µL
fluid reward for the low-value trials and 120–210 µL fluid reward
for the high-value trials (Fig. 1B). The histograms to the left of the
regression plot show the actual firing rate, whereas the histo-
grams to the right show the residual firing rate that was due to
the value difference after accounting for the influence of either
chosen (CV) or UV and saccade direction. The regression plots be-
tween the histograms show the mean activity of those example
neurons (“circles”) as a function of the value difference, along
with the predictions based on the best regression models
(“lines”). If the best model for the activity of a neuron contains
any UV-related signals, the residual firing rate was generated by
controlling the UV and the saccade direction. Otherwise, the CV
and the saccade direction were controlled. The neuron in Fig-
ure 7A showed the highest activity when a chosen option had
the lowest value compared with the alternative, and decreased

its activity as a chosen option increased in relative value. This
neuron was additionally modulated by the UV, in a nonlinear
fashion. Being negatively correlated with the Vd, the activity of
this neuron seems to be related to the belief that the choice
was likely not optimal (Vd- signal). On the other hand, the neuron
in Figure 7B is positively associated with the Vd, and therefore
seems to reflect the belief that the choice was likely optimal
(Vd + signal).

The residual firing rate histograms of the groups of SEF neu-
rons carrying the Vd, CV, and UV signals are shown in Figure 8.
When we accounted for the activity modulation due to the CV
and the direction of a saccade, the residual firing rate showed
clear, but opposed, activity modulation for the cells that were
negatively (Fig. 8A) or positively (Fig. 8B) correlated with Vd
(one-way ANOVA, P < 10−10). Note that the residual firing rate
should be interpreted as neuronal activity that either stronger
or weaker than what would be expected based on the controlled
variables. Thatmeans that in case of a residual firing rate of zero,
a neuron might nevertheless be very active. Likewise, a neuron
that shows a negative residual firing rate in a certain condition
is simply less active than what would be expected given the
same CV and saccadic direction. This Vd-related modulation
was observed in both gamble and sure choice trials (Fig. 8E,F).

Figure 6. SEFneuronwith choice contingent activity during the delay period. Spike density histograms showactivity separately for different chosenoptions, aligned on the

saccade onset. The upper row shows the activity when sure options of increasing value were chosen (due to increasing payoff: 5–7 units of reward). The lower row shows

activity when gamble options of an increasing valuewere chosen (due to increasingwinning probability: 10–75%). Within each spike density histogram, trials were sorted

by the unchosen alternative option (upper row: sure option chosen over 4 vs. 7 gamble with a winning probability of 10%: pale blue, 50%: light blue, and 75%: dark blue;

lower row: 4 vs. 7 gamble chosen over sure option with a payoff of 4: pale red, 5: light red, and 6: dark red; all in units of reward). During no-choice trials, the activity (black

line) was very similar across reward options, and nearly always lower than when the same option was chosen in a choice trial (blue or red lines). During choice trials, the

activity was not only larger, but also systematically influenced both by the chosen and unchosen option. In general, the activity was stronger as the unchosen option was

more valuable than the chosen option. This can be seen, for example, by comparing the activitywhen sure options of increasing value (from5 to 7)were chosen against a 4

vs. 7 gamble optionwith a 75% chance ofwinning (pale blue lines in the upper row).When the choicewasmade against the same alternative, the activitywas strongest for

the least valuable chosen option and weakest for the most valuable chosen option. Thus, this neuron seems to be influenced by the comparative value of the chosen

option.
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In contrast, cells that carried only a CV signal (Fig. 8C) showed no
additional activity modulation (one-way ANOVA, P > 0.05), sup-
porting the results of our regression analysis. The neurons that
carried only an UV signal according to the regression analysis

(Fig. 8D) showed weak modulation by the Vd, after the UV and
the direction of a saccade were controlled (one-way ANOVA, P <
0.01). However, this trend was inconsistent in time and showed
no regular relationship with the degree of value difference.

Table 1 Distribution of signal types found in SEF data set

Early Late

CV CV 5 (3/2) 7 (5/2) CV 5 (3/2) 6 (3/3)
CV +Vd 0 CV +Vd 1 (0/1)
CV +CV * Vd 2 (2/0) CV + CV * Vd 0
CV +Vd + CV * Vd 0 CV +Vd + CV * Vd 0

UV UV 20 (19/1) 30 (28/2) UV 4 (1/3) 4 (1/3)
UV +Vd 1 (0/1) UV +Vd 0
UV +UV * Vd 7 (7/0) UV +UV * Vd 0
UV +Vd +UV * Vd 2 (2/0) UV +Vd +UV * Vd 0

Vd Vd 10 (2/8) 15 (4/11) Vd 1 (1/0) 6 (4/2)
CV +Vd 0 CV +Vd 1 (0/1)
Vd + CV * Vd 2 (0/2) Vd + CV * Vd 3 (2/1)
CV +Vd + CV * Vd 0 CV +Vd + CV * Vd 0
UV +Vd 1 (0/1) UV +Vd 0
Vd +UV * Vd 0 Vd +UV * Vd 1 (1/0)
UV +Vd +UV * Vd 2 (2/0) UV +Vd +UV * Vd 0

CV * Vd CV * Vd 2 (2/0) 6 (6/0) CV * Vd 1 (0/1) 4 (1/3)
CV +CV * Vd 2 (2/0) CV + CV * Vd 0
Vd + CV * Vd 2 (2/0) Vd + CV * Vd 3 (1/2)
CV +Vd + CV * Vd 0 CV +Vd + CV * Vd 0

UV * Vd UV * Vd 3 (1/2) 12 (2/10) UV * Vd 1 (1/0) 2 (1/1)
UV +UV * Vd 7 (1/6) UV +UV * Vd 0
Vd +UV * Vd 0 Vd +UV * Vd 1 (0/1)
UV +Vd +UV * Vd 2 (0/2) UV +Vd +UV * Vd 0

Note: Four rows for each of the signal represent the cases of the best model in which the signal was observed. Numbers in parentheses represent the frequency of the

positive/negative correlation with the neuronal activity, respectively. For example, “2 (2/0)” on the third row of the third column means that 2 of the CV signals were

found in the neuronal activity best described with the model “CV + Vd”, and 2 among those 2 cases had positive coefficient for the CV signal in the best model. The

functional types were determined separately for the early and the late delay periods.

Figure 7. SEF neurons representing decision confidence during the delay period. Spike density histograms show activity separately for trials with a low-value gamble

option (1 unit of reward for losing and 4 units for winning) and for trials with a high-value gamble option (4 vs. 7 units of reward). The activity is aligned on the

saccade onset. Within each spike density histogram, trials were sorted by the range of value difference (Vd) between the chosen and unchosen option (Vd = 2.5 to 1.5

[black], 1.5 to 0.5 [dark gray], 0.5 to −0.5 [medium dark gray], −0.5 to −1.5 [light gray]; all in units of reward, 1 unit = 30 µL of water). The histograms to the left of the

regression plot show the actual firing rate, whereas the histograms to the right show the residual firing rate that was due to value difference after accounting for the

influence of CV or UV and saccade direction. The activity of SEF neurons could be negatively (A) or positively (B) correlated with Vd. The best regression model for

each example neuron is plotted in the middle of the histograms. Neuronal activities (dots) are plotted against the value difference between the chosen and unchosen

option. Three different ranges of CV or UV are indicated by the dot color (low [red]: 1–3; medium [green]: 3–5; high CV or UV [blue]: 5–7; all in units of reward). Lines

describe the best regression model when the CV or the UV was 7 (blue), 4 (green), and 1 (red) units of reward. When there is no modulation by CV or UV, different

colored lines collapse into a single black line. Only the conditions that include more than 5 trials were plotted to make the figures less noisy.
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In the residual firing rate analysis, we only controlled for CV,
UV, and saccadic direction. It is possible that the residual firing
rates might still reflect the influence of other variables that we
did not include in the analysis, such as the outcome-related vari-
ables that we investigated in a previous study (So and Stuphorn
2012). In choice trials, on which we concentrate in this study, a
CV is equivalent to expected outcome. The remaining class of
potentially unaccounted variables is therefore those related to
uncertainty (i.e. signals representing whether the chosen option
was a sure or a gamble option; So and Stuphorn 2012). However,
we observed value difference (Vd)-dependent residual firing rate
modulations in both sure and gamble choice cases (Fig. 8E,F), sug-
gesting that it is unlikely that uncertainty-sensitive variables
might be the source of these activity modulations instead of
value difference.

There were fewer choice-evaluation signals in the late delay
period, just before the outcome was revealed (300 ms before the
outcome disclosure). A smaller number of neurons (28/227;
12%) showed a significant difference depending on the trial
type (choice/no-choice). Among them, the Vd signal was found
in 6 neurons (21%) and its interaction with the CV (CV * Vd) and
the UV (UV * Vd) was found in 4 neurons (14%) and in 2 neurons
(7%), respectively (Table 1).

Our previous study showed that many SEF neurons carried
outcome evaluation signals during the outcome period follow-
ing the post-choice delay (So and Stuphorn 2012). However,
there was no tendency of the SEF neurons carrying Vd− or Vd
+ signals to encode any particular set of outcome-related sig-
nals. Specifically, the neurons carrying Vd− signals were

equally likely to represent loss- or win-related signals (8 loss-
related, 7 win-related, and 6 other signals). The same was true
for neurons carrying Vd+ signals (1 loss-related, 3 win-related,
and 4 other signals).

As mentioned earlier, neurons that carry signals related to
choice evaluation should be less engaged in no-choice trials. To
characterize the difference in neuronal activities between choice
and no-choice trials for the neurons carrying Vd, CV, or UV
signals, we compared the mean and the standard deviation in
neuronal activity during the 300 ms after saccade between
these 2 conditions (Fig. 9). Most of the neurons (especially the
Vd− cells) showed stronger and more variable activity during
the choice trials compared with no-choice trials.

Population Dynamics of the Choice Confidence Signal

We investigated the temporal dynamics of the choice confidence
signals represented in SEF neurons using a dynamic regression
and a CPD analysis. First, at each time window (50 ms width;
10 ms step size), we plotted the number of cells whose mean ac-
tivities during that time window were best described by a model
that contained the respective variable (Fig. 10A). Since the tem-
poral dynamics of all Vd−containing signals (Vd, CV * Vd, and UV
* Vd signals) were very similar to one another, we combined them
all to show the underlying temporal dynamics more clearly. At
the beginning of the delay period, most neurons encoded the
CV and/or the UV. Interestingly, the UV representation developed
mainly after the choice, approximately 50 ms later than the CV
representation. Gradually, neurons started to represent the

Figure 8. Choice confidence-dependent residual firing rate after accounting for choice value and the direction of a saccade. Residual firing rate for all neurons carrying Vd−
signals (A), Vd+ signals (B), a CV signal only (C), or a UV signal only (D). For neurons representing a UV signal only (D), the value of the unchosen option was controlled,

instead of the chosen option value. Residual firing rate of SEF neurons representing confidence following sure and gamble option choices, for all neuronswith activity that

is negatively (E) or positively (F) correlatedwith Vd. Trialswere sorted by the range of value difference (Vd) between the chosen and unchosen option (Vd = 2.5 to 1.5 [black],

1.5 to 0.5 [dark gray], 0.5 to −0.5 [medium dark gray], −0.5 to −1.5 [light gray]; all in units of reward). Shaded areas represent SEM.
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confidence in the choice just made. The number of neurons car-
rying Vd-sensitive confidence signals peaked around 200 ms
after the saccade. Following this peak, all of the choice confidence
signals slowly became less frequent. Secondly, using the same
temporal windows, we measured at each time point the CPD
for each variable (Fig. 10B). The CPD value describes the addition-
al reduction in the variance of neuronal activity that is achieved
by introducing a given variablewhen the explanatory power of all
the other variables has already been taken into account. The

absolute measure of the CPD value is not informative since its
scale depends on the inherent variance in spikes and the overall
firing rate of the neurons (seeMethods). However, the relative dy-
namics in CPD value over time and the strength provides ameas-
ure to compare the dynamics and the relative strength of each
signal in time within the same population. Although the initial
domination of the CV and the UV signals makes it less obvious
in the plot, the characteristic temporal development of the Vd-
sensitive signals was similar to the one revealed by the dynamic

Figure 10. Temporal dynamics of signals in the SEF representing choice confidence. (A) The number of cells that include each variable in their bestmodelswas counted for

each time bin (overlapping window; 50 ms width with 10 ms step). (B) Mean CPD for each variable at each time bin. Shaded areas represent SEM.

Figure 9. The strength and variance of SEF neuron activity with choice contingent activity varies for choice and no-choice trials. We compared themean activity (left) and

the standard deviation of the activity (right) in choice and no-choice trials for the SEF neurons that carried Vd (Vd+: green dots; Vd−: red dots), CV (blue dots), or UV (black

dots) signals.

SEF Encodes Confidence in Risky Choice So and Stuphorn | 777



regression analysis. Moreover, the temporal difference in CV and
UV representation was also observed in the CPD analysis.

Choice Confidence Signals in SEF NeuronsWere Stronger
Prior to a Fixation Break

The monkeys evaluated their choice before its outcome was re-
vealed, since they withdrew their choice by breaking fixation of
the chosen target more often when the chosen option value
was lower than the unchosen option value on average (Fig. 5).
Wewished to test whether the choice confidence-related activity
in SEF neurons had any relation with such evaluative behavior of
themonkeys. To test whether the neurons were differentially ac-
tive on fixation break trials, we computed the residual activity on
such trials, after controlling all the other possible factors influen-
cing the neuronal activity, namely the CV, the UV, and the direc-
tion of a saccade. Unfortunately, fixation breaks were not
common enough to allow us to analyze the activity of individual
neurons. Instead, we compared the average of the resulting re-
sidual firing rate for all the neurons carrying Vd− signals
(Fig. 11A,B), and for all the cells carrying the UV signal only
(Fig. 11C). If the activity of the neurons is related to the monkey’s
evaluative behavior, we would expect the neuronal activity to be
significantly different during the fixation break trials compared
with trials with an identical condition, in which the monkey
decided to stay with the current choice. We examined whether
there is any time period prior to the fixation break, during
which the residual activity is significantly different from zero
for at least 20 ms (two-sided t-test; P < 0.05; Bonferroni adjusted).
The cells carrying Vd− signals showed stronger activity for the
fixation break trials (positive residual firing rate), as early as
around 220 ms prior to the fixation break (Fig. 11A, right). This
is a strong indication that the confidence signal carried by the
SEF neurons is indeed used to decide, whether the choice should
be withdrawn to avoid further costs. This relationship is specific,
since during the no-choice trials these same cells showed the ac-
tivity increase too late to explain the fixation breaks (Fig. 11B,
right). Likewise, cells that only carried an UV signal showed
stronger activity only after the fixation break had happened
(Fig. 11C, right). Hence, the UV signal represented in SEF neurons
wasnot in a position to influence the decisionwhether the choice
should be withdrawn or not. Owing to the small number of the
cells carrying Vd+ signals (8 cells and 26 fixation break trials)
and of the cells carrying a CV signal only (5 cells and 15 fixation
break trials), we could not perform the same analysis on those
groups of neurons.

Discussion
Using an oculomotor gambling task,we found a group of SEF neu-
rons that carried an explicit confidence signal immediately fol-
lowing the choice. The Vd signals described here follow the
choice and are contingent on the choice. Therefore, the causes
of the choice—whether it be lapse of attention, exploration, or
random fluctuations in the value estimations on which the
choice is based—cannot be responsible for the Vd signals we re-
port here. Instead, the Vd signals are likely related to an evalu-
ation of the choice and are used to guide subsequent behavior.
SEF and the medial frontal cortex, in general, are known to con-
tain many other evaluative signals (Stuphorn et al. 2000; Ito et al.
2003; So and Stuphorn 2012) and to be involved in behavioral con-
trol (Stuphorn and Schall 2006; Chen et al. 2010; Scangos and
Stuphorn 2010; So and Stuphorn 2010; Stuphorn et al. 2010).
Choice confidence was strongly related to the likelihood that

the monkey broke fixation before the outcome of the choice
was revealed. This implies that, on some trials, the monkeys
had such a low estimation of the current choice that they pre-
ferred to withdraw from it before knowing its outcome. These
spontaneous fixation breaks in our task reflected therefore an
evaluation of the choice process. In that sense, they are function-
ally similar to post-decision wagers used in other experiments to
probe choice confidence (Smith et al. 1997; Kepecs et al. 2008;
Kiani and Shadlen 2009; Kepecs and Mainen 2012; Middlebrooks
and Sommer 2012).

Functional Role of Confidence Signals in SEF

The confidence representation in SEF is distinct from the re-
presentation of reward expectation, since it was not present dur-
ing the no-choice trials (Fig. 1A), in which reward expectation
exists, but an action cannot be evaluated with respect to its un-
chosen alternative. The Vd signals are also distinct from other
evaluative signals observed in SEF, such as the actual outcome re-
presentation (win, loss, and reward amount representation) or
the reward prediction error signals, all of which must appear
after the outcome was revealed (So and Stuphorn 2012). Further-
more, the Vd signals still contributed significantly to the neuron-
al activity, even after the individual effects of CV and UV were
taken into account in our analyses (Figs 7 and 8). Thus, the confi-
dence signal we observed in SEF is distinct from reward
expectation.

A recent study also attempted to disambiguate confidence
and reward expectation, but used a perceptual judgment task
(Middlebrooks and Sommer 2012). In this study, monkeys first
had to search for a masked target, and then had to bet whether
their decision was correct or not. They received different
amounts of reward depending on both their decision (correct/
incorrect) and the bet. The authors attempted to separate confi-
dence and reward expectation in their task by relating different
bets following the same decision to the different confidence
levels, and the same bet following different decisions to the
same degree of reward expectation. SEF neurons showed differ-
ent activity for different betting trials on the same decision,
and it was the only area showing such confidence-related activity
among the 3 areas they recorded, namely orbitofrontal cortex
(OFC), frontal eye field, and SEF. The authors argued that such
SEF neuronal activity could not represent a reward expectation
signal, since the activity was significantly different for different
decisions followed by the same bet. However, the reward amount
that themonkey received depended on both the decision and the
bet. Hence, the reward expectation of themonkeywhile choosing
a particular betwas also contingent on his confidence in the prior
decision. Thus, confidence and reward expectations were still
highly correlated in this metacognitive task (Middlebrooks and
Sommer 2012). In contrast, our study provides unequivocal evi-
dence for the existence of a confidence signal that is distinct
from reward expectation. Value-based decisions such as the
ones in our gambling task consist in the comparison of different
reward expectations. Hence, confidence and reward expectation
can be naturally separated as the balance of evidence, that is,
confidence, does not necessarily coincide with the eventual re-
ward amount expected. Our results therefore complement the
study of Middlebrooks and Sommer (2012) and support their in-
terpretation of the SEF activity as encoding choice confidence.

Many SEFneurons carried amixture of confidence-related sig-
nals (Vd) and reward expectation (CV) signals. This seems rea-
sonable, if the primary function of those neurons is the
immediate evaluation of the choice. Since the optimal choice is
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associated with different reward amount across trials, the abso-
lute reward amount is also an importantmeasure to evaluate the
choice besides the judgment on how optimal the choice is. If the
eventual outcome is good enough, even a choice that was likely

suboptimal might still be worth pursuing. In addition, we also
found many SEF neurons that represented the alternative poten-
tial outcome, that is, the UV. In contrast to the CV signal, the UV
signal developed mainly after the choice, which suggests its

Figure 11. Residual firing rate during fixation break trials. From the activity during the choice trials where the monkey broke the fixation of the chosen target during the

post-choice delay period, themean activity expected for the same chosen and unchosen options and the same saccade direction was subtracted for the neurons carrying

Vd− signals (A), and the ones carrying aUVsignal only (C). Todetermine the residualfiring rate of theVd−neurons before afixation break during theno-choice trials (B), we

subtracted themean activity expected for the same chosen option and the saccade direction. The residual firing rate was aligned to the initial saccade onset (left), and to

the fixation break onset (right). The number of fixation break trials used for each group is indicated in each plot.
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evaluative nature (Fig. 10). Our current study does not provide a
conclusive answer on the functional role of this UV signal in de-
cision-making. One possibility is that the UV signal might be
used to compute the Vd signals. The temporal dynamics of CV,
UV, and Vd signals provide some support for this possibility. Al-
ternatively, the UV signal may reflect an independent evaluation
based on the hypothetical outcome of the alternative action
(Hayden et al. 2009; Abe and Lee 2011). However, the UV signal
in the SEF did not seem to influence the monkey’s evaluative be-
havior following the choice (Fig. 11B).

Activity in the lateral intraparietal area (LIP) also reflects con-
fidence, albeit in a more implicit fashion (Kiani and Shadlen
2009). LIP neurons represent the accumulated evidence in favor
of a particular choice. As expected by the balance-of-evidence
models of confidence (Vickers 1979), in the time period before a
choice was expressed, the LIP neurons were less active when
the monkey was less certain (Kiani and Shadlen 2009). Thus,
the LIP neurons seem to reflect the decision process, on which
the confidence estimation is based (Gold and Shadlen 2007),
while the signals in the SEF explicitly encode confidence after
the decision is made. The interpretation of the Vd-sensitive sig-
nals in the SEF as internalmonitoring signals that regulate future
behaviormight also explainwhy the confidence signalwas found
predominantly in the SEF, but not in other parts of the frontal
cortex (Middlebrooks and Sommer 2012).

The majority of SEF neurons were most active when choice
confidence was low. The same predominance of neurons
whose activity was negatively correlated with confidence was
found in rat OFC (Kepecs et al. 2008), but not in monkey SEF in
the task that required to bet on a prior judgment (Middlebrooks
and Sommer 2012). One possible reason for such predominance
of inverse confidence signals in our study is that low confidence
is behaviorally more salient in the gambling task. If the current
choice is likely to be suboptimal, corrective actions become
desirable, while no further action is necessary if the current
choice is likely to be optimal. In contrast, in the metacognitive
task, both high and low confidence was behaviorally relevant
since they required different subsequent choices (Middlebrooks
and Sommer 2012).

Recording studies inmonkeyshave shown confidence-related
signals in the LIP and SEF. A recent imaging study in humans also
studied the representation of confidence in value-based choice
(De Martino et al. 2013). Interestingly, this study did not show ac-
tivity in the parietal or dorsomedial frontal cortex. Instead, activ-
ity in the ventromedial prefrontal cortex (vmPFC) reflected
confidence in the value comparison process. The degree to
which this confidence signal could be reported accurately de-
pended on the strength of the functional connection between
vmPFCand amore rostral frontal area, the rostrolateral prefrontal
cortex (RLPFC). There are 2 possible reasons for the apparent dif-
ferences between themonkey and human studies. First, the total
number of SEF neurons that carried confidence signals in our
study was low (29/227 neurons; 13%). In general, due to unknown
recording biases, it is complicated to extrapolate from the total
number of neurons in a study the overall frequency of such neu-
rons in a brain area. Nevertheless, the small number of confi-
dence-related neurons in our sample implies that they might
represent only a small subset of the overall neural population
in the SEF. Thus, they might not have generated a signal that
was strong enough to be picked up by neuroimaging techniques.
Secondly, both SEF and LIP are oculomotor regions. It is likely that
the confidence-related activity in these areas is present only dur-
ing decisions involving selection of eye movements. Instead, the
signals in the human vmPFC and RLPFC might represent a more

abstract confidence signal that is not related to any specificmotor
system. More experiments in monkeys and humans are neces-
sary to investigate these issues.

Alternative Interpretations

Some SEF neurons carry error-related activity (Stuphorn et al.
2000). In our gambling task, a choice that is likely to be less valu-
able than the alternative might also be interpreted as an error,
and the Vd− signals as an error signal. The previously reported
error signals evaluate the choice after the outcome is known
(Stuphorn et al. 2000; So and Stuphorn 2012). In contrast, the Vd
− signals are present before the outcome is known. Thus, if one
wanted to interpret the Vd− signals as a type of error signals,
one had to hypothesize that it represents the likelihood that a
choice was incorrect or suboptimal. Error likelihood in this
sense is a retroactive evaluation of a past action, andmust be dis-
tinguished from “error likelihood” as a proactive control signal,
indicating the likelihood that an error will be committed in the
future (Brown and Braver 2005). However, an error likelihood sig-
nal in this sense is simply the inverse of a signal that represents
the likelihood that a choice was correct/optimal, that is, confi-
dence. Thus, there is only a semantic difference between “error
likelihood” and “confidence”, without any functional difference
in interpretation.

Another alternative interpretation is that the Vd signals re-
present regret, a cognitive or emotional reaction associated
with the realization that an unchosen action would have yielded
a better outcome (Bell 1982; Loomes and Sugden 1982; Mellers
et al. 1999). Since the Vd signals reflect the value difference be-
tween the chosen and unchosen option, they might also re-
present a comparison with hypothetical outcomes (Coricelli
et al. 2005; Hayden et al. 2009; Abe and Lee 2011). What argues
against this interpretation of the Vd signals in the SEF is their
timing. Regret can be represented in an anticipatory fashion,
helping an agent tomake a choice tominimize possible future re-
gret. However, the Vd signals reported here cannot represent
such anticipated regret, since they appear after the choice. Like-
wise, these signals cannot represent the regret itself, which is
contingent on the actual outcome. When the actual outcome
was revealed, the Vd signals were already diminished and the
neurons carrying them were not consistently active after losing
outcomes. Thus, the Vd-sensitive SEF activity is unlikely to re-
present regret.

Conflict is another monitoring signal that reflects the differ-
ence in drive supporting the choice options (Stuphorn et al.
2000; Botvinick et al. 2001). However, conflict should reach amax-
imum as value difference approaches zero and should fall off
symmetrically as one of the options is increasinglymore valuable
than the alternative, regardless of what is chosen. In contrast,
the Vd signals described here monotonically rise or fall across
the signed value difference, contingent on the choice. Thus, the
Vd-encoding SEF neurons are unlikely to represent conflict.

The Vd-encoding neurons in the SEF were significantly more
active before themonkey broke fixation in choice trials (Fig. 11A).
Therefore, the activity of these neurons might be correlated with
a lapse of attention or disengagement from the task, rather than
confidence. However, the Vd-encoding cells were not active be-
fore the fixation breaks during no-choice trials (Fig. 11B). Thus,
it is unlikely that these neurons represent task disengagement
as such. Instead, the neurons likely responded to the evaluation
of a decision process, since the activities were closely related to
the unchosen alternative in a graded fashion reflecting the entire
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range of Vd values, encompassing both the positive and negative
domain (Fig. 8). If these neurons were representing or responding
to a lapse of attention, they should not have been active during
the trials with positive Vd values, in which the monkey behaved
optimally. Again, the most parsimonious interpretation of the
Vd-encoding SEF neurons is that their activity reflects confidence
in value-based choices.

There are limitations to our study. First, all of the present re-
sults depend on linearmodels andwemight havemissed at least
some neurons that might represent confidence in a nonlinear
fashion. Nevertheless, the current approach seemed like the
most conservative and robust one in the absence of any a priori
belief about more specific nonlinear models. Secondly, even
thoughwe tried to disambiguate confidence from other cognitive
or emotional signals, there might still have been other factors in
our complex task that we did not control for. Finally, the absence
of explicit post-decision wagers forced us to rely on spontaneous
fixation breaks that were limited in number. Future experiments
should compare SEF neurons directly during perceptual and
value-based decisions in tasks that allow a direct behavioral esti-
mate of confidence.

Conclusions
In conclusion, our study shows that the SEF actively represents
confidence in value-based decisions. This fits with previous find-
ings indicating a role of SEF neurons in value-based action selec-
tion (So and Stuphorn 2010), and monitoring of action outcomes
(So and Stuphorn 2012). The confidence signals form a small, but
substantial numberof neurons in our studyandmight be part of a
larger group of monitoring signals that affect the monkeys’ pre-
sent and future behavior. In addition, our current findings also
support the hypothesis that choice confidence is an integral com-
ponent of all forms of decision-making, whether they are based
on perceptual evidence or on value estimations.
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