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Abstract

Interrogating fundamental cell biology principles that govern tissue morphogenesis is critical to 

better understanding of developmental biology and engineering novel multicellular systems. 

Recently, functional micro-tissues derived from pluripotent embryonic stem cell (ESC) aggregates 

have provided novel platforms for experimental investigation; however elucidating the factors 

directing emergent spatial phenotypic patterns remains a significant challenge. Computational 

modelling techniques offer a unique complementary approach to probe mechanisms regulating 

morphogenic processes and provide a wealth of spatio-temporal data, but quantitative analysis of 

simulations and comparison to experimental data is extremely difficult. Quantitative descriptions 

of spatial phenomena across multiple systems and scales would enable unprecedented 

comparisons of computational simulations with experimental systems, thereby leveraging the 

inherent power of computational methods to interrogate the mechanisms governing emergent 

properties of multicellular biology. To address these challenges, we developed a portable pattern 

recognition pipeline consisting of: the conversion of cellular images into networks, extraction of 

novel features via network analysis, and generation of morphogenic trajectories. This novel 

methodology enabled the quantitative description of morphogenic pattern trajectories that could be 

compared across diverse systems: computational modelling of multicellular structures, 

differentiation of stem cell aggregates, and gastrulation of cichlid fish. Moreover, this method 

identified novel spatio-temporal features associated with different stages of embryo gastrulation, 

and elucidated a complex paracrine mechanism capable of explaining spatiotemporal pattern 

kinetic differences in ESC aggregates of different sizes.
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Introduction

Model organisms, such as C. elegans, Drosophila, and zebrafish, are frequently used to 

interrogate the complex sets of regulatory cues and gene regulatory networks governing 

morphogenic processes, like gastrulation and neurulation, due to the technical ease in 

manipulating and imaging 1–3 these organisms. Pluripotent embryonic stem cell (ESC) 

aggregates present a complementary, alternative in vitro platform for investigating 

mechanisms of morphogenesis due to their intrinsic ability to differentiate into tissues from 

all three germ layers and yield formation of a variety of primitive tissues including optic 

cups 4, human intestinal lining 5 and cerebral organoids 6. Each of these multicellular 

systems is highly complex both in terms of the heterotypic cell types that comprise the tissue 

and the emergent spatiotemporal organization dynamics exhibited by heterogeneous cell 

populations.

Computational modeling of embryonic development has become an increasingly powerful 

tool to complement experimental investigations due largely to the fact that increased 

processing speed has reduced the barrier to multiscale simulations of complex multicellular 

organismal systems. Computational models have been constructed for C. elegans 7 and 

Drosophila 8–10 to comprehend the relationships between cell signaling and lineage 

development in order to gain new insights into the intricate interplay of mechanisms 

governing development. Stage-specific models have also been developed to examine 

phenomena such as gastrulation 11 and somite formation 12 at a mechanical level, while 

computational models of the formation and differentiation of cells in the early mouse 

embryo 13 and in mouse ESC aggregates 14 explore mechanisms governing early cell fate 

decisions. Overall, these modeling approaches have provided a wealth of quantitative data to 

describe spatio-temporal events associated with morphogenesis; however it remains 

extremely challenging to relate spatial modeling predictions directly with experimental 

outcomes due primarily to the difficulty in quantifying multicellular pattern features.

This challenge of relating patterns across systems has hindered high-throughput analysis of 

developmental processes. In experimental systems, divergent phenotypes are often 

characterized largely by visual inspection, thus lacking the quantitative rigor and objective 

criteria necessary for direct comparison with computational models. Though several 

techniques exist to automatically distinguish phenotypes at various spatial scales 15–19, they 

often lack the resolution of single-cell regulatory dynamics 18, 19, or are customized 

specifically for investigation of only specific systems 17, 19. As a result, quantitative metrics 

extracted from such studies cannot be easily translated between different modes of data 

analysis or across various model organisms. Hence, a portable pattern recognition pipeline 

capable of handling various biological and computational inputs would enable direct 
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quantitative comparisons on previously unattainable spatial and temporal scales between 

different multicellular systems.

In this report, we demonstrate that deriving physiologically meaningful quantitative metrics 

capable of distinguishing subtleties between spatial phenotypes in a computationally 

tractable manner can be achieved via spatially derived networks. This novel approach 

extracts global metrics, such as path lengths and connectivity information, as well as local 

metrics based on attributes of specific clusters of cell phenotypes. Identification and 

comparisons of sub-networks within morphogenic systems allow for greater network 

quantification and significantly enriches the possible metric space by extracting specific 

subpopulation information. These metrics can be subsequently analyzed with standard 

classification methodologies and high dimensional data visualization techniques to extract 

biologically relevant information20–22. Furthermore, this network-based scheme is the first 

classification approach currently capable of using spatial data at the single cell level to 

classify tissue level pattern dynamics. To demonstrate this, we first explored the use of 

simple network metrics to capture patterning across a large range of parameter space using 

computational simulations, before applying this analysis to a variety of applications. Several 

input formats (i.e. 2D images and 3D confocal data sets) were analyzed to demonstrate the 

robust nature of this technique. Consequently, we describe the creation of a powerful and 

modular pattern identification algorithm with sufficient portability to address meaningful 

questions about the spatiotemporal dynamics of biological pattern formation. This 

methodological tool automatically identified stages of gastrulation in cichlid fish in an 

unprecedented manner, provided the first quantitative description of spatio-temporal patterns 

associated with loss of pluripotency in ESC aggregates, and uncovered a paracrine 

mechanism capable of explaining the observed differences in spatiotemporal pattern kinetics 

associated with ESC aggregate differentiation.

Results

Network-based metric identification for spatial pattern classification

In order to identify appropriate metrics for characterizing spatial patterns, a flexible and 

expedient computational framework was necessary to generate a large data set comprised of 

various types of multicellular patterns. We generated an in silico training set by using 

pattern generation algorithms to simulate spatial features of differentiation in 3D 

multicellular aggregates 14. In total, seven different classes of general patterns were 

generated: random, outside-in, inside-out, snaked, globular, undifferentiated (>95% Oct4+) 

and differentiated (<5% Oct4+) (Fig 1A). We postulated that by applying a network-based 

approach, simple sets of quantitative metrics could be extracted from complex patterns. 

Typically, metrics extracted from intact networks include path lengths, average connection 

counts, and connection lengths. While these metrics are important for describing the 

network as a whole, they did not accurately describe the variations present in biological 

patterns. Therefore, clusters of cells of the same phenotypes were identified to partition the 

single larger network into a series of sub-networks in which various metrics related to the 

number, size and distribution of these sub-networks were defined (Supplementary Fig 1). In 

the context of stem cell differentiation, two sub-networks (Oct4+ and Oct4-) were examined 
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because of the transitions from high to low Oct4 protein levels as a result of differentiation 

and loss of pluripotency23,24.

To examine the overall shape of the multi-dimensional data set, a dimensional reduction 

technique, principal component analysis (PCA), was performed. PCA generated a 2D 

projection of all samples based upon their network features. The scatter plot revealed some 

overlap between different pattern classes, particularly for the globular and snaked patterns 

(Fig 1A), but in general the different classes could be readily distinguished from one 

another. More importantly, a continuum of patterns was observed (Fig 1A), suggesting a 

natural pattern evolution. The model was able to explain 77.7% of the variance in the data 

set with three principal components (PCs): 46.5% with PC-1, 13.9% with PC-2 and 11.7% 

with PC-3 (Fig 1B). PC-1 represented the stage of differentiation and was positively 

correlated with variables associated with differentiated clusters or overall differentiation, 

whereas PC-2 and PC-3 were associated with spatial sub-network descriptors. PCA also 

revealed that each metric contributed significantly to the model, indicating that inclusion of 

all metrics was important to comprehensively describe the data set.

To verify that simple network-based metrics could describe complex spatial pattern classes, 

various classification algorithms were assessed to determine their ability to distinguish 

between pattern types: k nearest neighbor (KNN), state vector machines (SVM, NuSVC), 

stochastic gradient descent (SGD) and decision tree algorithms. Classification labeling 

overlapped with the true labels as assessed via PCA dimensional reduction (Supplementary 

Fig 2). The SVC classifier had the highest overall accuracy (.998), precision (.999), and 

recall scores (.987), suggesting it was the most appropriate algorithm for classifying spatial 

patterns. Collectively, these results suggested that novel network-based measurements 

provide a robust set of quantitative metrics for classification of complex spatial patterns.

Quantitative pattern trajectories of 3D pluripotent stem cell aggregates

Images of Oct 4+ to Oct4− transitions during differentiation of 3D murine ESC aggregates 

were acquired experimentally to determine how well network metrics captured an in vitro 

dynamic biological process (Fig 2A). Since pluripotent differentiation is known to be 

modulated by aggregate size25–27, two starting cell densities were examined (250 and 1000 

cells/aggregate). To evaluate the previously derived network metrics for pattern analysis, 

experimentally-obtained confocal images were converted into a network representation of 

the cells using a digital reconstruction pipeline (Supplementary Fig 3). A representative time 

course of differentiation in 1000-cell aggregates (Supplementary Fig 4) demonstrates the 

fidelity of this process in accurately converting images into annotated networks.

Next, digitized ESC aggregate networks were analyzed with the aforementioned network 

metrics. PCA revealed an average trajectory through latent variable space for cell aggregates 

in which all cells began in an undifferentiated state and proceeded through a transitioning 

period until finally settling into a differentiated state (Fig 2B). Regardless of size, the 

trajectories substantially overlapped, although the 250-cell trajectory was more truncated 

temporally relative to the 1000 cell aggregates, reflecting accelerated differentiation 

(Supplementary Fig 5). The PCA model explained 76.1% of the variance in the data: 43.6% 

from PC-1, 22.2% from PC-2, and 10.3% from PC-3 (Fig 2C). All metrics significantly 
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contributed to at least one principal component, verifying that network-derived metrics 

capture the variance of biological spatial patterns. PC-1 represented differentiation, while 

PC-2 and PC-3 again correlated with spatial sub-network descriptors representing inter-

pattern variation. The principal component metric weights for the experimental data closely 

mirrored the weights for the in silico training set, indicating that network-derived metrics 

comprehensively capture the inherent biological variance that transpires during the course of 

ESC aggregate differentiation.

While the Oct4+ and Oct4− states were quite distinct, the intermediate transitioning period 

displayed a great amount of variance (Fig 2B). To determine if the variation was due to 

differences in spatial patterns, classification was performed using the previously trained 

SVC classifier to characterize the distribution of spatial patterns in each state. Classification 

indicated that the initial state consisted largely of a mix of undifferentiated, random, and 

outside-in patterns, while the final state consisted of a mix of entirely differentiated and 

outside-in patterns (Fig 2D, Fig 2E). The variation with respect to each time-point peaked at 

days 5 and 6 (Fig 2B), which also displayed a diverse set of spatial patterns (Fig 2E). 

Furthermore, SVC classification predicted that many of the aggregates at day 5 and 6 could 

belong to multiple pattern classes, indicating that these patterns were more spatially complex 

and thus displayed components of multiple different pattern types (Fig 2F). Overall, spatial 

pattern evolution progressed in the following temporal order: undifferentiated, snaked, 

random, globular, inside-out, differentiated. Similar pattern trajectories were also observed 

for the 250-cell aggregates (Supplementary Fig 5). These results represent a biological 

trajectory describing spatial pattern evolution in a portable quantitative fashion, but even 

more importantly, the analysis suggests that early differentiation in ESC aggregates 

progresses via quantifiable spatial patterns that do not display purely random characteristics. 

Furthermore, this is the first description of biological trajectories using single cell 

information to capture spatial pattern complexity.

Pattern trajectories of computational models describing ESC differentiation

Next, to probe the mechanisms governing the formation of spatial patterns associated with 

differentiation, an agent-based modeling approach was employed in which cells are allowed 

to proliferate, migrate, and differentiate within a 3D aggregate configuration14. In our prior 

work, a simple set of rules based on local neighboring cell state(s) were used to govern 

changes in cells state; however, we found comparisons between modeling results to be 

nearly impossible because a quantitative set of descriptors for assessing spatial patterns did 

not exist. In addition, comparison with experimental data could not be directly accomplished 

without a validated digitization strategy. These challenges were addressed simultaneously by 

enabling direct comparison between spatial patterns from computational models and 

experimental results via the use of these newly defined network metrics.

Seven models with different rule schemes driving differentiation were investigated: random, 

local positive feedback, local negative feedforward, local competing regulation, paracrine 

activation, paracrine inhibition, and combined paracrine activation/inhibition (Fig 3A). 

Diffusion simulations were carried out to understand how the ratio of consumption to 

production of soluble factors effected gradient propagation prior to paracrine rule creation 
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(Supplementary Figure 6). Simulations were carried out over a six-day period with different 

initial aggregate sizes: 250- and 1000-cells/aggregate. Each rule set was simulated with 

multiple parameters to explore the breadth of pattern trajectory space (Supplementary Table 

1). PCA using the metrics described in figures 1 and 2, captured 76.5% of the simulation 

variance: 48.83% from PC-1, 17.7 from PC-2, and 9.9% from PC-3 (Supplementary Figure 

7). Again, PC-1 represented differentiation, while the PC-2 was influenced by standard 

deviations in sub-network measurements, correlating with the formation of spatial patterns 

in the simulations.

The previously trained pattern classifiers were applied to assess the spatial patterns 

generated by the computational simulations and analyzed using hierarchical clustering 

(Figure 3B). While the competing, negative feedforward, and positive feedback rules all 

generated similar pattern distributions and trajectories, the paracrine rules generated a more 

diverse set of pattern types. All together the rules were able to achieve a wide variety of 

diverse pattern types and evolutions. These results indicate that various complex pattern 

evolutions and temporal kinetics can be achieved using parsimonious, generalized rule sets.

Comparing computational and experimental pattern trajectories

A powerful feature of the employed network-based methodology is the ability to directly 

compare results across different platforms, thus allowing the modelling and experimental 

data sets to be merged into a single metric set. PCA was used to assess which metric axes 

were most important for describing the variation, resulting in a set of 5 axes responsible for 

~ 90% of the variance along which to compare the different data sets (Supplementary Figure 

6). Previously it was postulated that a competing regulation scheme could capture the spatial 

pattern evolution during differentiation, but this mechanism failed to explain kinetic 

differences between 250 and 1000-cell differentiation trajectories. To identify parameter sets 

and rules that did modulate differentiation based on aggregate size, a ratio of the 

differentiation rate of 250-cell to 1000-cell differentiation was calculated (Figure 3C). This 

ratio confirmed that local feedback rules did not exhibit significant size dependent 

differences, where nearly all of the soluble rules did. Both the paracrine activation and 

competing paracrine rules resulted in slower differentiation of 1000-cell aggregates than 250 

cell aggregates, matching experimental observations. By comparing these rules to the 

experimental data on the PCA axes derived previously, it was determined that the paracrine 

competing rule set yielded the best fit (Figure 3F) because this rule accurately captured both 

the relevant time scales for differentiation (~24 hours in 250 cells/aggregate and ~48 hours 

for 1000 cells/aggregate) and the spatial pattern evolution (Figure 3D). Furthermore, this 

rule suggested that in 250 cell aggregates, differentiation was primarily induced by the 

absence of activator for the pluripotent state, while differentiation was largely caused by the 

accumulation of an activating factor within the 1000 cell aggregates (Figure 3E). 

Collectively, these results demonstrate a non-intuitive paracrine mechanism that can 

accurately explain differentiation of ESC aggregates and thereby demonstrate the power and 

utility of network based metrics for elucidating new mechanisms governing biological 

processes.
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Network-based analysis of cichlid gastrulation

Finally, to assess the applicability of network-based analysis on a tightly regulated 

biological process involving multiple biological signals, gastrulation of East African cichlid 

fish embryos was analyzed. Gastrulation begins from a relatively undifferentiated cell 

aggregate that undergoes coordinated multicellular movement and differentiation to yield 

three tissue layers, a neural plate and rudimentary gut28. This fundamental developmental 

process occurs under the tight spatial and temporal control of morphogens, such as bone 

morphogenic protein (BMP), and subsequent activation of downstream SMAD signaling via 

phosphorylation (designated as pSmad). BMP signaling is initially expressed across the 

entire embryo during gastrulation but clears dorsally to form a pSmad gradient28. The 

subsequent amount and rate of BMP removal correlates with expression of the homeobox 

gene, dlx3b29. As with pSmad activity, expression of the dlx3b gene goes from being 

ubiquitous across the majority of the embryo to specific and strong expression in the neural 

plate boundary (Figure 4A). Assessing the temporal and spatial patterns of multiple 

correlated signals during morphogenic processes represents a powerful new application of 

network analysis.

The inherent 3D structure of cichlids presented a challenge, thus a 3D segmentation 

algorithm was implemented to output annotated spatial networks (Supplementary Fig 8). 

Using the previously defined metrics, three separate sub-networks of cells were analyzed: 

pSmad+, dlx3b+ and pSmad+/dlx3b (Fig 4A). In addition, several new pattern classification 

metrics were added, such as the ratio of pSmad+/dlx3b+ nodes to dlx3b+ nodes and pSmad+ 

nodes, as well as circularity and eccentricity measures for cell clusters in an effort to capture 

the additional spatial complexity of this system. To identify relevant metrics feature 

extraction analysis was performed (Supplementary Figure 9).

Initial hierarchical clustering analysis of the resulting metrics revealed segregation of the 

data set into three main clusters, but the majority of the data set fell into a single large 

cluster that made subsequent interpretation difficult (Fig 4B). Thus, in order to analyze the 

clusters further, a PCA model was created that explained the majority (83.8%) of the 

variance: 51.3% from PC-1, 22.9% from PC-2, and 9.6% from PC3 (Fig 5D). PC-1 

correlated highly with metrics associated with the shape of pSmad+ and pSmad+/dlx3b+ 

clusters, while PC-2 was strongly inversely correlated with dlx3b+ cluster metrics, and PC-3 

correlated with eccentricities metrics.

This final PCA model not only revealed the initial and terminal states detected by 

hierarchical clustering, but more importantly, resolved the remaining data along a clear 

temporal trajectory (Fig 4C). Selecting various points along the trajectory revealed a set of 

patterns that matched the known biology, while also identifying subtle transition states 

between discrete time points (Fig 4E). Early development time points (0 hours – 4 hours) 

were characterized by a shrinking pSmad+ region with an increase in dlx3b+/pSmad+ 

regions, as indicated by the shift primarily in early time points along PC-2. The midpoint of 

gastrulation (~4 hours) exhibited an important switch in the formation and shape of the 

dlx3b+ region, and the final developmental stage (4 hours – 8 hours) was heavily influenced 

by the emergence of a crescent of dlx3b expression, as indicated by its progression along the 
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PC-1 axis. To test how well these metrics predicted the evolution, a set of path finding 

simulations intended to find the most likely flow of information through a given process 

were performed (Figure 5A). The average trajectory for these simulations indicated the 0 

hours samples peaking first, followed by a peak in the 4 hour, and 8 hour samples (Figure 

5B). Analysis of the clusters indicated that early samples were marked by a high level of 

pSmad+ and pSmad+/dlx3b+ regions, followed by a gradual increase in the presence of 

solely dlx3b+ clusters (Figure 5C). Taken together, these results indicate that the biological 

trajectory produced by this approach can distinguish the precise state of gastrulation of a 

biological sample regardless of the experimental timepoint at which it was acquired during 

the process (Figure 4C, 4E, Figure 5B), further demonstrating the unique strength of a 

quantitative network-based pattern classification approach for more accurately analyzing 

morphogenic processes.

Discussion

Network and information theory provide a powerful tool for the analysis of many complex 

systems ranging from social30,31 to biological networks32,33. For the first time, our work 

applied the principles of network theory to the study of morphogenic biological systems in a 

spatial manner. Increasingly, examples of emergent spatial patterns are being reported from 

initial pluripotent states, leading to organoids such as optic cups, cerebral tissues, or others 

(4–6), however, quantitative descriptions of multicellular patterns are still lacking. For 

example Warmflash et al. recently used radial distance to delineate organization of 

differentiated phenotypes within micropatterned ESC colonies 4–6, 34, while Herberg et al. 

used a similar method to compare spatial distributions of proteins in ESC colonies to 

computational models 35, but these approaches are not sufficient to describe more complex 

3D structures. Our method reconstructs cellular locations as interacting networks that can 

subsequently be further subdivided into biologically relevant sub-networks. This network-

based approach circumvents problems associated with traditional classification methods that 

rely solely on standardized images 19 and use of individual pixel classification 

methodologies 36, 37. While some systems exist for classifying spatial patterns in 

zebrafish 17, C. elegans 15 and Drosophila embryos 19,38–40, previous approaches require 

specifically orientated and annotated images, are specific to the organism of interest, and/or 

often do not have single cell resolution. In particular, machine learning algorithms 

developed for positional dependence of patterning in Drosophila have not relied on 

individual cell segmentation for evolution of network connectivity over time. Our 

quantitative method is the first network based approach capable of integrating single cell 

spatial positioning and phenotypic state information to quantitatively describe dynamic 

tissue level patterning. The multiple examples illustrated herein highlight the broad utility of 

network-based analysis for identification of spatial biological patterns via the formulation of 

novel pattern metrics. We report the derivation of pattern trajectories associated with several 

systems: experimentally observed loss of Oct4 in ESC aggregates, computational models of 

Oct4 loss in ESC aggregates, and gastrulation in cichlids. Novel biological insights gained 

using our network analysis approach include: 1) differences in ESC aggregate 

spatiotemporal pattern kinetics can be explained by a combined paracrine signaling 

methodology, and 2) gastrulation in cichlid fishes can be partitioned into a set of discrete 
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stages. In the case of ESCs, a large body of literature exists that suggests differentiation is 

heavily influenced by ESC aggregate size26,27,41–43; soluble gp130 proteins have been 

identified as a paracrine mechanism which modulate of differentiation 44,45 The two 

paracrine process proposed here can explain these differences (one in a secreted factor is 

responsible for maintain pluripotency, and the other where more differentiated cells secrete a 

factor which induces differentiation), and mirrors the known properties of soluble LIF and 

FGF4 signaling respectively24,46–48. Surprisingly but interestingly, the lack of local 

neighbor-to-neighbor regulation of phenotypic state, as analyzed by our methodology, 

suggests that transmission of cell state information by intercellular cues, such as Notch, may 

impact later stages of differentiation than the time period examined here. Furthermore, this 

analytical approach uniquely enables the first direct quantitative comparison between 

computational modeling and complex emergent spatiotemporal patterns during multicellular 

lineage commitment in 3D ESC aggregates.

Methods

D3 murine ESCs were used for all of these experiments. All cichlid embryo experiments 

were performed with approval by and in compliance with Georgia Tech Institutional Animal 

Care and Use Committee. Modelling and comparisons were performed using custom python 

code. For more detailed methods on data acquisition and analysis, please refer to the 

supplementary methods section.

Conclusions

In summation, this novel pattern classification pipeline permits entirely new forms of 

quantitative analysis based upon the fundamental interconnectivity of multicellular 

networks, which could revolutionize the characterization of biologically complex 

spatiotemporal phenomena.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Insight, innovation, integration

Decades of research have focused largely on characterizing individual cellular features, 

and consequently the image processing tools used to analyze biological systems have 

focused on identifying and quantifying cells as independent, static entities rather than 

interconnected, dynamic systems. Our innovation in analyzing multicellular systems 

arises from characterizing metrics from dynamic cell-cell networks that allows cross-

comparison from virtually any modality of imaging. Because our analysis is platform 

independent, quantitative integration between agent-based computational models and 

experimental data is feasible. This approach allowed us to gain new insight in the pattern 

evolution of differentiation within stem cell aggregates as dictated by competing 

paracrine signaling mechanisms.
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Figure 1. 
Validation of spatial network metrics for pattern classification. (a) Examples of 

experimental (green = Oct4 Ab, blue = DAPI, red = phalloidin) and in silico generated 

pattern classes (teal = Oct4+, blue = Oct4 −). Scale bars = 100 μm and 35 μm for the 

experimental and in silico images, respectively. Representative images are mapped onto the 

PCA plot of the resulting pattern space, color coded by individual pattern type. (b) PCA axis 

analysis indicating the relative contribution of each metric to the given principal component 

axis.
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Figure 2. 
Evaluation of spatial and temporal patterns during early ESC aggregate differentiation. (a) 
Experimental plan and time course; confocal microscopy was performed daily (on days 2–

7). (b) PCA trajectory for 1000 cell aggregates. Dashed regions highlight different cell states 

present. (c) Heat map of the weights of each metric in relation to each principal component. 

(d) Annotations for the pattern classification of each sample. (e) Pattern compositions for 

each day of differentiation. (f) SVC classification of samples that contain aspects of multiple 

core pattern classes. Experimental images (top row) and, predicted pattern composition (pie 

charts, bottom row). The predicted pattern composition is represented as a percent of the 

different sub-patterns contained within.
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Figure 3. 
Characterization of computational pattern trajectories and comparison to experimental 

patterns. (a) Description of rules governing modeling. Red arrows, negative feedback; green 

arrows, positive feedback; small triangles indicate a soluble morphogen gradient. (b) 
Hierarchal clustering using a Ward linkage algorithm of the pattern trajectories for each 

parameter set, annotated by rule (gray scale bar). (c) Ratio of the 1000-cell to 250-cell 

differentiation rate. Blue represents slower differentiation in 1000-cellular aggregates, while 

red represents faster differentiation. (d) Representative images of the differentiation 

trajectories predicted by the competing paracrine rule (cells in blue are Oct4−, cells in teal 

are Oct4+). (e) Percent differentiation for representative 250 (top) and 1000-cell (bottom) 

simulations. Red represents differentiation induced via absence of inhibitor, while blue 

represents differentiation induced via the agonist. (f) PCA projections indicating the best fits 

of the 250 (top) and 1000-cell (bottom) experimental data (red) to the simulations (blue).
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Figure 4. 
Pattern analysis during gastrulation reveals the importance of the transition from a pSmad+ 

dominated early gastrulation phase to dlx3b+ crescent formation in late stage gastrulation. 

(a) Representative schematic of gastrulation in cichlids on top, experimental confocal data in 

middle (red – dlx3b, green – pSmad, blue DAPI, yellow pSmad+/dlx3b+) followed by 

network reconstructions on the bottom (red – dlx3b, green – pSmad, blue DAPI, yellow 

pSmad+/dlx3b). Scale bars are 100 μm. (b) Hierarchical clustering of the data set yields 

three distinct sub-clusters (highlighted by dividing blue dashed lines). (c) PCA of the 

resulting data set reveals (n >= 7 per time point) a distinct trajectory informed by time (0 

hours – red circle, 4 hours – green square, 8 hours -blue diamond). (d) Heatmap of how each 

metric contributes to the principal component model. Blue indicates a strong negative 

contribution, while red indicates a strong positive contribution. (e) Annotated PCA plot 

showing the evolution of pattern formation over time during gastrulation in cichlid fish. All 

images have the same scale bar of 100 μm.
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Figure 5. 
Information analysis predicts evolution of images during gastrulation. (a) Predicted pattern 

trajectories through time exhibit correct temporal ordering of early (0 hours, red), middle (4 

hours green) and late gastrulation (8 hours blue). (b) The averages for all trajectories reflect 

state evolution from early to middle to late gastrulation. (c) The averages for all trajectories 

indicate the evolution of different cluster number during gastrulation.
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