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Abstract

Horizontal gene transfer (HGT) allows organisms to rapidly acquire adaptive traits. Though
documented instances of HGT from bacteria to eukaryotes remain rare, bacteria represent a rich
source of new functions potentially available for co-option2. One benefit that genes of bacterial
origin could provide to eukaryotes is the capacity to produce anti-bacterials, which have evolved
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in prokaryotes as the result of eons of interbacterial competition. The type VI secretion amidase
effector (Tae) proteins are potent bacteriocidal enzymes that degrade the cell wall when delivered
into competing bacterial cells by the type VI secretion system (T6SS)3. Here we show that tae
genes have been transferred to eukaryotes on at least six occasions, and that the resulting
domesticated amidase effector (dae) genes have been preserved for hundreds of millions of years
via purifying selection. We show that the dae genes acquired eukaryotic secretion signals, are
expressed within recipient organisms, and encode active antibacterial toxins that possess substrate
specificity matching extant Tae proteins of the same lineage. Finally, we show that a dae gene in
the deer tick Ixodes scapularis limits proliferation of Borrelia burgdorferi, the etiologic agent of
Lyme disease. Our work demonstrates that a family of horizontally acquired toxins honed to
mediate interbacterial antagonism confers previously undescribed antibacterial capacity to
eukaryotes. We speculate that the selective pressure imposed by competition between bacteria has
produced a reservoir of genes encoding diverse antimicrobial functions that are tailored for facile
co-option by eukaryotic innate immune systems.

Eukaryotes can acquire new functions through the exchange of genetic material with other
domains of lifel. Indeed, Bacteria-to-Eukarya HGT underlies the adaptation and
diversification of many microbial eukaryotes, such as algae, choanoflagellates, and
protozoa*®. The acquisition of bacterial genes by metazoans is rare. Among the transferred
genes, many are not expressed and have no known function®, while others have roles in
endosymbiont maintenance’ 8. Relatively few reports provide evidence of transferred
elements conferring traits directly beneficial strictly to their metazoan recipients2. One
recent example is the discovery that phytophagous mites and Lepidoptera species exploit a
horizontally acquired bacterial cysteine synthase in order to feed on plants producing
cyanogenic defense compounds®.

Genes that can independently provide new functionality to a recipient organism are strong
candidates for domestication following HGT810. The Tae proteins are small, single domain
enzymes that can rapidly digest the bacterial cell wallll, These proteins comprise four
phylogenetically distinct families (Tael-4) that share no overall sequence homology and
display unique specificities against peptidoglycan (PG)3:12. In the course of probing tae
distribution, we made the serendipitous observation that homologs are found in distantly
related eukaryotic genomic and expression datasets ranging from unicellular protozoa to
multicellular metazoans (Fig. 1a). The genes did not appear to derive from contaminating
bacterial DNA; most contain introns and are located in genomic regions flanked by
eukaryotic genes (Extended Data Fig. 1)13. We therefore refer to these eukaryotic loci as
domesticated amidase effector (dae) genes, and hypothesized they encode antibacterial
toxins horizontally acquired from bacteria. Maximum likelihood and Bayesian phylogenetic
analyses revealed that trees of bacterial tae2—4 families each contained two distinct
monophyletic clades of eukaryotic dae genes (Fig. 1b; Extended Data Figs. 2—4). Thus, we
conclude that three of the four known tae gene families have been acquired by eukaryotes
from diverse bacteria in at least six HGT events (Fig. 1a). Our survey is biased by the status
of genome sequencing efforts; therefore, these six instances are likely an underestimate of
eukaryotic tae acquisitions.
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Three of the dae genes we found are limited to individual or closely related eukaryotes (light
green, light blue and dark blue; Fig. 1a). These could represent recent HGT events, or reflect
limited genomic and transcriptomic sampling of related species. The remaining three dae
genes appear to be the result of ancient HGT events. For instance, we found dae2 in 10
species of ticks and mites (Fig. 1b). This dense sampling, a shared intron between the dae2
genome sequence of I. scapularis and Metaseiulus occidentalis, and the fact that the tick and
mite dae2 gene phylogeny closely resembles the established phylogeny of these organisms,
lead us to conclude that vertical transmission followed a single HGT event of a bacterial
tae2 gene to the common ancestor of ticks and mites approximately 400 million years ago
(MYA) (Figs. 1b—d; Extended Data Fig. 1, Fig. 5a and 5b)14. The complete genome
sequence of the Acariform mite Tetranychus urticae does not possess dae2, indicating loss
of the gene has also occurred. Partial dae2 sequences in the genomes of two scorpions
species and the horseshoe crab share an intron position with dae2? from ticks and mites,
suggesting that dae2 introduction into arthropods may have occurred as early as 550 MYA
(Extended Data Fig. 5¢). Similarly, dense sampling of dae4 genes in gastropod and bivalve
mollusks, as well as a shared dae4 intron position across all sampled mollusks and an
annelid, dates the origin of dae4 in these animals to at least 400 MYA (light red; Fig. 1a and
Extended Data Fig. 1 and Fig. 4)1°. Finally, a second dae4 present in a species of
choanoflagellates, sea anemones, acorn worms and lancelets is most parsimoniously
explained by a single HGT event followed by vertical inheritance and loss in multiple
lineages, dating this dae4 acquisition prior to the base of the metazoan lineage (>800 MYA)
(dark red; Fig. 1a and Extended Data Fig. 4). However, owing to sparse sampling and lack
of evidence of shared synteny, we cannot rule out more recent HGT to and between these
eukaryotic lineages*. In summary, we find compelling evidence that at least two animal
lineages have retained a bacterially derived antibacterial gene for hundreds of millions of
years.

Several lines of evidence led us to hypothesize that dae genes provide an adaptive function
to their eukaryotic hosts. We found strong signatures of purifying selection acting on dae2
and dae4 genes (Extended data Table 1). Additionally, eukaryotic Sec signals were
identified in the majority of Dae proteins, including representatives from each of the
predicted HGT events (Extended data Fig. 6). Secretion of bacterial Tae proteins occurs
through the Sec-independent T6SS; thus, acquisition of a Sec signal is indicative of
functional specialization involving export from eukaryotic cells. Lastly, the majority of Dae
proteins possess the cysteine-histidine catalytic dyad and flanking motifs of their
corresponding Tae families, consistent with retention of enzymatic activity (Extended data
Fig. 6).

We next sought evidence of expression for eukaryotic dae homologs belonging to each of
the transferred bacterial tae families. We found dae2 expression during both the unfed
nymphal and unfed adult life stages of the hard tick I. scapularis, with levels significantly
elevated in adults (Fig. 2a). In the amoeba Naegleria gruberi, we observed a basal level of
expression of each of the three dae3 homologs in trophozoite (amoeba) cells, which
increased during differentiation into flagellates (Fig. 2b). A published expression profile of
the lancelet Branchiostoma floridae indicates that expression of dae4 is enriched at the
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neurula stage of development®. Together, these data strongly support the hypothesis that
dae genes have been functionally integrat2 ed into recipient physiology.

The Tae families display unique specificities against PG. Within PG typified by Gram-
negative Proteobacteria, enzymes from families 1 and 4 cleave at the y-D-glutamyl-meso-
diaminopimelic acid (mDAP) bond, whereas those from 2 and 3 cleave the mDAP-D-alanine
bond crosslinking the peptide stems (Fig. 2c)31217 To test whether Dae proteins can
hydrolyze PG, we incubated purified Dae2—4 representatives from I. scapularis, N. gruberi,
and B. floridae, respectively, with isolated E. coli PG sacculi. HPLC analysis of reaction
products demonstrated that each of the enzymes hydrolyzes PG (Fig. 2d and Fig. 2e).
Remarkably, Dae2, Dae3, and Dae4 display substrate specificity matching that of the
characterized extant Tae homologs within corresponding families (Fig. 2c). These data
support the hypothesis that dae homologs, derived from three tae families, have been
retained in eukaryotic genomes due to their PG amidase activity. We did not find evidence
supporting the transfer of housekeeping bacterial amidases, leading us to speculate that
genes encoding T6S effectors — enzymes that intoxicate recipient cells at exceedingly low
concentrations — might be especially amenable to preservation following HGT28,

Within eukaryotes, enzymes with PG-degrading activity might play immuno-regulatory
roles, or act directly as antibacterial factors like the Tae toxins!®. To explore the functional
significance of a domesticated tae, we focused on dae2 from the deer tick I. scapularis, an
important vector for numerous diseases, including Lyme borreliosis and anaplasmosisZ°.
Western blot analysis of adult 1. scapularis demonstrated that Dae2 is present in the salivary
glands and midgut (Fig. 3a). I. scapularis is an ectoparasite that requires a blood meal for
life stage transitions; pathogens are typically acquired during feeding and transmitted to a
new host at the next blood meal. Accordingly, the midgut and salivary glands interface with
bacterial pathogens and influence their transmission?1.,

To understand how Dae2 could contribute to innate bacterial defense within I. scapularis,
we tested its capacity to cleave diverse PG structures representative of bacteria the organism
encounters in the environment?2, Consistent with its ability to degrade E. coli PG, we found
that Dae2 degrades a related form of the cell wall present in Firmicutes belonging to the
class Bacilli (Extended data Fig. 7a)1”. We did not detect cleavage of the lysine-type PG
found in Streptococcus pneumoniae, which represents the second major PG-type found in
Firmicutes (Extended data Fig. 7b). Though the ultrastructure of the B. burgdoferi sacculus
is not well defined, its amino acid composition appears to differ from that of well-
characterized bacterial cell walls?3. Incubation of B. burgdorferi sacculi with Dae2 led to the
accumulation of specific enzymatic degradation products, indicating that the cell wall of this
organism is also a substrate of the amidase (Extended data Fig. 8).

The Dae proteins are reminiscent of an evolutionarily conserved group of bacteriophage-
related eukaryotic innate immune amidases, the PG recognition proteins (PGRPs)9. Some
PGRPs are directly bacteriocidal and act by hydrolyzing PG, whereas others exert
antibacterial activity through alternative mechanisms24. We found that exogenous Dae2 is
not toxic to intact E. coli cells. In contrast, Dae2, but not a catalytically-inactive variant of
the enzyme (C43A), administered to outer membrane (OM)-permeabilized E. coli or
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targeted to the periplasm via the Sec pathway is highly lytic (Figs 3b—d). Moreover,
exogenous Dae2 is bacteriocidal against B. subtilis, which has cell surface exposed PG (Fig.
3d). Together, these results strongly suggest Dae2-dependent antibiosis is solely the result of
its amidase activity and that the enzyme would require OM permeabilizing agents such as
antimicrobial peptides to act in vivo.

B. burgdorferi is the causative agent of Lyme disease, the most prevalent vector-borne
iliness in the United States2°. Given the antibacterial activity of Dae2 (Figs 3b—d), its ability
to cleave B. burgdorferi PG in vitro (Extended Data Fig. 8), and its localization to sites that
interface with bacteria (Fig. 3a), we hypothesized that Dae2 could play a role in regulating
B. burgdorferi populations in I. scapularis. We tested this possibility using RNAi-mediated
knockdown of dae2 (Fig. 3e). RNAi-treated nymphal ticks were fed to repletion on B.
burgdorferi-infected mice, and spirochaete load was assessed at engorgement and again
after 2 weeks. At repletion, we observed no detectable difference in B. burgdorferi levels in
control and experimental RNAI-treated ticks, indicating Dae2 activity does not limit initial
acquisition of the bacterium (Extended Data Fig. 9a). In contrast, at 2 weeks post-
engorgement, B. burgdorferi levels were significantly elevated in the dae2 knockdown
group (Fig. 3f). The effect of Dae2 disruption on B. burgdorferi levels is unlikely to be due
to variations in tick feeding or general fitness, as we observed no difference between the
groups in engorgement weights at either time point (Extended Data Fig. 9b). Furthermore,
overall bacterial load was similar between groups, suggesting that the increase in B.
burgdorferi did not result from gross changes in populations of tick-associated microbes
(Extended Data Fig. 9¢). The ability of Dae2 to act on a wide range of bacterial cell walls
leaves open the possibility that compositional changes to the tick microbiome may
contribute to the effect of the knockdown on B. burgdorferi26. We conclude based on these
findings that Dae2 contributes to the innate ability of I. scapularis to control B. burgdorferi
levels following acquisition. This has potential ramifications for Lyme disease transmission,
as spirochaete load in the tick can influence transmission efficiency?’.

Here, we demonstrate that bacterial genes encoding antibacterial effectors of the T6SS have
been horizontally transferred to diverse eukaryotes. The recurrent and independent transfer
of tae genes to distinct eukaryotic lineages suggests that these toxins can confer immediate
fitness benefits by supplying new function to the innate immune system0. Recent studies
have revealed that the number and diversity of factors mediating interbacterial antagonism is
greater than once appreciated. Thus, we speculate that competition between bacteria
generates a reservoir of genes — beyond the tae superfamily — with the potential to confer
antimicrobial capacity to eukaryotes upon acquisition.
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Extended Data
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Extended Data Figure 1. Genomic evidence for validated eukaryotic dae genes
Eukaryotic dae genes from the indicated organisms are listed adjacent to schematic

representations of available predicted open reading frames (color-coded according to family
as in Fig. 1a) and corresponding genomic context of dae genes. Flanking genes are colored-
coded according to organisms that homologs of these genes are found in (broadly in
eukaryotes, black; only closely related eukaryotic species, grey; both bacteria and
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eukaryotes, white). Diagonal lines denote ends of genomic contigs. In the right column,
splice sites (red vertical lines) and conserved intron positions (red dashed circles) are shown.
In Oxytricha trifallax, the somatic nucleus (macronucleus) contains ~16,000 chromosomes
and is a rearranged form of the germline nucleus (micronucleus)3. The complete dae3 gene
in Oxytricha is found in the macronucleus on a chromosome with three characteristic
GGGGTTTT telomere sequences. Three fragments comprising the dae3 gene are found in
the micronuclear genome (http://oxy.ciliate.org/). In Nematostella vectensis and
Branchiostoma floridae, lineage-specific duplication events have resulted in two adjacent
dae4 paralogs with gene names labeled (numbers). In Capitella teleta and Lottia gigantea,
shared synteny on both sides of the dae4 gene is indicated (red dashed circles).
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Extended Data Figure 2. Phylogenetic tree of bacterial tae2 and eukaroytic dae2 genes
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A phylogenetic tree was constructed using Bayesian methods in MrBayes34 to compare to
the maximum likelihood tree shown in Fig. 1b. Branch support > 0.7 is indicated by
asterisks or by numbers. The scale bar shows estimated divergence in amino acid changes
per residue. Eukaryotic dae2 genes are indicated by dashed boxes, which highlight two
separate HGT events. In both phylogenetic trees, the two eukaryotic dae? clades are well
supported as monophyletic clades, supporting our conclusion of two HGT events. Likewise,
many major bacterial groups are well supported in both trees. Differences in the overall
topology of the trees, mostly owing to changes in deep branches that are not well supported
in either phylogenetic tree, reflect uncertainty in the ancient history of these genes and

should therefore be treated with caution.
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Extended Data Figure 3. Phylogenetic tree of bacterial tae3 and eukaryotic dae3 genes
Phylogenetic trees were constructed using either maximum likelihood methods (a) or

Bayesian methods (b). Branch support > 0.7 is indicated by asterisks or by numbers. The
scale bar shows estimated divergence in amino acid changes per residue. Eukaryotic dae3
genes are indicated by dashed boxes, which highlight two separate HGT events. In both
trees, the two eukaryotic dae3 clades are well supported as monophyletic clades, supporting
our conclusion of two separate HGT events. Likewise, many major bacterial groups are well
supported in both trees. Differences in the overall topology of the trees, mostly owing to
changes in deep branches that are not well supported in either phylogenetic tree, reflect
uncertainty in the ancient history of these genes and should therefore be treated with caution.
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Extended Data Figure 5. Evidence for dae2 in other chelicerates
a, Phylogenetic tree based on partial nucleotide sequences of dae2 from the indicated

chelicerate species. Scale bar shows estimated divergence, in substitutions per nucleotide. b,
Chelicerate phylogeny with approximate dates of divergencel®. The unknown divergence
time of sarcoptiform and trombidiform mites is indicated by a question mark. We find no
evidence for dae2 in the complete genome of the trombidiform mite Tetranychus urticae nor
in the partial (several species) or complete genome (Stegodyphus mimosarum) of any spider.
Putative dae2 gene loss events in trombidiform mites and spiders are denoted (dashed lines).
¢, Alignment of Dae2 from ticks and mites (1. scapularis and M. occidentalis) with Dae2
sequences from partially assembled genomes of two scorpions (Mesobuthus martensii and
Centruroides exilicauda) and the horsehoe crab (Limulus polyphemus). Splice junctions are
denoted (horizontal red lines). All three alignable partial sequences start (red diagonal
slashes) in the same position as the shared splice site in tick and mite dae2 genes, suggesting
this is likely the beginning of the exons in all dae genes shown. A second intron position is
shared between the tick, scorpion and horseshoe crab dae genes and is nearby the mite

intron position.

Nature. Author manuscript; available in PMC 2016 January 14.

Divergence time
(million years ago)



1duosnuey Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Chou et al.

Tae2 consensus

A. cajennense

A. triste

A. parvum

A. maculatum

R. pulchellus

R. sanguineus

Dae?2 I. scapularis
M. occidentalis

D. gallinae

D. pteronyssinus

D. magna
D. pulex
D. pulex
D. pulex

Tae3 consensus

N. gruberi

N. gruberi
Dae3 N. gruberi

O. trifallax

Tae4 consensus

B. floridae

B. floridae

B. floridae

B. floridae

S. kowalevskii
N. vectensis
N. vectensis
M. brevicollis

Dae4

V. lienosa

E. complanata

L. gigantea

L. stagnalis

A. californica

S. constricta

E. complanata

M. galloprovincialis
C. gigas

C. teleta

Page 11
N-terminus Catalytic dyad
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g(Valve MRV
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MSPSTVTGALLALLAFTVGVSGM GSAAGLVK HAAILVR
MYSFKYCLAAAILLLVGNVCQAF QECAALVQ HTAIFVR
MKFFIVTVFVITFIDQSMGG GECVSLYK HVAIYVG
MGSSMKLFTFTFVLLALIELGFGG GECVSLYK HVAIYVG
MAKLLLLLFLAATLKSSFGA GECVSFYK HTAIYVG
MPLCEPSKHVGTLLADPWGGQ GECVSFVK HAAVYMG

MSQVKTVILLLLIALVSAV
MHSSKLIIAVLLMVIASCVVVSSR
MHKKTLILGVALLLFALFAVVARAA

MLSKALAFGALALTVSAD

MKATVWLVVVLFACVWNESSAW
MLKTTVWFAAVLFACVWHGSSAW
MRPRPGWPKFSELKSNYPSY
MEKKLLLCLVLLAIPVATAQ
MSTWPSFEELWENYPNYRDW
MNCIIQLLELFCVIGHISHT
MDLVLSLHLELSVYEVNFAI
MALNFDKMWQDPVTAMDHAS

MNHAFMRRWTATLLLLAATPAKSE
MNHAFMRRWTATLLLLAATPAKSE
MIFKVLLVVLYCTLSVIAD
MKVLVTLCVILTKCAVTRGE
MKQGLLLFVLLTGVLTPTKAY
MAAEQGLTSVALRDALTLRQ
MELLYFTIFFVLGDLVSAL
MELHSTILVILLIAEYVVGD
MDYLKCLPVLLSCAIASLSETV
MVFSLDDAVLLLLTTLAACWTTTTAF

el AR H_éGH!AE

GKCAKYTA HPDGHMQM
GHCARAVR HPHGHIQI
GYCARAVR HPHGHMQV

GLCAKYVR HIHGHITV

VahS Gl

NTCAMRVS TGHVDLWD
NTCTMRVS TGHVDLWD
NTCAMRVS TGHVDLWD
NTCAMRVS TGHVDLWD
NTCAIRLS TGHVDLWD
NTYAIRLS TGHVDLYD
NTCAIRLS TGHVDLYD
NYCAIRLS TGHVTLWN

DTSALRLS KGHVALWD
DTSALRLS KGHVALWD
DTSALRLS KGHVALWD
DTSALRLS KGHVALWD
DTSALRLS KGHVALWD
DTSALRLS KGHVALWD
DTSALRLS VGHVALWD
DTSALRLS RGHIVLWD
DTSALRMS KGHIALWN
NTAPMRMS SGHMGLWD

Extended Data Figure 6. Evidence for retention of important catalytic motifsand recurrent
eukar oytic-specific addition of secretion signals

a-c, Alignments for the predicted Dae N-terminal signal sequences (shaded blue) and
catalytic motifs (right) are shown for each of the families. The consensus sequence logo of
residues surrounding the cysteine and histidine positions of catalytic dyads from extant Tae
enzymes are shown above alignments from each family. Below are aligned eukaroytic Dae
proteins in these same regions. Representatives derived from distinct HGT events are
separated by a space. Predicted N-terminal secretion signals (blue) and predicted catalytic
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residues (red) are colored. Lowering the cutoff value in SignalP3¢ from the default value of
0.45 to the 'sensitive' value of 0.34 predicted a signal peptide in residues 1-21 of C. gigas

Dae4.
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Extended Data Figure 7. Dae2 degrades mDAP- but not Lys-type PG
a,b, Partial HPLC chromatograms of sodium borohydride-reduced soluble PG fragments

(muropeptides) from Bacillus subtilis (a) or Streptococcus pneumoniae (b). PG sacculi
products resulting from incubation with buffer (Control) or the indicated Dae2 proteins (WT

Nature. Author manuscript; available in PMC 2016 January 14.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Chouetal.

Page 13

or C43A), followed by cellosyl digestion are shown. Major peaks are labeled. a,
Muropeptides from B. subtilis include Tri (Glc-NAc—MurNAc(reduced (r))-L-Ala—D-v-
Glu-mDAP(amidated (NH5))), Tetra (GIcNAc—MurNAc(r)-L-Ala—-D-y-Glu-mDAP(NH,)—
D-Ala), and TetraTri (GIctNAc—-MurNAc-L-Ala-D-y-Glu-mDAP(NH,)-D-Ala-
mMDAP(NH2)-D-v-Glu-L-Ala—MurNAc(r)-GIlcNAc). b, Muropeptides from S. pneumoniae
include Tri (GIctNAc-MurNACc(r) —L-Ala—D-y-GIn-L-Lys) and TetraTri (GICNAc-
MurNAc-L-Ala-D-y-GIn-L-Lys-D-Ala-L-Lys-D-y-GIn-L-Ala—-MurNAc(r) — GIcNAc). L-
Ser—L-Ala branch is indicated by (SA) and deacetylation by (deAc).
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B. burgdorferi

uncrosslinked crosslinked

C43A
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4 R W4 >
4
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AR
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Extended Data Figure 8. Dae2 is active against B. burgdorferi PG
HPLC elution profiles of B. burgdorferi sacculi incubated with buffer (Control) or the

indicated Dae2 proteins (WT or C43A), followed by cellosy! digestion are shown. Discrete
peaks lost (red) or produced (green) upon digestion by Dae2 are denoted with arrowheads in
Control and WT chromatograms, respectively. Unresolved peaks, likely corresponding to a
complex mixture of multi-crosslinked species cleaved by Dae2, are also highlighted (blue
line). B. burgdorferi PG composition is complex and not yet resolved, thus approximate
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elution times of uncrosslinked versus crosslinked species are based on E. coli muropeptides
in the same solvent system.
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Extended Data Figure 9. Disruption of dae2 expression does not significantly alter tick
physiology at repletion

a, Knockdown of dae2 does not increase the B. burgdorferi burden in infected nymphs at
engorgement. Loads were quantified by gPCR analysis of flaB, a B. burgdorferi-specific
gene, and normalized to trospa, a tick-specific gene. n=20. For this and subsequent panels,

each data point represents a pool of 3 nymphs, and horizontal bars represent mean values,
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which were not significantly different in a two-tailed nonparametric Mann-Whitney test
(p>0.5). b, Disruption of dae2 expression did not affect engorgement weights of nymphal
ticks fed on B. burgdorferi-infected mice. Tick weights were measured at repletion and 2
weeks post-repletion. Error bars +/- s.d., n=8. ¢, Overall bacterial load was not affected by
knockdown of dae2. Bacterial load was assessed by qPCR analysis of the 16S rRNA
normalized against tick-specific gene, trospA. Load is represented on both a linear (below)
and log, (above) scale, which is denoted by a gap on y-axis.

Evolutionary analyses of dae and tae gene families

Summary of results from maximum likelihood tests of aligned dae or tae sequences from the
indicated species, using SLAC in the HyPhy software package3°. The overall gene dN/dS
ratio (ratio of non-synonymous changes to synonymous changes) is shown, indicating an
overall signature of purifying selection. Individual codons with a statistically significant
signature of purifying selection (p<0.05) were also calculated and are expressed as a
percentage of the total number of codons used in the analysis. In the same analyses, no
codons were found with a statistically significant signature of positive selection.

Gene Species Number of Codons evolving
family group species dN/dS  under purifying selection
dae2  Ticks & mites 10 0.20 21% (25 of 120)
Eukaryotic amidases
daed Mollusks 9 0.18 40% (59 of 149)
tae2 Cronobacter 10 0.12 23% (30 of 129)
Prokaryotic amidases ~ tae3  Acinetobacter 10 0.08 30% (45 of 150)
taed Pseudomonas 12 0.15 46% (75 of 163)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Recurrent horizontal genetransfer of type VI amidase effector (tae) genesinto diverse

eukaryotic lineages

a, Schematized phylogenetic tree of basal eukaryotic lineages2® showing instances of tae
transfer (arrows) from bacteria to eukaryotes, coded by color (tae family) and shading
(acquisition events). b, Maximum likelihood phylogenetic tree of tae2 and dae2 genes.
Representatives are boxed and color-coded according to Fig. 1a. Branch support > 0.7
indicated by asterisks or numbers. Scale bar shows estimated divergence in amino acid
changes per residue. Dashed lines highlight separate HGT events. ¢, Schematic alignment of
tick (l. scapularis) and mite (M. occidentalis) dae2 genes with shared (red line, asterisk) and
unique (vertical lines) intron positions denoted. Aligned residues surrounding the splice site
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are shown (boxed) with conserved amino acids indicated (grey). d, Tick and mite phylogeny
with approximate dates of divergence based on concordance with the dae2 gene tree (c)14.

Nature. Author manuscript; available in PMC 2016 January 14.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Chou et al.

a

Expression level
(log copies per 10* actin)

Page 21

-
8- E AN;’”:Ph — 4- B Amoeba [] Flagellate ' C43A Dae? E
ult a - JJ i
i ——— 1
o I, $5° B N O B
= 1 1
5 8 21 Lo i
44 2 @ [ H
© QD 1- ! :
E. - I A Jw,l A A 1
2_ X 8 ———————————————————————————————— 4
. 8’0' o TTTTTTmm T
0- , T : : ] . j C79A Dae3 |
dae2 daes.1 dae3.2 dae3.3 | J &
Tae/Dae: LA L
°H D;;C/T;A P A AQ)p A R A A R ]
" ios S 3,819 T

sH oAl § o4 4 0784 C89A Dae4

4
- | - Jl |-

i ii iii iv v
Og Og O@ ! fii — Control
- iV
7 1 JJ/
h - i
1 1 1 1 1

20 40 60 80 100
Elution time (min)

Figu_rfg 2. Eukaryotic dae genes encode differ entially-expressed PG amidases with conserved
ecificit

:b, Exgression profile of I. scapularis and N. gruberi dae genes at the indicated life stages
as measured by gRT-PCR. Levels of each N. gruberi dae3 genes (Dae3.1-3.3) were
determined. Error bars +/- s.d., n=3. ¢, Schematic representation of typical Gram-negative
PG showing cleavage sites (red lines) for Tae and Dae families 2—4 (colors correspond to
Fig. 1a). d, Partial HPLC chromatograms of E. coli PG sacculi products resulting from
incubation with buffer (control), native and catalytically inactive (C43A, C79A, C89A) Dae
enzymes and cellosyl. e, Major HPLC peaks assigned previously by mass spectrometry
correspond to disaccharide-linked tetrapeptide (i), pentapeptide (ii), tetrapeptide—
tetrapeptide (iii), pentapeptide—tetrapeptide (iv), and dipeptide (v)3.
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Figure 3. Dae2 isa bacteriolytic toxin that restrictsthe proliferation of B. burgdorferi in the tick
|. scapularis
a, Western blot analysis of Dae2 in unfed adult and nymphal total tissue (total), midgut

(MG), salivary gland (SG), and hemolymph (HL) extracts from I. scapularis. Recombinant
Dae2 protein (RC) and tissue from a closely related species, Dermacentor variablis
(Control), were included. Actin levels were examined as a loading control. b, Lytic activity
of lysozyme (Lys) and Dae3 (WT, C43A) proteins against permeabilized E. coli. Error bars
+/-s.d., n=3. ¢, Growth of E. coli expressing native (cyto-) or periplasm-targeted (peri-)
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Dae2 proteins. Error bars +/- s.d., n=3. d, Bacterial killing activity of indicated proteins
against B. subtilis (Bs) and E. coli (Ec) cells. Error bars +/- s.d., n=3. e, Dae2 transcript
levels quantified by gRT-PCR in RNAi-treated engorged ticks. f, At 2-weeks post-
engorgment, spirochaete levels were quantified in ticks that had received the indicated RNAI
treatments, using gPCR analysis of flaB, a B. burgdorferi-specific gene, and normalized to
trospa, a tick-specific gene. n=20. Each data point in Figs 3e and 3f represents 3 nymphs.
Horizontal bars represent mean values, which were significantly different in a two-tailed
nonparametric Mann-Whitney test (p<0.05).
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