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Abstract

Carpal tunnel syndrome (CTS) is the most common peripheral neuropathy and is character-
ized by median nerve entrapment at the wrist and the resulting median nerve dysfunction.
CTS is diagnosed clinically as the gold standard and confirmed with nerve conduction stud-
ies (NCS). Complementing NCS, ultrasound imaging could provide additional anatomical
information on pathological and motion changes of the median nerve. The purpose of this
study was to estimate the transverse sliding patterns of the median nerve during finger
movements by analyzing ultrasound dynamic images to distinguish between normal
subjects and CTS patients. Transverse ultrasound images were acquired, and a speckle-
tracking algorithm was used to determine the lateral displacements of the median nerve in
radial-ulnar plane in B-mode images utilizing the multilevel block-sum pyramid algorithm
and averaging. All of the averaged lateral displacements at separate acquisition times
within a single flexion—extension cycle were accumulated to obtain the cumulative lateral
displacements, which were curve-fitted with a second-order polynomial function. The fitted
curve was regarded as the transverse sliding pattern of the median nerve. The R® value,
curvature, and amplitude of the fitted curves were computed to evaluate the goodness, vari-
ation and maximum value of the fit, respectively. Box plots, the receiver operating character-
istic (ROC) curve, and a fuzzy c-means clustering algorithm were utilized for statistical
analysis. The transverse sliding of the median nerve during finger movements was greater
and had a steeper fitted curve in the normal subjects than in the patients with mild or severe
CTS. The temporal changes in transverse sliding of the median nerve within the carpal
tunnel were found to be correlated with the presence of CTS and its severity. The represen-
tative transverse sliding patterns of the median nerve during finger movements were dem-
onstrated to be useful for quantitatively estimating median nerve dysfunction in CTS
patients.
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Introduction

Carpal tunnel syndrome (CTS), was first described in 1854 by Paget [1], and is the most fre-
quently encountered peripheral compression mononeuropathy, with a prevalence of 5% in the
general population [2, 3]. The recent AAOS (American Academy of Orthopaedic Surgeons)
Clinical Guidelines define CT'S as a symptomatic compressive neuropathy of the median nerve
at the level of the wrist characterized physiologically by evidence of increased pressure within
the carpal tunnel and ultimately decreased function of the median nerve at that level [4].
Anatomically, the carpal tunnel is bounded by the fibrous transverse carpal ligament (TCL) on
the volar side, and eight carpal bones on the dorsal side. Nine flexor tendons of the fingers and
the median nerve pass through the carpal tunnel at the wrist level. The carpal tunnel can be
grossly divided into a proximal part, approximately at the level of the pisiform bone, and a dis-
tal part, approximately at the level of the hook of the hamate bone. These bony structures
could serve as anatomical landmarks for the quantitative analysis of the median nerve in imag-
ing studies.

The diagnosis of CTS is usually based on constellations of clinical symptoms (e.g., numb-
ness or tingling pain in the median nerve distribution of hand), provoking factors (e.g., sleep,
or repetitive movement of the wrist), mitigating factors (e.g., shaking the hands, or changes in
hand posture), and neurological findings (e.g., Tinel’s sign, Phalen’s sign, sensory impairment
in the distribution of the median nerve, or thenar muscle atrophy) [5]. Neurophysiological
studies of the median nerve—including nerve conduction studies (NCS) with or without elec-
tromyography—are currently used as the gold standard for the definitive diagnosis of CTS [6].
However, NCS are invasive, painful, time consuming and relatively expensive, and thus are
poorly accepted by some patients. Moreover, it has been reported that the findings of electro-
diagnostic testing (EDX) are normal in 16~34% of patients with clinically suggestive CTS [6-
9]. Hence the disadvantages and diagnostic insufficiency of EDX have prompted researchers to
investigate more convenient and effective tools for the definitive diagnosis of CTS. Comple-
mentary to NCS, magnetic resonance imaging (MRI) can provide visible anatomical informa-
tion of the median nerve and neighboring flexor tendons across the carpal tunnel, such as
compressive neuropathy, nerve edema, inflammation and even other subtle pathological causes
of CTS (e.g. ganglion, haemangioma or bony deformity) and demonstrates superior ability of
high imaging resolution [10-14]. With the advance of MR neurography which greatly improve
the reliability of identification of the median nerve in images, some researchers have demon-
strated the characterized transverse [15] and anterior-posterior movement of the median nerve
within the carpal tunnel [16]. Moreover, Jarvik et al. concluded that the linear extent of the
abnormal high intensity T2-weighted nerve signal on MRI and the median-ulnar sensory
latency difference are both strong predictors of surgical benefit at 1 year, and there was a clear
patient preference for MRI over electrodiagnostic testing (EDX) [14]. Nevertheless, the charac-
teristics of high cost and the time consuming nature of scanning for MRI technique limit its
popularity.

Ultrasound (US) imaging has advantages of simplicity, low cost, noninvasiveness, real-time
capability and portability compared with traditional EDX. US imaging also offers high tempo-
ral and spatial resolutions, and can potentially provide dynamic anatomical information
regarding local structures and kinesiology. Ultrasonography has been increasingly used during
the past 2 decades to evaluate peripheral entrapment neuropathies such as CTS and tardy ulnar
palsy, and the preliminary results have been promising [7, 17-31]. Most of these studies have
focused on investigating morphological changes of the median nerve by measuring the cross-
sectional area (CSA) and/or flattening ratio (FR) of the median nerve in the carpal tunnel
(either the proximal or distal part), and changes in the thickness of the flexor retinaculum in
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transverse US images [17, 20, 32]. Some published reports have suggested that the CSA of the
median nerve at the inlet of carpal tunnel represents the most effective diagnostic index (at the
level of scaphoid-pisiform bone), with measuring sensitivities and specificities of 82~94% and
65~97%, respectively [18, 24, 27, 30]. Nevertheless, the wide variations of the sensitivity and
specificity reported in the literature, which could be due to variations in the characteristics of
CTS patients [e.g., race, body weight, body mass index (BMI), or wrist circumference], non-
standardized measuring protocols, or inter-rater deviations, have prevented meaningful analy-
sis of US as either a screening or confirmatory tool in the diagnosis of CTS [9]. Another crucial
analytic limitation is that previous investigators have focused on morphological differences of
the median nerve between normal controls and CTS patients, which does not allow estimation
of the residual functional reserve of the median nerve in the affected patients compared with
current standard NCS examinations.

The underlying pathophysiology of CTS has been copiously reported regarding median
nerve dysfunction. The median nerve is known to be a flexible and mobile nerve structure that
stretches and translates in response to changes in the motion of the adjacent flexor digital ten-
dons when the fingers move in flexion and extension [33]. The median nerve is subject to
being stretched or compressed against the TCL by constricted flexor digital tendons within the
carpal tunnel during finger movements. Hence, the motion of the median nerve during wrist
or finger movements could closely reflect the pathogenesis and/or pathomechanisms of CTS.
Longitudinal excursion [34-39] and transverse sliding [40] of the normal median nerve during
wrist and finger movements have been reported, and the authors of these preliminary studies
proposed that the longitudinal excursion and transverse nerve sliding were reduced in CTS
patients relative to normal subjects, combined with restriction of median nerve mobility during
different finger movements as well as greater deformation of the median nerve [41-46]. These
findings indicate that CTS is substantially a disorder involving restriction of the median nerve
motion resulting from a decrease in the available functional space within the carpal tunnel and
consequently increased carpal tunnel pressure. Hence, evaluating of median nerve mobility
within the carpal tunnel could offer new insights into the pathomechanisms underlying CTS
and for definitively diagnosing this condition.

Difficulties associated with diagnosing CTS based on motion of the median nerve include
the likelihood that such motion is non uniform, and influenced by local anatomical, mechani-
cal, and vasculature features and the movement mode of the flexor tendons. Altering the
median nerve displacements in either the palmar-dorsal or radial-ulnar direction via active dif-
ferential finger movements has rarely been reported in literature [33-37, 39-46]. Although pre-
vious studies have recorded changes in median nerve mobility longitudinally or transversely in
normal subjects and CTS patients, no definitive patterns of the median nerve motions are avail-
able for use in current clinical examinations of CTS. Hence, the aims of this study were (1) to
characterize the transverse sliding patterns of the median nerve during active finger flexion
and extension movements by analyzing US B-mode dynamic images, (2) to determine varia-
tions in the patterns there in order to distinguish healthy subjects from CTS patients, and (3)
to identify any correlation between the NCS severity and the median nerve mobility.

Materials and Methods
Participant data collection including NCS as a reference

The research protocol used in this study was approved by the Institutional Review Board of
Hsin-chu Mackay Memorial Hospital (IRB #12MMHIS195), and all participants signed written
informed consents. This study recruited 32 normal wrists, 26 wrists with mild CTS, and 14
wrists with severe CTS—as confirmed by electrophysiological NCS—during 2012 and 2013.
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Fig 1. Ultrasound scanning. While the fingers performed active flexion and extension movements (a), the
transverse sliding motion of the median nerve within the carpal tunnel was clearly identified in dynamic B-
mode images. (b), (c) & (d) Representative US images obtained from normal subjects and mild- and severe-
CTS patients, respectively. Note that the amount of transverse sliding of the median nerve varied with the
severity of CTS. N indicates the median nerve. Normal, Mild, and Severe indicate normal subjects, mild-CTS
and severe-CTS patients.

doi:10.1371/journal.pone.0147051.g001

Those who had a past history of cervical radiculopathy, diabetes mellitus or glucose intoler-
ance, hypothyroidism, rheumatoid arthritis, gout, hemodialysis, wrist osteoarthritis, sarcoido-
sis, amyloidosis or previous traumatic insult to the affected wrist were excluded.

NCS were performed in all participants as the gold-standard reference for the diagnosis of
CTS. Various parameter estimates have been proposed in the literature, and this study adopted
the clinical standard confirmatory protocol based on the American Association of Electrodiag-
nostic Medicine summary statement [47]. That is, a diagnosis of CTS was established if a sub-
ject had a sensory conduction velocity (SCV) of <40 m/s, a distal sensory latency (DSL) of
>2.5 ms, a distal motor latency (DML) of >4.0 ms, or a waveform amplitude of less than 8
mV. Furthermore, using the data from the NCS, we defined mild CTS as an SCV of 30~40 m/s,
a DSL of 3.0~4.4 ms, or a DML of 4.4~6.4 ms as, while severe CTS was defined as a SCV of
<30 m/s, a DSL of >4.4 ms, a DML of >6.4 ms or an undetectable waveform [48, 49].

US scanning protocol

A commercial US scanner (Model t3000, Terason, MA) with a 10-MHz linear array probe
(Model 12L5A, Terason) was used for clinical image acquisition in this study. The frame rate
was set as 25 fps, and the parameter settings of the scanner such as the optimal gain, uniform
time gain compensation, and focus depth were identical in all subject examinations. Cross-sec-
tional images of the carpal tunnel were acquired by an experienced musculoskeletal physician
who had performed clinical US image acquisition for more than 10 years. The subjects were
positioned with the forearm supine on a soft flat plane (e.g., a pillow) and the wrist maintained
in a neutral position. The transducer was placed transversely at the level of the distal wrist
crease and perpendicular to the long axis of the forearm, just at the inlet of the carpal tunnel.
The participants were requested to perform neutral extension of their fingers initially, followed
by full flexion (clenched-fist posture) and then back to finger extension (open-palm posture)—
that is active finger movements in flexion-extension cycles [Fig 1(A)]—, while 69~70 frames of
B-mode scan images were acquired at intervals of about 3 seconds [Fig 1(B)-1(D)]. Active fin-
ger movements in flexion and extension induce passive displacements of the median nerve,
and the transverse sliding of the median nerve within the carpal tunnel during finger move-
ments can be clearly observed in US dynamic imaging. Furthermore, as shown in Fig 1(B), dur-
ing one finger flexion-extension cycle, the median nerve presented a neutral position initially,
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and then moved toward the ulnar side transversely when the fingers were at full flexion, and
finally returned back to the radial side transversely when the fingers were extended. The ovoid
median nerve was identified in B-mode image, and the outermost hyperechoic rim of the median
nerve was outlined manually for further measurements of the transverse displacements.

Estimation of the pattern of median nerve motion

The transverse displacement of the median nerve in the radial-ulnar plane within the carpal
tunnel was measured by applying a speckle-tracking algorithm to sequential US dynamic
images. This study utilized a multilevel block-matching and block-sum pyramid (BSP) inte-
grated algorithm (referred to here as the multilevel BSP algorithm) for speckle tracking
between sequential US B-mode images. The multilevel BSP algorithm had been demonstrated
to achieve excellent computational performance for two-dimensional speckle tracking in B-
mode images [50-52].

The multilevel BSP algorithm is comprises of a matching process and a searching process.
The matching process was based on a BSP algorithm, which significantly reduces the computa-
tional complexity while maintaining the same accuracy as the conventional sum-of-absolute-
differences approach. The searching process, on the other hand, was based on a multilevel
search strategy involving comparing matching blocks on a level-by-level basis rather than the
full-search strategy used by most conventional tracking methods. This improved strategy
allowed real-time (or near-real-time) implementation of motion estimation in US imaging. We
chose a region of 32 pixels by 32 pixels (15.56 pixels/mm) as a matching block in the reference
image (i.e., original image) and compared this to each test block of the same size in the search
region of the comparison image. The search block comprised 21 pixels by 21 pixels, which
ensured that it covered at least 10 independent speckles and provided acceptable speckle-track-
ing results. The displacement was estimated as the position difference of the best-matched
pixel between the test block in the comparison image (i.e., the ith frame) and the matching
block in the fourth previous image [i.e., the matching (i-4)th frame]. This process continued
until the displacements for all pixels in the center of the matching block in the original image
were acquired.

In this study we focused on the median nerve as the target region of interest in cross-sec-
tional US images, and used the multilevel BSP algorithm to calculate the lateral displacement
of each pixel within the median nerve boundary between sequential images, as shown in Fig 2
(A). Differential movements of the fingers in flexion or extension meant that the direction and
amount of lateral displacement of the median nerve varied between normal subjects and
patients with mild or severe CTS. The transverse sliding motions of the median nerve toward
the ulnar and radial directions during the finger flexion and extension movements were
defined as positive and negative displacements, respectively [Fig 2(A)]. Note that the lateral
displacement of the median nerve evident in sequential B-mode images corresponded to the
averaged transverse displacement of all pixels contained within the median nerve boundary.
All of the average lateral displacements at different acquisition time points acquired in an
entire finger flexion-extension cycle were then accumulated to obtain cumulative lateral dis-
placements, as shown in Fig 2(B), which illustrates marked variation of the motion patterns
among normal subjects and patients with mild or severe CTS.

In theory, the transverse motion of the median nerve over the ulnar-radial axis involves an
identical traversed distance but in opposite directions during finger flexion and extension as
the participant performs standardized repetitive finger movements. We therefore assumed that
the resultant cumulative lateral displacements versus acquisition time (i.e., temporally cumula-
tive lateral displacements) over one cycle of finger movements would appear symmetric for the

PLOS ONE | DOI:10.1371/journal.pone.0147051 January 14,2016 5/16



el e
@ ' PLOS ‘ ONE Ultrasound Dynamic Imaging for Diagnosing Carpal Tunnel Syndrome

(a)

Normal Mild Severe
c
2
3
2
o
c
S
k]
c
Ta 2
£ =
£ fr]
2
g
a
Width (mm)
25 Normal 2 Mild 2 Severe
—~20 — 20 ~20
£ £ £
Es E 5 £
§ S 10 S 10
§s 5 Eis
8 g s g
s, k] 8,
2 &0 )
o -5 [a Q3 a-s
o 02 04 06 08 1 10 02 04 06 08 1 02 04 06 08 1
Time (seconds) Time (seconds) Time (seconds)

Fig 2. Estimation of the pattern of median nerve motion. During finger flexion and extension movements
in normal subjects and mild-CTS and severe-CTS subjects, the median nerve showed non uniform
transverse sliding motion over the ulnar-radial plane. (a) Red arrows indicate the direction of lateral
displacements of representative pixels within the median nerve as calculated using a speckle-tracking
algorithm. (b) Cumulative average lateral displacements (mean and SD values) of the median nerve at
different acquisition times during one finger flexion—extension cycle, indicating marked variations of the
motion patterns between normal subjects and mild-CTS and severe-CTS patients. Normal, Mild, and Severe
indicate normal subjects, mild-CTS and severe-CTS patients.

doi:10.1371/journal.pone.0147051.g002

transverse sliding of the median nerve, and that the temporally cumulative lateral displace-
ments can be curve-fitted by a second-order polynomial function. Note that the fitted curve
was regarded as the transverse sliding pattern of the median nerve within the carpal tunnel dur-
ing finger flexion and extension movements.

Statistical analysis

To differentiate normal subjects from CTS patients, the estimated transverse sliding patterns of
different subgroups were compared using three statistical parameters: R%, curvature and ampli-
tude. Since the fitted curves were derived from the temporally cumulative lateral displacements
by a second-order polynomial function, the R?, curvature, and amplitude estimates represent
the goodness of fit to the temporal cumulative lateral displacement of the median nerve, the
variation of the fitted curve, and the maximum value of the fit, respectively.

Physiologically, the R estimate could account for the transverse sliding ability or function
of the median nerve in response to active finger movements, and we could regard the curvature
and amplitude estimates as representing the functional compliance or elasticity of the median
nerve, and the maximal transverse sliding displacement of the median nerve or the conceptu-
ally spatial pressure within the carpal tunnel in response to active finger movements,
respectively.

The three parameters were then compared statistically between the different subgroups,
with the data expressed as meantstandard deviation values. Student’s t-test was used to assess
the statistical significance of differences in the values of each parameter between normal sub-
jects and CTS patients. An overall probability value of less than 0.05 was assumed to be indica-
tive of statistical significance. The values of the three variables were presented using box plots
to facilitate the visual differentiation of normal subjects and CTS patients. The receiver
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operating characteristic (ROC) curve was utilized to evaluate the diagnostic performances of
each estimate and the overall composite estimate in discrimination between normal subjects
and CTS patients. ROC curve is a graphical plot that statistically estimates the quality or per-
formance of a binary classifier system as its discrimination cutoff is varied. ROC analysis is a
useful tool for evaluating the performance of diagnostic tests and more generally for evaluating
the accuracy of a statistical model (e.g., logistic regression, linear discriminant analysis) that
classified subjects into 1 of 2 categories, diseased or nondiseased. The area under the ROC
curve (AUC) is a measure of how well a parameter can distinguish between two diagnostic
groups (diseased/nondiseased). The three parameters was then inputted into a fuzzy c-means
(FCM) algorithm which is an unsupervised clustering method for dividing a group of data
points into two clusters/classes for representing the correlations between the different parame-
ter attributes.

Results

US dynamic imaging readily demonstrated that the normal median nerve moves in the ulnar
direction during finger full flexion and backward in the radial direction during finger exten-
sion. Moreover, the median nerve displacement in the radial-ulnar plane was reduced in CTS
patients compared with normal subjects [Fig 1(B)]. Consequently, estimating changes in such
transverse sliding of the median nerve in the carpal tunnel would provide better insight into
the specific causative factors in individual patients.

The transverse sliding of median nerves during finger flexion and extension was greater in
the normal subjects than in the patients with mild or severe CTS. In addition, a smaller amount
of median nerve motion was correlated with more-severe NCS, which implied that the decreas-
ing median nerve mobility was correlated with the reduced median nerve conduction velocity.

The transverse sliding patterns of the median nerve during finger flexion and extension
movements for a normal subject, a mild-CTS patient, and a severe-CTS patient could be
expressed as shown in Fig 3. The slopes of the fitted curve in both the increasing and decreasing
segments were greater in normal subjects than in patients with mild or severe CTS. Because the
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Fig 3. Transverse sliding patterns of the median nerve. Representative fitted curves indicating the
various transverse sliding patterns of the median nerve during fingers flexion and extension movements
among a normal subject, a mild-CTS patient, and a severe-CTS patient. The dots, triangles, and diamonds
represent the cumulative lateral displacements at different acquisition times and the intersecting lines
indicate the fitted curves for the different subgroups, respectively. Normal, Mild, and Severe indicate normal
subjects, mild-CTS and severe-CTS patients.

doi:10.1371/journal.pone.0147051.g003
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normal median nerve had a larger and more regular transverse sliding motion than the CTS-
affected median nerve, its temporally cumulative lateral displacement fitted curve appeared to
increase stably and then decrease stably, resulting in the effective fitted uppermost dashed line
shown in Fig 3. On the other hand, the fitted curve for the patients with mild or severe CTS
appeared to not fit the temporally cumulative lateral displacements of the median nerve,
reflecting the irregular and impaired transverse sliding of the CTS-affected median nerve in the
carpal tunnel during active finger movements. In addition, the transverse-sliding-pattern curve
of the median nerve was steeper in mild-CTS patients than in severe-CTS patients.

The R?, curvature and amplitude estimates of the fitted curves were 0.94+0.02, 0.69+0.28,
and 1.27+0.62, respectively, for the normal subjects; 0.77+0.15, 0.25+0.23, and 0.57+0.42 for
the mild-CTS patients; and 0.56+0.19, 0.12+0.11, and 0.35+0.31 for the severe-CTS patients.
Using box plots as shown in Fig 4, compared to the CTS patients, the normal subjects had sig-
nificantly higher R?, curvature and amplitude estimates of the fitted curves. The R, curvature,
or amplitude estimate provided an excellent ability to distinguish normal subjects from CTS
patients, regardless of their disease severity (p < 0.001). Furthermore, the curvature and R?
estimates showed good-to-excellent power in differentiating between mild- and severe-CTS
patients (p < 0.01 and p < 0.001, respectively), whereas the amplitude estimate did not differ
significantly between patients with mild and severe CTS.

ROC curve analysis was used to determine the performance metrics—including sensitivity,
accuracy, and specificity—of the three individual parameters, as shown in Fig 5. Table 1 lists
the specificity, sensitivity, accuracy, and area under the ROC curve (AUC) of the different
parameters assessed by ROC curves. The computed AUCs of the R?, amplitude, and curvature
estimates were 0.851, 0.899, and 0.857, respectively, and yielded accuracies of 83.3%, 86.1%,
and 83.3%, as presented in Table 1. This indicates that the amplitude estimate was the best per-
former of the three estimates, with a sensitivity of 87.5% and a specificity of 84.4%. The overall
composite analysis for augmenting the diagnostic efficacy estimation demonstrated a better
result, with an accuracy of 91.7%, specificity of 96.9%, sensitivity of 87.5%, and an AUC of
0.96, which indicates that combining the R?, curvature, and amplitude estimates can greatly
improve the efficacy in diagnosing CTS compared to applying only one parameter attribute.

Since weaker correlations among different parameter sets implied that the discrimination
performance could be improved, we tested the efficacy of combining the three parameters in
the FCM clustering algorithm in distinguishing between normal subjects and CTS patients. A
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Fig 4. Box plots analysis for the R2, amplitude, and curvature estimates. The calculated distributions of
R?, amplitude, and curvature estimates of the fitted curves for the normal subjects, mild-CTS and severe-CTS
patients were presented. The bisecting line, box boundaries, and whiskers indicate the median value, 25 to
75" percentiles, and the estimated data range, respectively. Two and three asterisks indicate p < 0.01 and

p <0.001, respectively. Normal, Mild, and Severe indicate normal subjects, mild-CTS and severe-CTS
patients.

doi:10.1371/journal.pone.0147051.g004
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doi:10.1371/journal.pone.0147051.g005

representative illustration is presented in Fig 6. The data points in the figure are divided into
two clusters representing normal subjects and CTS patients. Based on the numbers of data
points, the high diagnostic efficacy when using FCM clustering was indicated by an accuracy of
90.3%, a specificity of 96.9%, and a sensitivity of 85%. Compared to using each respective
parameter alone, combining the R, amplitude and curvature estimates can clearly improve the
diagnostic efficacy.

Discussion

This study has proposed a novel model for the quantitative measurement of median nerve dys-
function, which is crucial for understanding the pathomechanisms underlying CTS and for
diagnosing this condition. Several researchers have investigated changes in the motion of the
median nerve and even the individual finger flexor tendons within the carpal tunnel using US
for evaluating the kinematics within the carpal tunnel, in an attempt to understand the patho-
mechanisms underlying CTS [33, 41-46, 53]. Yoshii et al. reported the displacement and

Table 1. Diagnostic performance of different parameters analyzed with ROC curves.

Parameter
Performance metric R? Curvature Amplitude Composite
Specificity 93.8% 93.8% 84.4% 96.9%
Sensitivity 75% 75% 87.5% 87.5%
Accuracy 83.3% 83.3% 86.1% 91.7%
AUC 0.851 0.857 0.899 0.96

doi:10.1371/journal.pone.0147051.t1001
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deformation of the median nerve during different finger movements as determined using
transverse US imaging [33], and van Doesburg et al. reported changes in the motion pattern of
the median nerve and some of the flexor tendons [46]. Nevertheless, these preliminary studies
did not quantitatively analyze mobility dysfunction of the median nerve. Although motion of
the median nerve exhibits a non uniform pattern dependent on the local anatomical and bio-
mechanical properties and the specific finger or wrist movements involved, we have demon-
strated in this study that the transverse sliding of the median nerve within the carpal tunnel
during standardized active finger movements can be substantially converted into analyzable
estimates for differentiating between normal subjects and CTS patients.

In B-mode images, the normal median nerve exhibited greater transverse sliding displace-
ment during active finger flexion and extension movements than that found in patients with
mild or severe CTS. In addition, a smaller amount of median nerve motion was associated with
more severe NCS. This implies that impairment of median nerve mobility is correlated with
impaired median nerve conduction velocity and the subsequent median nerve dysfunction.
Moreover, considering one cycle of finger flexion and extension movements, we assume that
the normal median nerve always moves transversely over the ulnar-radial axis in a to-and-fro
manner with an identical traversed distance and stops at the original neutral position. Hence,
the temporally cumulative lateral displacements of the median nerve during one cycle of finger
movements will theoretically appear as a symmetric distribution of transverse sliding (Fig 2).
We can thus draw the fitted curve using a second order polynomial function, which ideally
presents a symmetric parabolic curve.

The fitted curves of temporally cumulative lateral displacements were regarded as the trans-
verse sliding patterns of the median nerve within the carpal tunnel during finger flexion and
extension movements, which is a key point in this study. It is reasonable that the median nerve
moved transversely over a larger distance and with more regularity in the patients with milder
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CTS, and the corresponsive fitted curve would more likely present as the standard parabolic
curve exhibited by normal subjects. Therefore, the fitted curve of temporally cumulative lateral
displacements would become more flattened and irregular (i.e., more asymmetric) as the sever-
ity of CTS affecting the median nerve increases (Fig 3). Nevertheless, the actual transverse-slid-
ing-pattern curves of the median nerves over a single cycle of finger movements did not appear
as symmetric as a parabolic curve, which might have been due to the bias in the acquisition of
US images, such as the non standardized speed and/or force during finger movements; how-
ever this should hardly affect the subsequent statistical analyses since the processed fitting
curves were acceptable.

The box plots of Fig 4 indicate that the amplitude estimate could not be used to differentiate
mild- and severe-CTS patients, whereas the results of the ROC curve analysis in Fig 5 indicate
that the amplitude estimate provided the best diagnostic accuracy of the three parameters.
Hence, the disequilibrium of and absence of correlation between different parameter sets in the
box plots and ROC curve analyses indicated to us that the various parameter attributes cannot
depict the representative transverse sliding pattern of the median nerve within the carpal tun-
nel during finger movements and that the discrimination performance needs to be further
improved. Therefore, the FCM algorithm was adopted to verify the correlation and the dis-
crimination power of the three parameter estimates. The good diagnostic performance of FCM
clustering was confirmed by a sensitivity of 85%, a specificity of 96.9% and an accuracy of
90.3%; these metrics are comparable with the results of the overall composite ROC curve analy-
sis. A review of the literature revealed that a recent large series of meta-analysis research found
the composite pooled sensitivity and specificity of US imaging for the diagnosis of CTS to be
77.6% [95% confidence interval (CI) = 71.6%-83.6%] and 86.8% (95% CI = 78.9%-94.8%),
whereas the sensitivity and specificity when using EDX as the reference standard were 80.2%
and 78.7% [9]. In a recent literature, Fowler et al. reported that using a validated clinical tool
(CTS-6) as the reference standard, US had a sensitivity of 89% and a specificity of 90%, and
NCS had a sensitivity of 89% and a specificity of 80% in the diagnosis of CTS [54]. In our
study, the diagnostic performance of estimated sensitivity and specificity of our model using
NCS as gold-standard reference is comparable with those in publication by Fowler et al. More-
over, in their study, they chose an a priori cutoff >10 mm? at the inlet to the carpal tunnel as
the cutoff for a positive US examination, whereas we attempted to ameliorate the diagnostic
performance of US by quantitatively assessing the median nerve mobility across the carpal tun-
nel during finger movements using a US dynamic imaging technique for diagnosing CTS. As a
preliminary study, we adopted the currently accepted reference standard (NCS) instead of clin-
ical examination as our gold-standard reference for statistical analysis. We can therefore postu-
late that the model proposed in this study provides a comprehensive representation of the
median nerve dynamics within the carpal tunnel for assessing the functional status of the
median nerve in the diagnosis of CTS, and provides satisfactory results based on current stan-
dard neural electrophysiological studies.

This study was subject to some limitations. First, the inability to discriminate some mild-
and severe-CTS patients using FCM clustering method may be related to the relative smallness
of the sample (32 normal subjects, 26 mild-CTS patients and 14 severe-CTS patients) used for
characterizing the CTS severity. Second, when the participants were performing the cycle from
finger extension to a clenched fist during each 3-second acquisition time, the palmar muscle
contractile force was not uniformly controlled and also could not be measured objectively,
which could have influenced the analysis of the pattern of median nerve motion. Third, a
speckle-tracking algorithm was utilized to calculate the transverse displacement of the median
nerve within the carpal tunnel over one cycle of finger movements in our study, but the pres-
ence of severe adhesion of the median nerve observed in severe CTS patients may have
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introduced some analysis errors that lead to bias. Fourth, the diverse characteristics of the
included individuals, such as in their gender, body weight, height, BMI, and wrist circumfer-
ence, was not allowed for in the statistical analyses, which might also have contributed further
bias.

Some investigators had advocated that changes in biomechanical properties such as thicken-
ing and noninflammatory fibrosis of the subsynovial connective tissue (SSCT) within the car-
pal tunnel play an essential role of the pathophysiology of CTS [33, 42, 53, 55-62]. The SSCT
loosely connects the finger flexor tendons, median nerve, and synovium, and serves as a sliding
unit to reduce friction and protect the meshwork of the vasculature during tendon motion
[63-65]. Thus, thickening and fibrosis of the SSCT might hinder motion of the median nerve
and even of the finger flexor tendons within the carpal tunnel. Previous microtrauma insults
caused by either mechanical damage [65] or ischemia-reperfusion injury [66] may significantly
increase the fibroblast activity and density, since increased expression of transforming growth
factor-, collagen fibril size, vascular proliferation, and type III collagen have been noted in the
SSCT in histological examination [61]. The above-described changes cause scarring and fibro-
sis around the median nerve and flexor tendons which in turn can tether the nerve [67]; this
was assessed by the R” estimate for the transverse sliding function of the median nerve in
response to standardized finger movements in our study. On the other hand, the altered prop-
erties of the SSCT would not only secondarily contribute to increase the volume of the contents
within the carpal tunnel, but also may decrease the tissue compliance and permeability of the
vasculature, leading increased hydrostatic pressure, and this phenomenon was assessed by the
curvature estimate in the present study. The detrimental effect of these alterations in turn pre-
dispose the nerve and SSCT to secondary injury and lead to the elevation of carpal tunnel pres-
sure that is seen in CTS patients [61], which would hinder the amount of transverse sliding by
the median nerve and was accounted for by the amplitude estimate in our study. Hence, evalu-
ating median nerve mobility and kinematics within the carpal tunnel using our proposed US
dynamic-imaging-based discrimination model would allow affected and unaffected subjects to
be distinguished, and provides insight into the pathomechanisms underlying CTS.

Conclusions

This study has proposed a novel model for quantitatively evaluating median nerve mobility in
the radial-ulnar plane within the carpal tunnel during finger movements using a US dynamic
imaging technique, with the aim of differentiating normal subjects from CTS patients and basi-
cally is useful for the computer-aided diagnosis (CAD) of the CTS. In present study, quantita-
tive analysis for the median nerve mobility after the examination of normal subjects or CTS
patients in a separate step (post-hoc computer based analysis) is still needed, and usually we
can readily observe the restricted motion of the median nerve within the carpal tunnel in CTS
patients during the US dynamic imaging examination. Given well-developed and mature mod-
ules, the processing formula proposed in our study can be integrated into the commercialized
US machine software, and introducing the newly acquired model knowledge in the daily clini-
cal routine will be anticipated. The preliminary results obtained in the present study are
encouraging; future studies could integrate static features, such as altered CSA, FR, and wrist-
to-forearm ratio self-normalization of the median nerve morphology, which have been demon-
strated to be valuable in the diagnosis of CTS [17-32, 68-70], and also dynamic features of the
median nerve motion might be helpful in diagnosing of CTS and determining the CTS severity.
In addition, measurements of the mechanical strain or stress using US (in US strain imaging)
at different neural sites of the median nerve in the carpal tunnel could elucidate the elasticity
function of the median nerve for the US-based diagnosis of CTS.
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