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Abstract

Background—DNA damage is an established mediator of carcinogenesis, though GWAS have 

identified few significant loci. This cross-cancer site, pooled analysis was performed to increase 

the power to detect common variants of DNA repair genes associated with cancer susceptibility.

Methods—We conducted a cross-cancer analysis of 60,297 SNPs, at 229 DNA repair gene 

regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-

ON) Network. Our analysis included data from 32 GWAS and 48,734 controls and 51,537 cases 

across five cancer sites (breast, colon, lung, ovary, and prostate). Because of the unavailability of 

individual data, data were analyzed at the aggregate level. Meta-analysis was performed using the 

Association analysis for SubSETs (ASSET) software. To test for genetic associations that might 

escape individual variant testing due to small effect sizes, pathway analysis of eight DNA repair 

pathways was performed using hierarchical modeling.

Results—We identified three susceptibility DNA repair genes, RAD51B (p < 5.09 × 10−6), 

MSH5 (p < 5.09 × 10−6) and BRCA2 (p = 5.70 × 10−6). Hierarchical modeling identified several 

pleiotropic associations with cancer risk in the base excision repair, nucleotide excision repair, 

mismatch repair, and homologous recombination pathways.

Conclusions—Only three susceptibility loci were identified which had all been previously 

reported. In contrast, hierarchical modeling identified several pleiotropic cancer risk associations 

in key DNA repair pathways.

Impact—Results suggest that many common variants in DNA repair genes are likely associated 

with cancer susceptibility through small effect sizes that do not meet stringent significance testing 

criteria.
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Introduction

DNA damage is an established mediator of carcinogenesis (1). Several carcinogens (e.g. 

chemical mutagens, viruses, and irradiation) are known to cause cancer through their ability 

to damage DNA (2–6). Consistent with this established model of carcinogenesis, mutations 

in many genes known to confer cancer risk (e.g. TP53 (7), ATM (8), BRCA1 (9), BRCA2 

(10)), are known to play major roles in DNA damage repair and signaling response (11–15). 

However, while mutations in these genes are associated with high degrees of individual 

cancer risk (7, 9, 10), these rare events explain only a small fraction of all cancers (5). Given 

the importance of DNA damage to carcinogenesis, it is plausible that cancer risk would be 

conferred by common variants of these and other DNA repair genes, and that this risk could 

be measured in large, genome-wide association studies (GWAS).

GWAS have identified hundreds of single nucleotide polymorphisms (SNPs) and 

susceptibility loci associated with risk for various cancers (16–26). However, few GWAS 

have identified cancer susceptibility loci near DNA repair genes at stringent levels of 

significance that have also been shown to function through altered DNA repair (21, 24, 26, 

27). These data suggest that common variants in DNA repair genes may not make important 

contributions to cancer susceptibility, and that cancer susceptibility may be mostly conferred 

by high-risk, rare variants within this class of genes. However, it is possible that 

underpowered association studies could miss common variants with weak effect sizes. In 

order to investigate this hypothesis, a comprehensive candidate gene association study of 

DNA repair genes was performed.

The present study analyzes genetic data from 229 DNA repair genes. In order to increase the 

power to detect common variant effects, a meta-analysis was performed, using the NCI 

Genetic Associations and Mechanisms in Oncology (GAME-ON) Network database, which 

includes data from breast, colon, lung, ovary, and prostate cancer. The Association analysis 

for SubSETs (ASSET) software package (Bioconductor) was used to conduct the meta-

analysis of the large dataset (48,734 controls, 51,537 cases), which also allows for the 

evaluation of subset effects in a potentially heterogeneous dataset. Since the effect for each 

SNP may only reach significance in certain cancers (a subset of studies) this represents a 

powerful and practical approach to meta-analysis. The use of a candidate gene study 

restricted to DNA repair genes, the size and comprehensiveness of the GAME-ON database, 

and the use of ASSET to interrogate this large dataset for subset effects with minimal loss of 

power, represents a significantly more powerful approach to detect individual genetic 

variants in loci near DNA repair genes than has been previously attempted.

In order to test for cancer risk associations among DNA repair genes, which might escape 

individual variant testing due to weak effect sizes, dimensional reduction of the dataset was 

also performed by pathway analysis, using hierarchical modeling (28, 29). DNA repair 

genes segregate into fairly exclusive, well-defined pathway categories, which provides a 

strong, rational basis to use this information as a means to achieve dimensional reduction of 

the dataset, as findings in the pathway categories are therefore more likely to have 

underlying biological meaning and less likely to be an artifact of pathway analysis 

procedures. The hierarchical modeling procedure was selected for use in this study because 
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of its compatibility with the summary-level data available in the GAME-ON database and 

because this approach to pathway analysis uses information from across the entire dataset, 

instead of being driven by only a handful of the most significant individual variants. Using 

pathway membership as binary covariates, the multivariate regression framework of 

hierarchical modeling allowed for estimation of pathway effect size and significance (p-

value) for each pathway. Significant effects in the pathway covariates were interpreted as 

supportive evidence for the associations between variants in the DNA repair pathways and 

cancer susceptibility.

Materials and Methods

Study Population

The GAME-ON Network (http://epi.grants.cancer.gov/gameon/) includes GWAS data from 

32 studies across North America and Europe as well as Australia, representing five common 

cancer sites: breast, colon, lung, ovary, and prostate (16, 17, 19–23, 30–33). In total, this 

included 51,537 cancer cases and 48,734 controls. Data analyzed included summary 

statistics for each study, after adjusting for age, gender, and population stratification using 

principal components as applicable (Supplementary Table 1). Genomic variant data was 

imputed to the 1000 Genomes reference panel using either MACH or IMPUTE (34–36). 

Imputation was separately carried out for each cancer site. Following imputation, there were 

6,300,179 SNPs available for analysis, which were shared among all the GAME-ON 

databases. To avoid population stratification, all study participants included in the analysis 

were of European descent. Table 1 summarizes the sample sizes of each participating study, 

and more detailed characteristics are provided in Supplementary Table 1.

Gene, SNP, and pathway selection

We initially identified 247 DNA damage repair and signaling response genes using Kyoto 

Encyclopedia of Genes and Genomes (KEGG) Pathway Database (http://www.genome.jp/

kegg/pathway.html). Since the GAME-ON data did not include sex chromosomes, the gene 

list was reduced to 229 genes for the final analysis (Supplementary Table 2).

Single nucleotide polymorphisms (SNPs) were queried from the region of every gene 

included in the study, using dbSNP (http://www.ncbi.nlm.nih.gov/snp/) and the GRCh38 

reference build of the human genome. There is no data to suggest how far a SNP may be 

from a gene and still have functional effects on that gene. It is known that variants that affect 

gene activity can be located as far as 100 kb away from the start and stop sites of the genes; 

however, the inclusion of a larger search window reduces study power and increases the 

chance that associations are found that apply to genes other than the one of interest. In an 

attempt to address these competing concerns, gene regions were a priori defined as 50 kb 

upstream and downstream of the official start and stop sites for each gene (Supplementary 

Table 2). Selection criteria for a SNP’s inclusion into the study included MAF > 0.01 and 

being part of the 1000 Genomes database. This resulted in the initial selection of 156,804 

SNPs. SNPs were then omitted from the analysis if they were not present within every 

dataset in the GAME-ON network, resulting in a final count of 60,297 SNPs to be included 

in this study (Supplementary Table 2).
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Statistical Analysis

Because of the unavailability of individual data for all five cancer sites, the data were 

analyzed at the aggregate level only. All datasets were standardized so that the reference 

allele for each SNP was the same across datasets. Summary statistics for each genetic 

variant were obtained for each cancer site and for select histologic subtypes of breast 

(estrogen receptor (ER)-negative), prostate (aggressive), ovarian (serous and mucinous) and 

lung (adenocarcinoma) cancers (Table 1). Lung adenocarcinoma, serous ovarian cancer, and 

mucinous ovarian cancer were subtypes chosen for special inclusion into this study, given 

their prior associations with DNA repair genes (24, 37, 38). ER-negative breast cancer and 

aggressive prostate cancer subsets were also included to reflect genetic associations that may 

be linked with more aggressive forms of the disease. Aggressive prostate cancer was defined 

as disease cases having a Gleason score of 8 or greater (except for the BPC3 and CGEMS 

studies which included cases with tumor stage C or greater or cases with a Gleason score of 

7 or greater, respectively) (30).

All dataset summary statistics included odds ratios (ORs) and standard errors (SEs) derived 

from logistic regression analyses. Study-specific results were combined within each cancer 

site using a fixed effects model. Pooled estimates by cancer site were adjusted for age, 

principal components for population structure, and gender, where applicable.

Using the subset-based approach provided for by the ASSET software package (http://

www.bioconductor.org) (39), each genetic variant was evaluated for pleiotropic association 

with cancer risk across multiple cancer sites and histologic subtype. For every genetic 

variant, effect sizes between studies were combined, by finding the best subset to maximize 

the test statistic. The final test statistic for each SNP is obtained by maximizing the subset-

specific test statistic over all possible subsets, correcting for multiple-testing. ASSET 

calculates the effect size and significance of each SNP across all studies and also returns a 

list of studies that constitute the “best subset” of studies associated with the SNP under the 

assumption of a common direction of association (“1-sided ASSET analysis”) or it can allow 

for the assumption that significant effects may occur in opposite directions for the same 

genetic variant, between studies (“2-sided ASSET analysis”). In practice, however, genetic 

loci that are detected as significant across cancer studies have an overwhelming tendency to 

have the same direction of association. In this report it was assumed that variants of DNA 

repair genes were not likely to have effects that were opposite in direction across cancer 

sites.

The correlation between studies was corrected for by tabulating the number of shared cases 

and controls between studies and generating a covariance matrix when estimating standard 

errors. This included overlapping controls from the UK ovarian cancer and UK breast cancer 

GWAS, both of which included controls form the Wellcome Trust Case Control Consortium 

(WTCCC). Since significance effects for each SNP may only exist in certain cancers (a 

subset of studies) this represents a powerful and practical approach to meta-analysis. Of the 

60,297 SNPs included in the study, 9,806 SNPs were found to not be in high linkage 

disequilibrium (LD) (R2 > 0.70). This SNP count was used to set the threshold for a genetic 

variant to reach statistical significance, using the Bonferroni correction, p = 5.09 × 10−6. The 
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statistical significance for each genetic variant was calculated using the Bonferroni method 

in ASSET.

Hierarchical modeling, pathway analysis

To reduce the correlation structure in the SNP dataset, SNPs were pruned from the analysis 

if they were found to be in high LD (R2 > 0.70), as determined using the online SNP 

Annotation and Proxy Search (SNAP) tool (Broad Institute, http://

www.broadinstitute.org/mpg/snap/). If LD information for a SNP was not available from the 

SNAP tool, it was pruned from the analysis. This resulted in 9,806 SNPs available for 

pathway analyses (Table 3).

SNP pathway membership was determined based on the DNA repair gene it was linked to 

and that gene’s membership in DNA damage repair and signaling pathways, as indicated by 

the KEGG Pathway Database (Supplementary Table 3). As a result, it was possible for a 

SNP to be a member of more than one pathway. The hierarchical modeling method (28, 29) 

used was performed in R (R Foundation for Statistical Computing, http://www.R-

project.org/, Version 3.1.1, 2014). Briefly, hierarchical modeling was performed using the 

summary level data from the GAME-ON consortium. First-stage estimates of SNP 

association with each cancer site (OR, SE, and p-values < 0.05), were generated by adjusting 

for principal components, as applicable. This information was then entered into a 

multivariate regression framework, incorporating higher level information about the SNP 

(i.e. pathway membership as binary covariates) in order to improve the ranking of results. 

The effect size and association for each DNA repair pathway covariate was calculated for 

each cancer site. The SEs were estimated based on the folded-normal distribution (40).

Results

Figure 1 illustrates the genomic distribution for all SNPs included in the analysis and the 

corresponding p-values for association with cancer risk across one or more cancer sites. 

Manhattan plots for each of the studies included in the meta-analysis were also generated 

(Supplemental Figure 1). After correction for multiple comparisons, 29 genomic markers 

reached statistical significance. Twenty-six of the 29 SNPs were within the RAD51B gene 

locus (14q24.1). Three of the 29 statistically significant SNPs were within the MSH5 gene 

locus (6p21.33). A single SNP, near the BRCA2 gene locus (13q13.1), reached borderline 

significance (p = 5.70 × 10−6). This SNP was at the edge of the defined gene locus window 

and was actually located within the FRY gene. While FRY has been previously associated 

with prostate cancer risk, it is not directly involved in DNA damage repair (41). The other 

168 SNPs within the BRCA2 gene did not reach significance testing criteria.

The SNPs with the lowest p-value at each locus (RAD51B, MSH5, BRCA2) were then 

analyzed for pleiotropic association with cancer risk (Table 2). RAD51B-associated marker, 

rs11844632, had an overall (pleiotropic) OR of 0.90 (95% CI: 0.88–0.93; p = 5.46 × 10−12) 

across multiple cancer sites. The highly significant inverse association was limited to breast 

cancer (p = 8.14 × 10−9), ER-negative breast cancer (p = 0.01), overall prostate cancer (p = 

1.81 × 10−4), aggressive prostate cancer (2.46 × 10−3), and colon cancer (p = 0.01). 

Associations with lung cancer and ovarian cancer were in the opposite direction of effect 
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and not statistically significant. MSH5-associated marker, rs3115672, had an overall 

(pleiotropic) OR of 1.18 (95% CI: 1.12–1.24; p = 2.53 × 10−8). The marker had a highly 

significant association with lung cancer (p = 3.99 × 10−11), and had weaker associations 

with colon (p = 0.051), ovarian cancer (serous subtype) (p = 0.050), and lung 

(adenocarcinoma subtype) (p = 0.03) cancer. BRCA2-associated marker, rs56404467, was 

borderline significant, having an overall (pleiotropic) OR of 1.39 (95% CI: 1.21–1.61; p = 

5.70 × 10−6), driven by an association with overall lung cancer (p = 2.14 × 10−7), colon 

cancer (p = 7.33 × 10−3), and a weaker association with lung adenocarcinoma (p = 0.01).

To examine whether genomic variations in DNA repair genes might have small, but 

consistent, effects across cancer sites, left undetected due to being sub-genome wide 

significant, Q-Q plots were generated using the SNP data from the DNA repair gene regions, 

for each cancer dataset (Figure 2). Breast, prostate, and lung (overall and the 

adenocarcinoma subtype) cancer each showed deviations in p-value distribution greater than 

would be expected by chance, suggesting small but consistent effects in DNA repair genes 

may exist. Analysis of the genomic inflation factor (λ) was also performed on each cancer 

site database (42). A standard allelic test for association was performed, based on the 

median of the χ2 distribution with d.f. = 1. The λ values produced a modest deviation from 

the expected value of 1, consistent with the Q-Q plots and also suggestive of an excess 

number of significant associations in some of the cancer sites. The λ values for each dataset 

are as follows: breast = 1.10, breast (ER-negative) = 0.96, colon = 0.98, lung = 1.02, lung 

(adenocarcinoma) = 1.04, ovarian = 1.02, ovarian (serous) = 1.09, ovarian (mucinous) = 

1.02, prostate = 1.17, and prostate (aggressive) = 1.08.

In order to statistically model the sub-genome-wide-significant trends between DNA repair 

pathways and association with cancer risk, dimensional reduction of the GAME-ON dataset 

was performed via pathway analysis. Site-specific cancer associations with DNA repair 

pathways were evaluated using hierarchical modeling (Table 3). The analysis included 9,806 

SNPs. Analysis of the homologous recombination (HR) DNA repair pathway revealed 

pleiotropic associations with colon cancer (p = 4.18 × 10−4) and ovarian cancer: overall (p = 

1.39 × 10−6), the serous subtype (p = 1.65 × 10−6), and the mucinous subtype (p = 5.00 × 

10−5). Mismatch repair (MMR) showed pleiotropic associations with prostate cancer: 

overall (p = 3.54 × 10−5) and the aggressive sub-type (p = 2.76 × 10−3) and lung cancer: 

overall (4.86 × 10−4) and the adenocarcinoma subtype (p = 8.76 × 10−5). The DNA repair 

pathway, nucleotide excision repair, also showed a strong association with breast cancer: 

overall (p = 7.54 × 10−5) and the ER-negative subtype (p = 1.42 ×10−3) and weaker 

associations with ovarian cancer (p = 8.69 × 10−3), overall lung cancer (p = 0.024) and colon 

cancer (p = 0.027). All other DNA repair pathways tested showed at least some weaker 

associations with one or more cancer subtypes (p < 0.05).

Hierarchical modeling’s identification of pleiotropic pathway effects in HR and MMR 

pathways is consistent with the results obtained from individual SNP testing. In particular, 

RAD51B and BRCA2 are members of the HR pathway and MSH5 is a member of the MMR 

pathway. In order to determine whether these three loci, or a small number of other highly 

significant individual loci, significantly influence the overall hierarchical modeling analysis, 

a sensitivity analysis was performed. In the first sensitivity analysis, the RAD51B, BRCA2, 
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and MSH5 gene data were removed from the dataset and hierarchical modeling was repeated 

(Supplementary Table 4). In the second sensitivity analysis, any genes containing SNPs that 

had associations with p < 1 × 10−4, were removed from the dataset. This resulted in the 

removal of 6 genes (RAD51B, MSH5, BRCA2, DCLRE1B, SMEK1, RAD52) from the dataset 

prior to the hierarchical modeling procedure (Supplementary Table 5). Neither analysis 

appeared to reveal a significant change to the overall results, suggesting that a small number 

of highly significant loci were not driving the hierarchical modeling results. This suggests 

that the hierarchical modeling results were most likely a result of a large number of small 

effect sizes throughout the dataset.

Discussion

DNA damage and repair are known to be critically important to carcinogenesis and rare 

mutations in critical DNA repair genes are known to be associated with unusually high 

cancer risk. However, previous GWAS of common genetic variants (MAF > 0.01) have only 

identified a handful of statistically significant loci known to function through their effects on 

DNA repair genes. It was hypothesized that this could be due to the inability of even large 

studies to detect weak effect sizes. This study tested this hypothesis through use of a large 

heterogeneous database and a flexible meta-analysis strategy, which represents an 

unprecedented increase in statistical power to detect associations among common variants of 

DNA repair genes. This analytical strategy was supplemented with a strategy of dimensional 

reduction of the dataset, through pathway analysis, to also detect evidence of trends of 

association between cancer risk and common variants that may escape common variant 

testing by not meeting the genome-wide significance testing criteria.

Our results indicated that the RAD51B locus was strongly associated with breast cancer and 

contained a weaker association with prostate cancer, although this did not achieve statistical 

significance. This locus has been previously associated with breast (43–45), prostate (18, 

46), and mucinous ovarian cancer risk (24). Of the associated SNPs at RAD51B, two were 

previously reported in the literature, rs10483813 and rs17828907 (18, 43–45, 47, 48). No 

associations were detected for mucinous ovarian cancer at this locus, but this may be due to 

the relatively small number of mucinous ovarian cancer cases included in this analysis (n = 

306).

From the MSH5 locus, although rs3131379 was previously found to be associated with lung 

cancer (27, 37, 49, 50), this SNP was not included in our analysis (because it was not present 

in all GAME-ON databases), and rs3115672 was identified as the most significant SNP at 

this locus instead. It should be noted that the pairwise LD between rs3131379 and 

rs3115672 is very high (R2 > 0.99). Our study strongly associated this locus with lung 

cancer, with only weaker, non-significant associations detected for colon cancer, lung 

adenocarcinoma and mucinous ovarian cancer. This gene has been previously associated 

with lung cancer (27, 37, 39, 50) and non-Hodgkin’s lymphoma risk (OR = 1.16, p = 0.03) 

(51). Interestingly, this locus has also been associated with individuals suffering from lupus 

erythematosus (52–54), who themselves are known to be predisposed to non-Hodgkin’s 

lymphoma and lung cancer, while have reduced rates of other solid cancers (55).
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Our results identified a SNP at genetic locus 13q13.1, near the BRCA2 gene. While 

mutations to BRCA2 have been known to be associated with multiple cancer types (10, 56, 

57), this SNP has not been previously identified as a common variant related to cancer 

susceptibility. The SNP showed strong association with lung cancer. The SNP was located 

within the analytical window of the BRCA2 gene (+/− 50 kB) but was within the FRY gene 

region, which is not a canonical DNA repair gene. Thus, this finding should be interpreted 

with more caution, as supportive evidence of the association of common variants of DNA 

repair with cancer. However, the possibility that this SNP could affect BRCA2 gene function 

cannot be ruled out. Furthermore, it represents a potentially novel finding that suggests need 

for further investigation. This SNP, rs56404467, is in a non-coding exon and likely does not 

affect the activity or function of the BRCA2 protein but may alter the rate of BRCA2 

translation. This contrasts to the smaller and non-functional BRCA2 protein resulting from a 

mutation and could explain the different pattern in cancer associations.

A previous analysis of the BRCA2 gene discovered a locus associated with squamous lung 

cancer, but this locus was not associated with lung adenocarcinoma, in contrast to our own 

findings (58). However, secondary analysis identified an additional genetic feature which 

may explain this discrepancy. There was a different, less significant loci, detected within the 

BRCA2 gene, but this did not meet the criteria for significance testing of p < 5.09 × 10−6 

(rs4942486, p = 0.003). We found that this less significant loci was not strongly associated 

with adenocarcinoma but was associated with overall lung cancer, as previously reported 

(58). Despite being within the same analytical window, the FRY and BRCA2 loci were over 

100,000 bases apart, located within different genes, and did not appear to be in high LD. 

Therefore, our results support the existence of two separate genetic association loci around 

the BRCA2 gene.

Overall, individual variant testing failed to find robust evidence for an association between 

common variants in DNA repair genes and cancer susceptibility. Few loci were identified 

and all genes had been previously associated with cancer susceptibility. Furthermore, 

evidence for pleiotropy among common variants in these genetic regions did not receive 

strong statistical support. However, analysis of Q-Q plots from specific cancer sites, using 

SNPs data from DNA repair gene regions, suggested that consistent association for common 

variants in DNA repair genes may exist but are likely difficult to detect due to their small 

effect sizes. In order to examine this possibility, pathway analysis was used as a tool to 

reduce the dimensionality of the dataset.

Hierarchical modeling provided statistical evidence that common variants of DNA repair 

genes are likely associated with cancer susceptibility. Homologous recombination, mismatch 

repair, and nucleotide excision repair showed strong statistical associations with cancer 

susceptibility, and for homologous recombination and mismatch repair, this association was 

present across multiple cancer sites. Sensitivity analysis suggested that these results were not 

due to the contribution of a few, highly significant loci, but through the combination of 

small, individual SNP effects throughout the entire dataset.

A limitation of our analyses is due to the availability of only aggregate summary-level data. 

Thus, we were unable to evaluate associations with non-aggressive prostate or ER-positive 
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breast cancers. Lack of individual level data also made it difficult to enforce a consistent 

definition of aggressive prostate cancer. Despite this, our findings support further 

exploration of associations with DNA repair genes in these subgroups.

The results from pathway analysis and individual loci testing clarify the scientific model of 

the association of common variants in DNA repair genes with cancer risk. Although rare 

variants in these genes are known to be strongly linked to cancer incidence, very few 

individual loci were detected in our analysis, even when using a large database and a 

powerful analytical approach. Robust statistical significance was only detected under 

pathway analysis, and was observed to be likely due to the contribution of small effect sizes 

from multiple genes in DNA repair pathway. These data suggest that common variants of 

DNA repair genes are associated with cancer risk, but that the associations tend to be weak. 

These results and their interpretation seem particularly plausible, given the epidemiological 

observation that mutations at some DNA repair genes have profound deleterious effects 

(Fanconi anemia, xeroderma pigmentosa, ataxia telangiectasia, etc.). Thus, there is a strong 

theoretical justification for why common variant effects on cancer predisposition in these 

genes may be difficult to detect, as they likely face strong, negative selection pressure. This 

observation provides further rationale for conducting future targeted sequencing to explore 

the role that rare variants play in determining cancer risk.
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Figure 1. 
Manhattan plot, illustrating p-values from 60,297 SNP associations generated from 1-sided 

ASSET meta-analysis. Statistical significance threshold is denoted by the red line (p = 5.09 

× 10−6).
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Figure 2. 
Observed versus expected p-values of DNA repair gene SNPs, by cancer site and overall 

meta-analysis. SNPs plotted were filtered using the SNAP online tool (see Methods and 

Materials) and were eliminated from the analysis if R2 > 0.70. Black dots = p-values from 

indicated dataset, green lines = 95% pointwise expected interval under the null hypothesis, 

red line = expected observations under the null hypothesis.
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Table 1

Summary of GAME-ON GWAS included in the ASSET Meta-Analysis1

Cancer Site Number of GWAS Cases (N) Controls (N)

CORECT: Colorectal 6 5,100 4,831

DRIVE: Breast 11 15,748 18,084

 ER-Negative 8 4,939 13,128

ELLIPSE: Prostate 6 14,160 12,724

 Aggressive 6 4,450 12,724

FOCI: Ovary 3 4,369 9,123

 Invasive Serous 3 2,556 9,123

 Invasive Mucinous 3 306 9,123

TRICL: Lung 6 12,160 16,838

 Adenocarcinoma 6 3,718 15,871

Abbreviations: N, number.

1
All cancer cases for a particular site were included in meta-analyses, except where subsets were included or used in place of all cancer cases.
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Table 2

Summary statistics of top genetic variants at the RAD51B (14q24.1), MSH5 (6p21.33), and BRCA2 (13q13.1) 

loci.

rs11844632 (14q24.1) OR (95% CI) p-value

1-sided ASSET Analysis 0.90 (0.88–0.93) 5.46×10−12

Breast (Overall) 0.90 (0.86–0.93) 8.14×10−9

Prostate (Overall) 0.91 (0.87–0.95) 2.74×10−6

Prostate (Aggressive) 0.92 (0.86–0.97) 2.46×10−3

Bresat (ER Neg) 0.93 (0.87–0.98) 0.01

Colon (Overall) 0.92 (0.86–0.98) 0.01

Ovarian (Overall) 1.06 (0.99–1.12) 0.08

Ovarian (Mucinous) 1.04 (0.97–1.12) 0.26

Ovarian (Serous) 1.09 (0.92–1.28) 0.31

Lung (Overall) 0.99 (0.95–1.03) 0.52

Lung (Adenocarcinoma) 1.00 (0.94–1.06) 0.91

rs3115672 (6p21.33) OR (95% CI) p-value

1-sided ASSET Analysis 1.18 (1.12–1.25) 2.53×10−8

Lung (Overall) 1.20 (1.14–1.27) 3.99×10−11

Lung (Adenocarcinoma) 1.11 (1.01–1.21) 0.03

Ovarian (Serous) 1.11 (1.00–1.23) 0.05

Colon (Overall) 1.10 (1.00–1.21) 0.05

Ovarian (Overall) 1.06 (0.98–1.15) 0.18

Prostate (Overall) 0.96 (0.91–1.02) 0.21

Breast (ER Neg) 1.05 (0.96–1.15) 0.28

Ovarian (Mucinous) 1.09 (0.86–1.37) 0.48

Prostate (Aggressive) 0.98 (0.89–1.07) 0.59

Breast (Overall) 1.01 (0.95–1.06) 0.82

rs56404467 (13q13.1) OR (95% CI) p-value

1-sided ASSET Analysis 1.39 (1.21–1.61) 5.70×10−6

Lung (Overall) 1.43 (1.25–1.64) 2.14×10−7

Colon (Overall) 1.31 (1.08–1.60) 7.33×10−3

Lung (Adenocarcinoma) 1.32 (1.06–1.64) 0.01

Breast (Overall) 1.10 (0.95–1.27) 0.19

Breast (ER Neg) 1.16 (0.88–1.54) 0.30

Prostate (Aggressive) 1.15 (0.88–1.50) 0.32

Ovarian (Serous) 1.12 (0.89–1.41) 0.32

Ovarian (Mucinous) 0.85 (0.46–1.56) 0.60

Prostate (Overall) 1.03 (0.87–1.22) 0.71

Ovarian (Overall) 1.03 (0.85–1.24) 0.78
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