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Abstract

The developing brain undergoes substantial maturation into adulthood and the development of 

specific neural structures occurs on differing timelines. Transient imbalances between 

developmental trajectories of corticolimbic structures, which are known to contribute to regulation 

over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly 

anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid 

system critically regulates stress responsivity and emotional behavior throughout the life span, 

making this system a novel therapeutic target for stress- and anxiety-related disorders. During 

early life and adolescence, corticolimbic endocannabinoid signaling changes dynamically and 

coincides with different sensitive periods of fear learning, suggesting that endocannabinoid 

signaling underlies age-specific fear learning responses. Moreover, perturbations to these 

normative fluctuations in corticolimbic endocannabinoid signaling, such as stress or cannabinoid 

exposure, could serve as a neural substrate contributing to alterations to the normative 

developmental trajectory of neural structures governing emotional behavior and fear learning. In 

this review, we first introduce the components of the endocannabinoid system and discuss clinical 

and rodent models demonstrating endocannabinoid regulation of fear learning and anxiety in 

adulthood. Next, we highlight distinct fear learning and regulation profiles throughout 

development and discuss the ontogeny of the endocannabinoid system in the central nervous 

system, and models of pharmacological augmentation of endocannabinoid signaling during 

development in the context of fear learning and anxiety.
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In search of more effective therapeutic strategies for mood disorders, a substantial body of 

work has been devoted to understanding exaggerated or inappropriate fear responses within 

neurocircuitry implicated in stress and anxiety-related disorders in children and adolescents 

(e.g. Glenn et al., 2012, Lau et al., 2008, Swartz et al., 2015). The shift towards identifying 

the relationship between development and anxiety and stress regulation is largely based on 

observations that there is a heightened incidence of mental illnesses, particularly for mood 

disorders, that emerges during the adolescent period. In fact, estimates indicate that one in 

five adolescents have a mental illness that will persist into adulthood (Paus et al., 2008), and 

depression and anxiety disorders occur in as many as one in ten adolescents (Costello et al., 

2005, Kessler et al., 2005). Anxiety disorders, specifically, are considered among the most 

prevalent psychopathologies affecting between 15-20% of youth (Kessler et al., 2007, 

Kessler et al., 2005, Merikangas et al., 2010). Moreover, at least 75% of adults with a fear/

anxiety-related disorder are reported to have met diagnostic criteria as children or 

adolescents (Kim-Cohen et al., 2003). These statistics highlight the importance of 

characterizing physiological and neural mechanisms underlying anxiety and stress regulation 

throughout development (Pattwell et al., 2013), and emphasize the need to enhance our 

understanding of how clinical treatments may be more or less effective based on age.

There is an extensive history of medicinal and recreational cannabis use in humans and in 

many cases, cannabis is utilized for its mood-enhancing, anxiolytic and stress-relieving 

properties (Cheung et al., 2010, Green et al., 2003, Hunault et al., 2014, Temple et al., 

2014). This led to the subsequent identification of the major psychoactive constituents of 

cannabis known as Δ-9-tetrahydrocannabinol (THC; Gaoni & Mechoulam, 1964) and the 

eventual characterization of the cannabinoid type 1 receptor (CB1R) with which it interacts 

(Devane et al., 1988). Although cannabis use has been reported to produce enhanced anxiety 

and paranoia in specific contexts and predisposed individuals (e.g. Moreira & Wotjak, 

2010), studies indicate that THC and other natural and synthetic cannabinoids generally 

alleviate anxiety symptoms in recreational users (Green et al., 2003, Hunault et al., 2014, 

Temple et al., 2014) and in patients with an anxiety disorder (Crippa et al., 2011, Fabre & 

McLendon, 1981, Fraser, 2009, Jetly et al., 2015, Nakano et al., 1978, Roitman et al., 2014). 

Similarly, the anxiolytic properties of THC and other cannabinoids in humans is consistent 

with the results from preclinical rodent studies (Gunduz-Cinar et al., 2013a, Moreira & 

Wotjak, 2010).

Aside from being the biological target of THC from cannabis, the endocannabinoid (eCB) 

system has been widely studied for its ability to maintain homeostasis by exerting regulation 

over cognitive, behavioral, emotional, developmental and physiological processes (see 

review, Mechoulam & Parker, 2012). As natural and synthetic cannabinoids are reported to 

produce both anxiolytic, mood-enhancing effects as well as dysphoric, panic-like responses 

(Akirav, 2011), these biphasic effects of cannabinoids on anxiety suggest that the eCB 
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system is an important regulator of emotional homeostasis, in particular. Moreover, the eCB 

system is likely a major contributor to individual variation in anxiety levels, while 

dysregulated eCB signaling could serve as a risk for developing an anxiety disorder 

(Gunduz-Cinar et al., 2013a). Moreover, there is preclinical evidence that eCB signaling in 

corticolimbic structures such as the prefrontal cortex, amygdala and hippocampus play a 

critical role in regulating adult stress responses by the hypothalamic-pituitary-adrenal (HPA) 

axis and emotional behavior such as anxiety (Campolongo et al., 2011, Lee & Gorzalka, 

2012, Morena et al., in press, Rubino & Parolaro, 2008). Consequently, the eCB system has 

become a therapeutic target for a number of clinical conditions, including depression and 

anxiety-related disorders (Hill & Patel, 2013, Mangieri & Piomelli, 2007).

There is strong evidence indicating that the eCB system regulates both neurodevelopmental 

processes and adult conditioned and unconditioned anxiety behaviors: the eCB system 

modulates neuronal development and circuit connectivity (Harkany et al., 2008, Maccarrone 

et al., 2014), corticolimbic eCB signaling changes dynamically during development (Ellgren 

et al., 2008, Heng et al., 2011, Lee & Gorzalka, 2012, Rubino et al., 2015, Wenger et al., 

2002) and deficiencies in central eCB ligand, N-arachidonoylethanolamine (anandamide; 

AEA), are associated with greater anxiety behavior (Bluett et al., 2014, Gray et al., 2015). 

Moreover, there are preliminary indications reviewed here suggesting that corticolimbic 

eCB signaling is an important underlying mechanism mediating interactions between 

maturational stage (e.g., adolescence) and fear learning/anxiety behavior. Early life and 

adolescence are characterized by distinct maturational alterations in the eCB system that 

occurs on a similar timeline as sensitive periods in fear learning. Furthermore, studies 

employing cannabinoid agonists indicate that the eCB system regulates emotional behavior 

and HPA axis stress responses from early stages of development and also suggest that 

developmental cannabinoid exposure can contribute to long-term dysregulation of the brain 

and anxiety behavior, which is reminiscent of the results of extended glucocorticoid 

exposure (Campolongo et al., 2007, D'asti et al., 2010, Fride et al., 2005). In this article, we 

first introduce the components of the eCB system and fear learning neurocircuitry, and then 

discuss clinical and rodent models demonstrating eCB regulation of fear learning and 

anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles 

throughout development and describe the ontogeny of the eCB system in the central nervous 

system. Lastly, we discuss findings from pharmacological studies of perinatal and 

periadolescent eCB signaling disruption and discuss their relevance in relation to our current 

understanding of anxiety and fear learning regulation by eCBs.

The endocannabinoid system

The eCB system includes two inhibitory G-protein coupled receptors, the CB1 and CB2 

receptors. CB1Rs are widely expressed in the brain on multiple neuronal populations such as 

GABA and glutamate, while CB2 receptors are predominantly found in peripheral tissues. 

Although, CB2 receptors have been detected in the central nervous system relatively recently 

(Onaivi et al., 2006, Van Sickle et al., 2005), the majority of these reports localize their 

presence in microglia rather than neurons (e.g. Cabral et al., 2008). The eCB system also 

possesses two major endogenous ligands, N-arachidonylethanolamine (anandamide; AEA) 

and 2-arachidonoylglycerol (2-AG) which are synthesized “on demand” and act as 
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retrograde messengers to regulate the release of other neurotransmitters (see reviews, Jutras-

Aswad et al., 2009, Katona & Freund, 2012) and contribute to both short- and long-term 

synaptic plasticity (Mackie, 2006). Both AEA and 2-AG are synthesized post-synaptically 

by activity-dependent cleavage of phospholipid head groups. The synthesis of AEA most 

commonly occurs through hydrolysis of N-arachidonoyl phosphatidylethanolamine (NAPE) 

by phospholipase D (NAPE-PLD), although it should be noted there are at least 3 other 

biosynthetic pathways by which AEA can be synthesized (Figure 1; Di Marzo, 2011, Liu et 

al., 2008). There are two proposed pathways of 2-AG synthesis; however, the hydrolysis of 

inositol phospholipids containing arachidonic acid at the sn-2 position by phospholipase C 

into diacylglycerol, which is then further hydrolyzed to 2-AG by diacylglycerol lipase-α 

(DAGLα), is likely the most important (Figure 1; Hillard, 2000, Sugiura et al., 2002, Ueda 

et al., 2011). AEA is subject to rapid intracellular degradation primarily by hydrolytic 

enzyme, fatty acid amide hydrolase (FAAH; Di Marzo, 2011), resulting in arachidonic acid 

and ethanolamine (Ahn et al., 2008). The pathways leading to breakdown of 2-AG are less 

clear, with at least 8 participating enzymes; however, 2-AG hydrolysis by monoacylglycerol 

lipase (MAGL) to arachidonic acid and glycerol is considered to be its major degradative 

pathway accounting for approximately 85% of 2-AG hydrolysis in the brain (Ueda et al., 

2011).

It is not entirely clear why there are two ligands for CB1Rs; however, distinct biosynthetic 

and degradative pathways as well as pharmacokinetic differences between AEA and 2-AG 

facilitate differential patterns of signaling that could be contributing to the intricacies of 

regulation over a variety of complex processes with multiple targets, such as stress 

responsivity and emotionality (Hill & Tasker, 2012). AEA has a relatively high binding 

affinity for the CB1R, yet induces somewhat poor intracellular signal transduction (i.e. 

partial agonist properties); in contrast, 2-AG has a relatively low binding affinity to the 

CB1R, but produces a robust intracellular response (Hillard et al., 1995). To add further 

complexity to this picture, AEA also binds to transient receptor potential vanilloid type 

(TRPV1) channels (Smart et al., 2000, Zygmunt et al., 1999), which is also known to 

modulate fear and anxiety responses (Moreira et al., 2012, Moreira & Wotjak, 2010). 

Moreover, FAAH is found post-synaptically, whereas MAGL is mostly colocalized with 

CB1Rs pre-synaptically (Haring et al., 2012). It is currently believed that these differences 

in signaling properties implicates 2-AG as representing a phasic signal (stimulus-induced) in 

response to sustained depolarization and is involved in several forms of activity-dependent 

synaptic plasticity, particularly two models of retrograde neurotransmission known as 

depolarization-induced suppression of inhibition (DSI) and depolarization-induced 

suppression of excitation (DSE; Blankman & Cravatt, 2013). In contrast, AEA appears to 

represent a tonic signal that gates and maintains steady state conditions (Hill & Tasker, 

2012). In support of this, blockade of neuronal firing in hippocampal slice preparations is 

found to facilitate AEA uptake and degradation, thereby reducing AEA tone, and resulting 

in a reduction of CB1R-mediated suppression of GABA release (Kim & Alger, 2010). 

Moreover, in vivo studies of FAAH disruption suggest AEA pathways control select 

behavioral processes such as anxiety behavior (Bluett et al., 2014); although, simultaneous 

increases in both AEA and 2-AG via inhibition of MAGL and FAAH are known to produce 
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some synergistic CB1R-mediated effects, indicating cross-talk between the two pathways to 

regulate behavior (Blankman & Cravatt, 2013).

Neurocircuitry of fear learning and anxiety

Although the terms, “stress” and “anxiety” are often used together and interchangeably, they 

are distinct, yet related concepts. Stress is considered a state of strain elicited by a real or 

perceived threat to homeostatic functioning and initiates multiple mechanisms that facilitate 

adaptation and an organism's ability to deal with the threat at hand (e.g. McEwen, 2007). 

Fear or anxiety is often a component of this stress response, which includes anticipatory 

feelings of worry and unease to a stimulus or event (usually negative) that may or may not 

occur. Given the similarity between these concepts, it is not surprising that stress 

responsivity and anxiety are regulated by common corticolimbic structures including the 

amygdala, hippocampus and prefrontal cortex (PFC; Romeo & McEwen, 2006). Commonly 

used rodent tests of unconditioned anxiety include the elevated plus maze, open field, light/

dark box, social interaction and novelty-induced hypophagia. These behavioral assessments 

are generally based on the rodent's innate conflict between fearfulness of being left 

vulnerable to prey and the exploratory drive to visit open, unprotected spaces or unfamiliar/

familiar conspecifics (Lafenetre et al., 2007).

In situations where fear responses are disproportionate to the risk and intensity of the real or 

perceived situation, this can lead to a maladaptive consequences such as developing an 

anxiety disorder (Akirav, 2011). Furthermore, a key maladaptive characteristic of anxiety 

disorders is the inability or difficulty in learning appropriate cues and contexts that signify 

safety and those that convey a threat (e.g. Akirav, 2011, Pine, 2007, Shin & Liberzon, 2010). 

Thus, experimental studies have also focused on understanding neural mechanisms 

underlying the human and rodent's ability to learn associations between previously 

experienced negative events and the cues and contexts that might predict their re-occurrence 

(i.e., fear learning) using a Pavlovian conditioning paradigm (Casey et al., in press). This 

typically involves pairing a neutral cue (e.g. tone) with an innately aversive stimulus 

(unconditioned stimulus; US; e.g. a brief electric shock). Once an association between the 

neutral cue and aversive stimulus is established, the presentation of the neutral cue, now 

considered a conditioned stimulus (CS), produces similar physiological and behavioral 

responses (conditioned responses; CR) to the anticipated threat as presentation of the US 

itself. In rodents, freezing behavior is the most commonly assessed CR, while in humans, 

changes in skin conductance, startle responses and pupil dilation are measured. Despite the 

persistence of the learned fear memory, extinction learning can occur in which CRs (e.g. 

freezing behavior) to the CS (e.g. tone) can be inhibited by repeatedly presenting the CS in 

the absence of the US. In this modified paradigm, the organism learns the CS is now safe. 

One limitation of the extinction training paradigm is that the memory of the extinguished 

fear can re-emerge with the passage of time (i.e., spontaneous recovery; Bouton, 2004).

The amygdala is implicated in a variety of emotional functions including mood regulation, 

mediating fear and anxiety behavior, reward processing to reinforce or motivate behavior, 

and plays a fundamental role in fear learning acquisition, expression and extinction (Ledoux, 

2007). The amygdala has been shown to be responsive to multiple types of fear-related 
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stimuli including pharmacological induction of fear, emotional stimuli, facial expressions 

and fear conditioning (Akirav, 2011). Furthermore, the amygdala can be divided into several 

nuclei that have divergent inputs and outputs and thus, functional contributions to fear 

learning and anxiety (see reviews, Ledoux, 2007, and Orsini & Maren, 2012). In particular, 

the basolateral complex of the amygdala (BLA) consists of the lateral nucleus, basolateral 

nucleus, and basomedial nucleus, which are collectively responsible for establishing a CS-

US association (Orsini & Maren, 2012).

Specifically, the lateral nucleus of the amygdala receives inputs from sensory systems and in 

conjunction with the basolateral nucleus of the amygdala, serves to integrate relevant 

sensory information and relay it to the central nucleus of the amygdala. The central nucleus 

of the amygdala is a key output region for the expression of fear responses via downstream 

projections to hypothalamic and brain stem nuclei to produce autonomic responses (e.g. 

increased heart rate, freezing, stress response; Maren, 2001, Orsini & Maren, 2012).

The ventromedial PFC is important for an individual's ability to shift from fear expression to 

fear suppression (Milad & Quirk, 2002, Milad et al., 2007, Santini et al., 2004). Subregions 

within the ventromedial PFC are reported to differentially regulate the expression and 

extinction of conditioned fear responses; the prelimbic cortex is necessary for the expression 

of conditioned fear responses (Corcoran & Quirk, 2007) whereas the infralimbic region is 

likely involved in the suppression of these responses (Burgos-Robles et al., 2009, Hefner et 

al., 2008). It has been proposed that the infralimbic cortex is able to achieve this via 

projections to a cluster of GABAergic intercalated cells in the amygdala that suppress 

central nucleus output and thus, reduce the expression of the conditioned fear response 

(Likhtik et al., 2008). However, more recent work indicates that the infralimbic cortex lacks 

direct functional innervation to intercalated neurons (Strobel et al., 2015). Thus, it has been 

suggested that the infralimbic cortex guides amygdalar output by modulating BLA-related 

plasticity which could then recruit intercalated cells to suppress fear responses (see review, 

Maren & Holmes, 2015, Strobel et al., 2015). This is consistent with findings of a recent 

optogenetic study indicating that the infralimbic cortex and its connections to the BLA are 

specifically necessary for facilitating the storage of extinction memory during extinction 

training, rather than the retrieval of the extinction memory (Do-Monte et al., 2015). In line 

with this preclinical literature, patients diagnosed with post-traumatic stress disorder (PTSD) 

have reduced activity in the PFC coupled to high activity in the amygdala, when exposed to 

reminders of a traumatic event (Shin et al., 2001). Taken together, it has been proposed that 

a deficiency in ventromedial PFC input to the amygdala is likely to result in a reduction of 

inhibitory tone within this structure, which could ultimately lead to the overexpression of 

fear responses and development of an anxiety disorder.

The hippocampus and amygdala are strongly interconnected, with projections from the 

ventral CA1 region to the basal nucleus of the amygdala and projections from the ventral 

subiculum to lateral nucleus, basal nucleus, basomedial nucleus, and central nucleus of the 

amygdala (Orsini & Maren, 2012). Reciprocal projections from the amygdala stem from the 

basal nucleus of the amygdala and terminate in the CA1, CA2, CA3 and ventral subiculum 

of the hippocampus (Orsini & Maren, 2012). The hippocampus plays a role in the 

acquisition and storage of contextual fear memory; however, the exact role of this neural 
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structure remains unclear (Orsini & Maren, 2012). From what is known, the high level of 

interconnectivity between the hippocampus and amygdala is important for fear extinction as 

the hippocampus provides information about the safety or threat of an environment based on 

contextual representations formed by previous experience (Fanselow & Dong, 2010, Orsini 

& Maren, 2012). Furthermore, the ventral subiculum and CA1 region have projections that 

terminate in the prelimbic and infralimbic cortex of the ventromedial PFC. Communication 

between the hippocampus and PFC is also known to be of high importance for fear 

extinction, which is supported by findings that a low frequency stimulation of the dorsal 

hippocampus impairs extinction recall and disrupts extinction-related long term potentiation 

(LTP) in the PFC whereas high frequency stimulation in the dorsal hippocampus facilitates 

extinction recall and LTP in the PFC (Farinelli et al., 2006, Orsini & Maren, 2012).

Adult corticolimbic endocannabinoid signaling regulates adult 

unconditioned anxiety behavior

Cannabinoids are often reported to have both anxiolytic and anxiogenic properties 

(Campolongo et al., 2011, Haring et al., 2012, Hill & Gorzalka, 2009, Marco & Laviola, 

2012). While cannabis use is generally associated with stress-relief and mood elevation, in 

some cases, it produces dysphoric responses that include panic or heightened anxiety (Hall 

& Solowij, 1998, Lafenetre et al., 2007, Mechoulam & Parker, 2012, Micale et al., 2013). 

These biphasic effects are consistent with rodent studies demonstrating dose-dependent 

effects of CB1R agonists, such as THC, on anxiety behavior; moderate to high doses of 

CB1R agonists enhance anxiety- and stress-responses, while low to moderate doses of CB1R 

agonists exhibit anxiolytic effects in male and female rodents (Berrendero & Maldonado, 

2002, Lutz, 2009, Patel & Hillard, 2006, Rey et al., 2012, Rodríguez de Fonseca et al., 

1996). In contrast, pharmacological and genetic deletion of CB1Rs in rodents are generally 

known to have anxiogenic effects (Blasio et al., 2013, Patel & Hillard, 2006) and produce a 

behavioral and neural phenotype indicative of chronic stress exposure, including heightened 

emotional behavior (Haller et al., 2002, Maccarrone et al., 2002, Martin et al., 2002, 

Urigüen et al., 2004), hypothalamic-pituitary-adrenal (HPA) axis dysregulation (Barna et 

al., 2004, Cota et al., 2007), and shorter, less complex pyramidal neurons in the medial PFC 

(Hill et al., 2011, Lee et al., 2014c). Correspondingly, CB1R agonists directly infused into 

the hippocampus and medial PFC are known to exert anxiolytic effects (Lisboa et al., 2015). 

However, there are known inconsistent results reported in the literature (e.g. no or opposing 

effects) which are at least partly due to differences between anxiety test used, strain, sex, 

drug, dose, age of testing and aversiveness of the environment (e.g. dim versus bright 

illumination in the testing room; Lafenetre et al., 2007).

Adult corticolimbic endocannabinoid signaling regulates adult conditioned 

anxiety behavior

Pharmacological and genetic deletion of the CB1R is generally found to have no effect on 

the acquisition of cued and contextual fear learning (Marsicano et al., 2002, Suzuki et al., 

2004). Although, systemic injections of the CB1R antagonist, AM-251, increases the 

acquisition and expression of freezing behavior in a trace (hippocampal-dependent) and 
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delay (amygdala-dependent) fear conditioning paradigm (Reich et al., 2008). In contrast, 

low to moderate doses of CB1R agonist, WIN55212-2, and FAAH inhibitor, URB597, 

injected directly into the medial PFC decreases conditioned fear as measured by cue-fear-

potentiated startle reflexes (Lin et al., 2008, Lin et al., 2009). Local infusion of AEA or 

AEA transport inhibitor, AM-404, into the ventromedial PFC or dorsolateral column of the 

periaqueductal grey attenuated conditioned freezing behavior, which was blocked by 

pretreatment with a CB1R antagonist (Lisboa et al., 2010, Resstel et al., 2008). Thus, the 

overall body of literature suggests that similar to unconditioned fear, moderate enhancement 

of eCB signaling reduces conditioned fear responses while inhibition of eCB signaling 

increases these fear responses (Akirav, 2011).

There is a wealth of evidence demonstrating that eCB signaling modulates extinction of 

conditioned fear. Inhibition of eCB signaling is found to attenuate or prolong fear extinction 

(Akirav, 2011, Chhatwal et al., 2005, Lafenetre et al., 2007, Lutz, 2007, Marsicano et al., 

2002, Pamplona et al., 2006, Reich et al., 2008, Simone et al., 2015, Suzuki et al., 2004), 

while an enhancement of eCB signaling is known to facilitate fear extinction (Abush & 

Akirav, 2010, Chhatwal et al., 2005, Gunduz-Cinar et al., 2013b, Pamplona et al., 2008, 

Pamplona et al., 2006, Rabinak et al., 2013, Simone et al., 2015, Suzuki et al., 2004). 

Foundational work by Marsicano and colleagues (2002) demonstrated that CB1R knockout 

mice exhibit no anxiety behavior differences during the acquisition and consolidation of 

conditioned fear, however CB1R deficient mice display impaired fear extinction. Moreover, 

pharmacological blockade of CB1Rs in rodents is reported to similarly impair fear extinction 

without affecting the acquisition or consolidation of the fear memory (Bitencourt et al., 

2008, Chhatwal et al., 2005, Lafenetre et al., 2007, Lin et al., 2009, Lutz, 2007, Pamplona et 

al., 2008). However, activation of the eCB system with CB1R agonists, such as THC, during 

extinction learning is known to facilitate extinction recall by preventing the recovery of 

extinguished fear memories in rodents (Chhatwal et al., 2005, Pamplona et al., 2008, 

Pamplona et al., 2006) and humans (Rabinak et al., 2013).

CB1R signaling in the BLA appears to serve as a neural locus for gating behavioral and 

neuroendocrine responses to stress and fear responses (Bluett et al., 2014, Gray et al., 2015, 

Gunduz-Cinar et al., 2013a, Hill et al., 2009a). In support of this, CB1R antagonism is found 

to increase neuronal activation within the BLA (Newsom et al., 2012, Patel et al., 2005), 

while also increasing HPA axis activity and anxiety behavior (Dono & Currie, 2012, Ganon-

Elazar & Akirav, 2009, Hill et al., 2009a). In mouse fear conditioning studies, extinction 

training produces an increase in BLA AEA, but not 2-AG levels (Marsicano et al., 2002), 

and local administration of a FAAH inhibitor directly into the BLA enhances fear extinction 

(Gunduz-Cinar et al., 2013b). Consistent with this, local administration of a CB1R agonist 

into the BLA prevents the effects of stress on fear extinction (Ganon-Elazar & Akirav, 2009, 

Ganon-Elazar & Akirav, 2012), acoustic startle response (Ganon-Elazar & Akirav, 2012), 

and activation of CB1R in the BLA after fear memory reactivation blocks fear memory 

reconsolidation (Lin et al., 2006). Collectively, these data indicate that activation of eCB 

signaling within the BLA can reduce neurobehavioral indices of stress, anxiety and fear.
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The role of endocannabinoid signaling in human fear learning

Human studies are consistent with preclinical work implicating a regulatory role for the eCB 

system in modulating emotional processing and fear learning. Acute THC administration 

reduces amygdalar reactivity to social signs of threat, without affecting activity in primary 

visual cortex and motor cortex (Phan et al., 2008) and impairs recognition of facial fear and 

anger, but not sadness or happiness (Ballard et al., 2012). Indeed, presentation of negative 

stimuli (pictures of fearful faces) reduces activity in neural structures such as the amygdala, 

orbital frontal gyrus, hippocampus, parietal gyrus, PFC, and regions in the occipital cortex 

following acute THC exposure, whereas presentation of positive stimuli (pictures of happy 

faces) increases activity within that network (Bossong et al., 2013). Furthermore, THC 

facilitates extinction of learned fear in humans and increases activation in the ventromedial 

PFC and hippocampus upon presentation of the CS relative to subjects that received a 

placebo (Rabinak et al., 2014, Rabinak et al., 2013). Cannabidiol (CBD), a non-

psychoactive cannabinoid found in cannabis, has also been found to enhance consolidation 

of fear extinction (Das et al., 2013). In a study of genetic variability in human eCB 

signaling, fear learning was assessed in individuals that were genotyped for two single 

nucleotide polymorphisms (SNP) within the promotor region of the human CB1R gene 

(known as CNR1). Carriers of either the rs2180619 or rs1049353 SNP demonstrated 

comparable acquisition and expression of fear potentiation of the eyeblink startle reflex; 

however, only homozygote (A/A) A-allele carriers of rs2180619 exhibited an absence of 

fear extinction in contrast to robust extinction of the fear potentiated eyeblink startle 

response in homozygote (G/G) and heterzygote (A/G) G-allele carriers (Heitland et al., 

2012). Through interaction with the 5HTTLPR SNP in the serotonin transporter gene, the 

rs2180619 SNP is also associated with individual differences in trait anxiety (Lazary et al., 

2009), however, the molecular mechanisms affecting CB1R functionality and expression by 

this specific SNP remain to be determined (Heitland et al., 2012).

In addition to playing a role in emotional learning in humans, there is also evidence that 

aberrant eCB signaling could contribute to mood and anxiety disorders in humans. 

Specifically, the results of clinical studies indicate that compromised eCB signaling could 

serve as a molecular underpinning for neuropsychiatric conditions such as depression and 

anxiety disorders. Basal serum concentrations of AEA and 2-AG are lower in female 

patients with major depression (Hill et al., 2009b), suggesting that hypoactive eCB signaling 

could be involved in the etiology of depression (Hill & Patel, 2013). Similarly, lower 

circulating eCB concentrations are reported in human PTSD patients concomitant with an 

upregulation of CB1Rs (Hill et al., 2013, Neumeister et al., 2013). Consistent with these 

findings, clinical trials using CB1R antagonists (e.g. Rimonabant (Sanofi-Avantis) and 

Taranabant (Merck)) for the treatment of metabolic and cardiac conditions also yielded an 

increase in the incidence of depressed mood, anxiety and risk of suicide (Christensen et al., 

2007, Lutz, 2009). Collectively, the emerging picture indicates that the eCB system 

functions to reduce stress and anxiety responses primarily through activation of the CB1R.
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Therapeutic potential of FAAH and MAGL inhibition on fear learning and 

anxiety

Emerging research indicates that genetic and pharmacological enhancement of eCB 

signaling by augmentation of central AEA and 2-AG levels could ameliorate some of the 

neural and behavioral sequelae (e.g. HPA axis dysregulation and increased anxiety behavior) 

associated with depression and anxiety disorders. Preclinical work indicates that 

pharmacological inhibition of FAAH (e.g. URB-597, PF-3845; Hill et al., 2007, Kathuria et 

al., 2003) and AEA transport (AM-404; Bortolato et al., 2006) has anxiolytic properties in 

several tests of anxiety, including: the elevated zero maze, elevated plus maze, defensive 

withdrawal and social isolation-induced ultrasonic vocalization tests. Moreover, transgenic 

mice with a FAAH deficiency exhibit increased central AEA levels and a less anxious 

phenotype in the elevated plus maze and light dark box relative to wild type controls, which 

is prevented by systemic injection of a CB1R antagonist, Rimonabant (Moreira et al., 2008).

In light of the preclinical literature, researchers have undertaken investigations of genetic 

models of natural variation in circulating AEA levels and identified a common SNP (C385; 

rs324420) in the human FAAH gene that results in elevated AEA levels due to substitution 

of an evolutionarily conserved proline at amino-acid position 129 with a threonine residue 

that renders the FAAH protein more vulnerable to proteolytic degradation (Chiang et al., 

2004, Dincheva et al., 2015, Sipe et al., 2002, Sipe et al., 2010). Adults carrying this variant 

exhibit reduced amygdalar responses to threat stimuli of fearful faces and trait anxiety levels 

(Hariri et al., 2009). Extending these findings, carriers of this variant are also found to 

exhibit accelerated habituation of amygdalar activity to repeated presentation of threat 

images and lower scores on the personality trait of stress-reactivity (Gunduz-Cinar et al., 

2013b). A parallel mouse study using FAAH inhibitors further demonstrate that this 

habituation is associated with enhanced extinction-related plasticity in the amygdala 

(Gunduz-Cinar et al., 2013b). Lastly, we recently developed a knock-in mouse that 

biologically recapitulates the C385A SNP of the human FAAH gene. Adult humans and 

mice carrying the allele variant exhibit paralleled reductions in FAAH expression, elevated 

central AEA (Boileau et al., in press, Dincheva et al., 2015), enhanced fronto-amygdala 

connectivity and fear extinction learning as well as reduced anxiety behavior (Dincheva et 

al., 2015). Collectively, these pharmacological, genetic and behavioral findings provide 

preliminary evidence that FAAH inhibition could be an effective treatment option 

specifically for stress-related neuropsychiatric disorders (Bluett et al., 2014, Gunduz-Cinar 

et al., 2013a).

Acute pharmacological MAGL inhibition (resulting in elevated 2-AG levels) has also been 

reported to generally reduce rodent anxiety behavior in the elevated plus maze (Aliczki et 

al., 2012, Aliczki et al., 2013, Almeida-Santos et al., 2013, Busquets-Garcia et al., 2011, 

Sciolino et al., 2011), elevated zero maze (Busquets-Garcia et al., 2011) and marble burying 

tasks (Kinsey et al., 2011). Consistent with these findings, genetic knockout studies indicate 

that deficient 2-AG levels result in enhanced anxiety behavior. In one model, DAGLα knock 

out mice were generated in which, central, but not circulating 2-AG levels are reduced and 

associated with impaired eCB-mediated retrograde synaptic signaling at excitatory synapses 
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in the BLA as well as greater anxiety behavior and anhedonia than wild-type mice (Shonesy 

et al., 2014). Interestingly, this behavioral and neural phenotype is reversed by 

pharmacological normalization of 2-AG levels by MAGL inhibitor, JZL-184 (Shonesy et 

al., 2014). In similar fashion, another DAGLα knock out mouse model indicates mice had 

an 80% reduction of central 2-AG levels and reductions in cortical and amygdalar AEA that 

corresponded with a behavioral and neural phenotype reminiscent of pharmacological and 

genetic deletion of CB1Rs: enhanced anxiety behavior in the open field and light/dark box, 

impaired fear extinction, maternal neglect behavior, reduced hippocampal neurogenesis, and 

reduced stress coping behavior in the forced swim test (Jenniches et al., in press). Adeno-

associated virus-mediated overexpression of MAGL in hippocampal glutamatergic neurons 

also results in a 50% reduction in 2-AG levels, impairs DSE (but not DSI) and enhanced 

anxiety behavior in the elevated plus maze and open field tests (Guggenhuber et al., in 

press). In contrast, genetic deletion of MAGL (resulting in elevated 2-AG levels) was found 

to enhance anxiety behavior in the marble burying test, accompanied with impaired CB1R 

signaling and enhanced excitatory drive in mPFC/BLA circuitry (Imperatore et al., in press).

In summary, the evidence indicates that elevated levels of AEA and 2-AG by FAAH and 

MAGL generally have an anxiolytic effect while reductions in these eCB ligands are 

associated with enhanced anxiety. Further research determining the exact role of the 

endogenous ligands of the eCB system in fear learning and anxiety behavior is clearly 

warranted.

Fear learning and regulation across development

The neurocircuitry underlying fear learning and extinction in adulthood has been relatively 

well characterized. However, far less is known about the developmental processes shaping 

maturation of this neurocircuitry and how it may modulate fear learning and extinction by 

age (Casey et al., in press). Indeed, prefrontal and sub-cortical circuitry that is implicated in 

the regulation of fear learning and extinction is known to undergo substantial change from 

childhood to adulthood (Gogtay et al., 2004).

Rodent studies indicate that fear learning is linked to the maturation of the amygdala, which 

begins early in life and is tightly linked to maternal presence (Figure 2; Landers & Sullivan, 

2012). Early postnatal life is considered a sensitive period for attachment learning in which 

rodent pups generally exhibit a profile characterized by suppressed fear responding, 

presumably to promote infant-caregiver attachment, even in the face of diminished quality 

of care (Landers & Sullivan, 2012, Raineki et al., 2010, Roth & Sullivan, 2005). During this 

period, odor-shock conditioning produces a paradoxical odor preference despite being paired 

with a shock that produces a pain response (Landers & Sullivan, 2012, Moriceau & Sullivan, 

2006, Rudy & Cheatle, 1977). Post natal day (PND) 10 marks the end of this sensitive 

period in that amygdalar GABAergic-related synaptic plasticity begins to emerge 

(Thompson et al., 2008) and rodent pups can demonstrate adult-like cued fear learning to 

odor-shock conditioning (Moriceau & Sullivan, 2006); however, maternal presence, which 

maintains relatively low levels of circulating corticosterone in the pup (Sullivan & Holman, 

2011), can provide social buffering and modulate the pup's learning to reinstate odor 

preference instead of aversion (Landers & Sullivan, 2012). Although able to learn fear 
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associations, infant rodents (Figure 2) demonstrate a functional “infantile amnesia” in which 

fear memories are not as persistent as in adulthood (Akers et al., 2014, Campbell & Spear, 

1972, Kim & Richardson, 2007). In support of this, animals conditioned on PND 18 appear 

to forget the fear memory within 10 days (Kim & Richardson, 2007). This may be related to 

the infant's lack of ability to associate environmental cues with the conditioned fear 

memory. In contrast to cued fear learning, contextual fear conditioning is thought to emerge 

by PND 24, coinciding with maturation of amygdala-hippocampus connectivity (Raineki et 

al., 2010) and developmental-related increases in hippocampal neurogenesis that have been 

shown to interfere with infant contextual fear memory persistence (Akers et al., 2014).

However, by PND 23, a new sensitive period for extinction learning emerges (Pattwell et 

al., 2013). As juveniles, fear memories are persistently attenuated following extinction 

training, an effect not observed in adult rodents (Pattwell et al., 2012). That is, unlike adults, 

juvenile rodents do not display spontaneous recovery of the fear memory that typically 

follows extinction training (Kim & Richardson, 2007, Pattwell et al., 2012, Yap & 

Richardson, 2007). Consistent with this behavioral pattern, extinction training in the juvenile 

rodent is found to be amygdala-dependent and does not require infralimbic cortical 

engagement at PND 18 (Kim et al., 2009, Kim & Richardson, 2008). In contrast, we have 

previously found that by PND 23, the juvenile rodent exhibits persistent attenuation of fear 

memory; however, the fear memory appears more susceptible to interference by paralleled 

potentiation of the infralimbic cortex during extinction training, rather than degrading on its 

own (Pattwell et al., 2012).

In non-linear fashion, both fear extinction learning and retention are attenuated during 

adolescence relative to younger and older mice and humans (Casey et al., in press, Kim et 

al., 2011, McCallum et al., 2010, Pattwell et al., 2012, Pattwell et al., 2013). Adolescent 

mice display blunted fear extinction learning that is paralleled by an absence of infralimbic 

extinction learning-induced plasticity (Kim et al., 2011, Pattwell et al., 2012). Reminiscent 

of risky behavior in adolescent humans, a second behavioral pattern that emerges in the 

adolescent rodent is diminished hippocampal-dependent contextual fear expression (Pattwell 

et al., 2011) or “fearlessness” in contexts that have been previously paired with negative 

consequences. Unlike juveniles and adults, adolescent mice do not display a fear response 

when returned to the context in which they experienced the aversive event (shock). In this 

case, the suppression of contextual fear is a result of contextual fear retrieval failure, rather 

than acquisition, given that the same animals that exhibited diminished contextual fear as 

adolescents, demonstrate a fear response to the context when tested as young adults 

(Pattwell et al., 2011).

The adolescent period is characterized by increased exploration and a transition to 

independence, making specific danger cues particularly relevant in this novelty-seeking 

period. Thus, diminished fear extinction and contextual fear during this period does hold 

some benefits in this context. Furthermore, the differential rates of development in 

adolescent subcortical-prefrontal connections (e.g. myelination, synaptic pruning) are also 

likely to contribute to these shifts in fear regulation (Somerville & Casey, 2010). For 

example, in a human fMRI study examining developmental changes in connectivity between 

the medial PFC and the amygdala, blood oxygen level-dependent (BOLD) activity within 
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the ventromedial PFC and the amygdala shifts from a positive to negative correlation from 

childhood to adolescence and is then stabilized during adulthood (Gee et al., 2013). Thus, it 

is possible that changes in connectivity between the amygdala, hippocampus and 

ventromedial PFC during the adolescent period could mediate a shift from restricted 

subcortical circuitry governing fear learning in juvenile stages, towards a more flexible and 

expansive circuit for fear regulation that is more evident in adulthood.

It is clear there are multiple sensitive periods for fear learning and its underlying 

neurocircuitry during normative development from early life to adulthood. Furthermore, the 

developmental course of fear learning and its associated neural correlates occurs in a highly 

ordered pattern. While these sensitive periods appear to facilitate greater flexibility in some 

situations, they may also confer greater susceptibility to external events (e.g. stress 

exposure) that could initiate a cascade of negative consequences, possibly leading to risk for 

mental illness. Much of our understanding regarding fear learning and regulation during 

development is based on descriptive work, leaving the exact molecular mechanisms of 

action and conditions by which risk for mental illness is conferred largely unexplored.

Dynamic changes in corticolimbic endocannabinoid signaling during 

different developmental periods

Numerous human and rodent studies indicate that the eCB system is significantly involved 

in the regulation of adult fear learning and unconditioned anxiety behavior (Riebe et al., 

2012). Together with in vitro and in vivo studies that demonstrate regulation of 

neurodevelopmental processes by eCBs, it is reasonable to suggest that corticolimbic eCB 

signaling is involved in the developmental course of fear learning and anxiety behavior 

described above. Previous work has established that eCB signaling plays a multifaceted role 

in structural and functional neurodevelopment (see review Harkany et al., 2008, Maccarrone 

et al., 2014), regulating proliferation of neural progenitors and cell lineage commitment 

(Mulder et al., 2008), immature neuronal migration and axonal path finding (Berghuis et al., 

2005, Berghuis et al., 2007, Harkany et al., 2008, Mulder et al., 2008), as well as initiation 

of synaptic communication of neural networks in perinatal rat tissue (Berghuis et al., 2007, 

Bernard et al., 2005). Moreover, studies investigating the ontogeny of eCB signaling 

indicate that this system changes dynamically and in a temporal-specific fashion throughout 

development, particularly in adolescence (Figure 3). Distinct patterns of eCB activity during 

development coincide with distinct fear learning sensitive periods, suggesting that 

corticolimbic eCB signaling could serve as an underlying mechanism mediating age-specific 

sensitive periods in fear learning and regulation outlined above. The presence of the eCB 

system has been detected during early embryonic stages in chicken and mice (Psychoyos et 

al., 2012). Furthermore, the eCB system is found to be functional in the rat central nervous 

system as early as gestational days 11-14 (Berrendero et al., 1999, Harkany et al., 2008, 

Rodriguez de Fonseca et al., 1993). Rodent central 2-AG levels peak around birth then 

decrease to PND 5 concentrations, which are comparable to those found in adults 

(Berrendero et al., 1999, Fernandez-Ruiz et al., 2000). Conversely, AEA is reported to 

steadily increase from early life to adulthood (Berrendero et al., 1999, Fernandez-Ruiz et al., 

2000). However, no late neonatal, juvenile, or adolescent time points were included in these 

Lee et al. Page 13

Genes Brain Behav. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies (i.e., no sampling between PND 5 – 56), leaving an existing gap in our understanding 

of the ontogeny of central AEA and 2-AG during early life to juvenile ages and highlighting 

the need for a comprehensive determination of the trajectory of AEA and 2-AG signaling 

throughout this period.

Accumulating evidence suggests there is considerable variation in the developmental course 

of adolescent corticolimbic AEA and 2-AG levels within neural structures regulating anxiety 

and fear learning. A comparison of cortical and hippocampal AEA and 2-AG levels in wild 

type and CB1R knockout male mice at PND 28 and 120 revealed no significant differences 

between wild type groups; however, elevated hippocampal FAAH activity and reduced AEA 

levels were observed only in adult knockout mice (Maccarrone et al., 2002). Behaviorally, 

young (PND 28) CB1R knockout mice exhibited moderately elevated anxiety behavior 

relative to older knockout mice, yet no age-specific differences in anxiety behavior in the 

open field or light-dark box were detected in the wild type mice (Maccarrone et al., 2002). 

In the male rat PFC, AEA was found to exhibit a gradual and progressive increase (i.e., PND 

29-50) to adult levels while 2-AG levels were highest in early adolescence (PND 29), 

decreasing in mid-adolescence (PND 38) before increasing again in late adolescence (PND 

50; Ellgren et al., 2008). Conversely, in the female rat PFC, AEA concentration increases 

from PND 46-60, but decreases from PND 60-75, with no differences in 2-AG 

concentrations as well as FAAH and MAGL activity (Rubino et al., 2015). Furthermore, 

hypothalamic AEA content is observed to increase immediately preceding vaginal opening 

(as a physical marker of pubertal onset; Wenger et al., 2002). We have also previously 

reported that corticolimbic AEA concentrations consistently fluctuate in the same pattern 

across corticolimbic structures: amygdala, PFC, hippocampus and hypothalamus, throughout 

the male rodent adolescent period (PND 25-70; Lee et al., 2013). These fluctuations in AEA 

were found to be at least partially due to corresponding changes in FAAH activity (Lee et 

al., 2013).

CB1Rs are detected and functional in human fetal tissue as early as gestational week 9 

(Zurolo et al., 2010) and gestational days 11-14 in rats (Berrendero et al., 1999, Fernandez-

Ruiz et al., 2000), with high CB1R expression limited to the amygdala and hippocampus and 

low distributions in striatum, thalamus and cerebral cortex during early to mid-gestation in 

the human fetus (gestational weeks 17-22) and rat neonate (Rodriguez de Fonseca et al., 

1993). In contrast, higher and wider density of these ubiquitous receptors is reported in the 

adult rat (Herkenham et al., 1991) and human brain (Jutras-Aswad et al., 2009). 

Furthermore, from gestation into the first few days after birth, CB1R expression is localized 

to white matter areas of the midbrain, commissural tracts and brainstem; however, by 

adulthood, this phenomenon is no longer observable and CB1Rs are primarily expressed 

within grey matter (Berrendero et al., 1998, Berrendero et al., 1999, Fernandez-Ruiz et al., 

2000, Romero et al., 1997). By PND 10, limbic, striatal and midbrain structures are reported 

to exhibit low concentrations of CB1R expression (Rodriguez de Fonseca et al., 1993) and 

the ability of eCBs to regulate synaptic transmission begins to emerge and increases 

throughout development to adulthood (Liang et al., 2014, Zhu & Lovinger, 2010).

The onset of adolescence at PND 30-40 marks a peak in limbic, striatal and midbrain CB1R 

expression, which then decreases to reach adult levels of expression by PND 70 in male and 
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female rats (Rodriguez de Fonseca et al., 1993). In contrast, CB1R binding from birth to 

PND 60 is also reported to increase gradually to adult levels in male and female whole rat 

brains, although there are no adolescent time points included in this study (Belue et al., 

1995). Nonetheless, CB1R expression in the rat is most consistently reported to be highest 

with the onset of adolescence (PND 25-30), followed by a general linear decline to adult 

levels within the PFC (Ellgren et al., 2008, Heng et al., 2011), limbic, striatal and cortical 

structures (Rodriguez de Fonseca et al., 1993). Furthermore, more recent work has 

demonstrated differential rates at which these CB1R declines occur, with declines in limbic/

associative regions happening gradually and throughout adolescence whereas major changes 

in sensorimotor regions are not exhibited until mid- to late- adolescence (Heng et al., 2011). 

Functionality of these receptors, as measured by DSE, also follows the same developmental 

pattern (Heng et al., 2011). In summary, despite somewhat inconsistent findings that are at 

least partially due to strain and sex differences between studies, the rodent literature 

indicates that corticolimbic eCB ligand concentrations, particularly with respect to AEA, 

fluctuate throughout adolescence while CB1R expression peaks at the onset of adolescence 

before declining to adult levels (Ellgren et al., 2008, Lee & Gorzalka, in press, Lee et al., 

2013, Rubino et al., 2015, Wenger et al., 2002).

In humans, CB1R expression is reported to gradually increase to adult levels in post-mortem 

brain tissue (Mato et al., 2003). However, a more recent study reports that CB1R expression 

peaks during infancy (<1 year old) to toddler-age (1.5 – 4.5 years old), then gradually 

decreases to adult levels in human PFC tissue samples (Choi et al., 2012, Long et al., 2012). 

Moreover, expression of enzymes that contribute to AEA synthesis (i.e., NAPE-PLD) and 

degradation (i.e., FAAH) both increase from infancy to adulthood, suggesting greater AEA 

regulation in adulthood than earlier in life (Long et al., 2012). In terms of 2-AG, synthetic 

enzyme, DAGLα, peaks between school age and young adulthood, while MAGL follows a 

similar pattern as CB1R expression (i.e., expression peaks around toddler age; Long et al., 

2012). However, there is a critical gap in our current understanding of eCB signaling 

development in humans; to date, there is no information regarding the ontogeny of AEA or 

2-AG concentration in humans, even in the periphery. Interestingly, although a similar 

general pattern of CB1R expression occurs in humans and rodents, the maturational 

trajectories of these receptors exhibit a peak around toddler-age in humans whereas this peak 

occurs closer to pubertal onset/early adolescence in the rodent. While the functional 

consequences of these developmental differences in eCB signaling require further 

investigation, it is possible that the dynamic changes in eCB signaling reflect a general 

structural and functional instability compared to that of adults. For example, adolescent 

AEA fluctuations and declining CB1R expression could underlie adolescent behavioral 

profiles that are regulated by corticolimbic circuits, such as relatively low anxiety, high 

responsivity to rewards and reduced inhibitory control (Casey & Jones, 2010). Given that 

this behavioral profile is maximal during adolescence and coincides with changes in 

AEA/CB1R expression and activity, corticolimbic eCB signaling may represent a neural 

substrate of the adolescent phenotype.
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Long-term consequences of developmental exposure to cannabinoids

To date, there are no studies investigating the role of eCB signaling on fear learning during 

development. Despite this fundamental gap in our understanding of eCB regulation over fear 

learning during development, there are several studies that have investigated the impact of 

developmental cannabinoid exposure on unconditioned anxiety behavior. The majority of 

these studies indicate that cannabinoid exposure during development, whether by maternal 

use or during adolescence, can contribute to long-term dysregulation of the brain, the HPA 

axis and emotionality, which is reminiscent of the results of extended glucocorticoid 

exposure (Lee & Gorzalka, in press, Lee & Gorzalka, 2012). Early life and adolescence also 

appear to be periods of susceptibility to the effects of chronic cannabinoid exposure as adult 

rats exposed to the same treatment do not appear to be as greatly affected as adolescents 

(e.g. Bambico et al., 2010, Zamberletti et al., 2014).

There is clear evidence that the eCB system is involved in the regulation of emotional 

behavior from early developmental stages (Trezza et al., 2008) and perinatal cannabinoid 

exposure is found to induce a variety of long-term neural, cognitive and emotional 

alterations in adulthood (see review, Higuera-Matas et al., 2015). This is demonstrated in a 

longitudinal rodent study that found perinatal THC exposure increases ultrasonic 

vocalizations following removal from the nest during early life, reduces social interactions 

and play during adolescence, and increases anxiety-like behavior in the elevated plus maze 

with no impairment to general locomotor activity in adulthood (Trezza et al., 2008, Trezza 

& Vanderschuren, 2008). This treatment regimen was also found to impair inhibitory 

avoidance task (as a measure of long-term aversive memory) performance in adulthood, 

paralleled with reductions in extracellular norepinephrine and glutamate concentrations in 

the adult male rat PFC (Campolongo et al., 2007). Similarly, perinatal THC and synthetic 

cannabinoid agonist, CP-55,940, treatment increases adult anxiety behavior in the open field 

(Newsom & Kelly, 2008), social interaction and emergence tests (O'Shea et al., 2006). 

However, perinatal exposure to FAAH inhibitior, URB-597, moderately reduces stress-

coping behavior in the forced swim test without affecting anxiety behavior in the elevated 

plus maze in adulthood (Wu et al., 2014).

Adolescent CB1R agonist exposure generally produces enduring increases in anxiety 

behavior in a number of rodent behavioral tests (Rubino & Parolaro, 2008, Schneider et al., 

2005) and results in a multitude of other long-term, sex-dependent neural and behavioral 

consequences associated with stress-induced HPA axis dyregulation (Rubino et al., 2009a, 

Rubino et al., 2009b, Rubino et al., 2008). On a behavioral level, adolescent THC exposure 

reduces stress coping behavior in the forced swim test in adult female rats, impairs spatial 

working memory in adult males, and leads to anhedonia in both adult males and females as 

measured by the sucrose preference test (Rubino et al., 2008). Neural consequences of 

adolescent cannabinoid exposure include differential reductions in amygdalar and 

hippocampal CB1R binding and signaling capacity in adult males and females (Rubino et 

al., 2008), decreases in markers of neuroplasticity such as synaptophysin and PSD 95 in the 

PFC of females (Rubino et al., 2009a), dendritic atrophy and reduced number of spines in 

hippocampal neurons in males (Rubino et al., 2009b), and reductions in cell proliferation 

(Realini et al., 2011) and survival (Lee et al., 2014b) in the dentate gyrus of the 
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hippocampus in adult female and male rats. Chronic administration of the FAAH inhibitor 

URB-597 in adulthood reverses effects induced by adolescent THC administration such as 

reductions in stress-coping and increases in anxiety behaviors in female rats (Realini et al., 

2011) and decreases hippocampal CB1R expression in male rats (Marco et al., 2009). These 

findings suggest that a persistent deficit in AEA signaling in adulthood from adolescent 

cannabinoid exposure may mediate many of the sustained detrimental effects of this 

treatment. Adolescent exposure to CB1R agonist, WIN55,212-2, produces similar results as 

adolescent THC exposure (reduced stress coping and increased anhedonia) as well as 

increased anxiety responses in the novelty-suppressed feeding test coupled to attenuated 

serotonergic and heightened noradrenergic activity (Bambico et al., 2010). Consistent with 

these studies, sustained CB1R blockade by CB1R antagonist/inverse agonist, AM-251, 

treatment during adolescence increases stress-coping behavior in the forced swim test and 

moderately increases risk assessment behavior in the elevated plus maze in adult male rats 

(Lee et al., in press).

Recent work has demonstrated that the detrimental impact of adolescent THC treatment is 

due, at least in part, to disruption of normative adolescent eCB signaling that regulates PFC 

maturation (Rubino et al., 2015). Moreover, adolescent THC exposure results in impaired 

eCB-mediated signaling and plasticity in glutamatergic synapses in the PFC of adult female 

mice, which is reversible with MAGL inhibitor, JZL184 (Lovelace et al., in press). In line 

with this, administration of CB1R agonist, CP 55,940, during PND 28-43 increases CB1R 

activity in the PFC of adult male but not female rats (Mateos et al., 2011). Moreover, 

multiple studies (Rubino et al., 2015, Rubino et al., 2009a, Rubino et al., 2009b, Rubino et 

al., 2008, Zamberletti et al., 2014) have demonstrated that chronic adolescent THC exposure 

results in long term modulation of corticolimbic CB1R density and binding as well as other 

long term neural and behavioral changes similar to those produced by chronic stress (via 

glucocorticoid hypersecretion; e.g. McEwen, 2005) and prolonged glucocorticoid exposure 

(Hill et al., 2008). Together, these studies suggest that eCB signaling during adolescence 

impacts the normative development of circuits that regulate stress and emotionality in 

adulthood. As such, perturbations of the eCB system during adolescence, due to either stress 

or exogenous cannabinoid exposure, may have long-lasting effects on emotional stability 

and flexibility in adulthood. However, there are some contrasting reports that chronic 

adolescent exposure to the CB1R agonist, CP 55,940, either decreases (Wegener & Koch, 

2009) or has no effect on anxiety behavior as measured in the open field test, elevated plus 

maze (Biscaia et al., 2003) and social interaction test (O'Shea et al., 2006). Similar to the 

adult literature, the results of these developmental cannabinoid exposure studies likely vary 

based on sex, strain/species, drug, dose and age of exposure (Rubino & Parolaro, 2008, 

Schneider, 2008).

Concluding Remarks

eCB signaling has been established to be involved in the regulation of unconditioned and 

conditioned anxiety behavior in adulthood, making it a current therapeutic target for the 

treatment of stress- and anxiety-related disorders. However, with the emergence of mental 

illness peaking in adolescence (Paus et al., 2008), it is critical that we gain a more 

comprehensive understanding of normative developmental processes that confer both 

Lee et al. Page 17

Genes Brain Behav. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



plasticity and vulnerability to pathogenic experiences. Previous work has established there 

are distinct sensitive periods for fear learning during normative development. At the same 

time, there are multiple temporal-specific alterations in corticolimbic eCB signaling (Figure 

3) that may facilitate the fear responses characterizing each of these sensitive periods. 

During the infantile sensitive period (suppressed fear responding), 2-AG levels are high 

while AEA and CB1Rs gradually increase (Berrendero et al., 1999, Fernandez-Ruiz et al., 

2000). Moreover, during the juvenile sensitive period for fear extinction (absence of 

spontaneous recovery or reinstatement of fear memory), AEA (Lee et al., 2013, Wenger et 

al., 2002) and CB1R expression (Heng et al., 2011, Rodriguez de Fonseca et al., 1993) peak 

between the end of the juvenile period and onset of adolescence. Lastly, the adolescent 

sensitive period for fear extinction and contextual fear conditioning (blunted fear extinction 

and contextual fear memory) coincides with fluctuating corticolimbic AEA levels (Ellgren et 

al., 2008, Lee et al., 2013, Rubino et al., 2015) and declining CB1R expression (Rodriguez 

de Fonseca et al., 1993). Research has also revealed that developmental exposure to 

cannabinoid agonists is associated with a multitude of long-term behavioral and neural 

consequences on unconditioned anxiety behavior (Campolongo et al., 2007, Rubino et al., 

2015). Given that each sensitive period of fear learning also coincides with a distinct eCB 

signaling profile, it is tempting to speculate that the eCB system is a neural correlate for fear 

learning throughout the life span and accordingly, can facilitate the plasticity associated with 

each sensitive period as well as serve as a neural substrate by which external factors can lead 

to the development of an anxiety disorder. However, there is a significant gap in the 

literature investigating the role of normative eCB signaling in the corticolimbic circuit and 

regulation of fear learning during different developmental ages. Future research determining 

the exact role of eCB signaling in fear learning during development will contribute to our 

understanding of vulnerability to mental illness and may inform which treatments are more 

effective based on age.
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Figure 1. Major pathways of anandamide and 2-arachidonoylglycerol (2-AG) synthesis and 
degradation
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Figure 2. Human and rodent development timelines with commonly used terms for referring to 
those stages of development (adapted from Lee & Gorzalka, 2012)
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Figure 3. Corticolimbic endocannabinoid signaling changes dynamically across rodent 
development
(A) Distinct endocannabinoid signaling profiles in early life, adolescence and adulthood. 

Components of the endocannabinoid system are represented schematically within a synapse 

(adapted from(Long et al., 2012). (B) Developmental trajectories of the components of the 

endocannabinoid system. CB1 receptor (CB1) expression peaks with the onset of 

adolescence. 2-arachidonoylglycerol (2-AG) is highest around birth and may fluctuate 

throughout adolescence. N-arachidonoylethanolamine (anandamide; AEA) gradually 

increases during early life and fluctuates during adolescence. Fatty acid amide hydrolase 

(FAAH) activity fluctuates in reciprocal fashion to AEA during adolescence. Based on data 

from (Berrendero et al., 1999, Ellgren et al., 2008, Fernandez-Ruiz et al., 2000, Heng et al., 

2011, Lee et al., 2013, Rodriguez de Fonseca et al., 1993, Rubino et al., 2015, Wenger et 

al., 2002).
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