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Abstract

Human choice behaviors during social interactions often deviate from the predictions of game 

theory. This might arise partly from the limitations in cognitive abilities necessary for recursive 

reasoning about the behaviors of others. In addition, during iterative social interactions, choices 

might change dynamically, as knowledge about the intentions of others and estimates for choice 

outcomes are incrementally updated via reinforcement learning. Some of the brain circuits utilized 

during social decision making might be general-purpose and contribute to isomorphic individual 

and social decision making. By contrast, regions in the medial prefrontal cortex and temporal 

parietal junction might be recruited for cognitive processes unique to social decision making.
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Social decision making

In theories of decision making, utilities and values play a central role. The concept of utility 

allows a concise summary of the decision maker’s preferences among numerous options, 

since choices are assumed to maximize utility [1]. In some cases, this assumption is relaxed 

and replaced by a monotonic relationship between the probability of choosing a particular 

option and its value [2]. This implies that all the factors affecting the choice of a decision 

maker must be incorporated into the utility or value functions, although in practice, specific 

theories and models consider only a subset of such factor. For example, the expected utility 

theory [1] and prospect theory [3] describe how uncertain outcomes of decision making can 

be evaluated, whereas the theories of temporal discounting specify how the value of a 

decision outcome might be influenced by its delay [4,5].
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In contrast to individual decision making, interactions in social settings introduce two 

additional elements [6–9]. First, choices might be influenced by the decision-maker’s other-

regarding preferences. For example, purely altruistic behaviors might result when decision 

makers acts to increase the well-being of others despite the negative consequences of such 

actions to themselves. In other cases, individual decision makers might choose to punish 

those selfishly violating social norms [10, 11]. Second, in social settings, the outcome and 

hence its utility or value of an individual’s choice depends on the choices of others in the 

group. For example, during a rock-paper-scissors game, each option beats one of the other 

two options but loses to the remaining one. Therefore, the ability to predict the choices of 

others and their underlying cognitive processes, often referred to as the theory of mind, 

plays an important role during social interactions [12, 13]. In this review, we will focus on 

the psychological processes of strategic reasoning during social interactions and their 

underlying neural mechanisms.

Decision making in a social setting is often referred to as a game, and analyzed formally by 

game theory [1]. For example, when everyone in a group forms accurate beliefs about the 

behaviors of everyone else and acts according to the principle of utility maximization, a 

Nash equilibrium (see Glossary) is obtained, namely, a set of strategies from which 

individual decision makers cannot deviate unilaterally without decreasing their utilities [14]. 

For example, during the rock-paper-scissors game, Nash equilibrium is for everyone to 

choose all three options randomly and equally often. Any other strategy, such as favoring 

any particular option, can be exploited by opponents. It should be noted that it is not 

necessarily optimal to adopt a strategy of Nash equilibrium when not everyone does the 

same. The optimal strategy expected for a set of strategies that is not necessarily at the Nash 

equilibrium is referred to as a best-response strategy. Therefore, at Nash equilibrium, 

everyone’s strategy is the best response to everyone else’s.

Although the concept of Nash equilibrium makes a precise prediction about the strategies in 

any social setting in which all decision makers have complete information about the nature 

of the game and act selfishly, these assumptions are often violated [15–17]. Moreover, 

choices observed in experimental games are often better accounted for by models of 

bounded rationality [18,19], such as the cognitive hierarchy model, in which individual 

decision makers select the best response based on their subjective and often inaccurate 

beliefs about the strategies of others [20, 21]. Such models have been successfully applied to 

a broad range of experimental games, including the beauty-contest game and stag-hunt game 

[12,17, 22]. These results suggest that strategic decisions during social interactions might be 

largely based on limited iterative reasoning about the likely behaviors of others.

Learning during social interactions

Most social interactions tend to occur repeatedly. Therefore, recursive inferences during 

social decision making might be adjusted and augmented by learning as decision makers 

encounter the same or similar games repeatedly. Indeed, the reinforcement learning theory 

[2], developed based on the Markov decision process [23], is not limited to the choices of 

decision makers acting individually in a non-social environment, but might also account for 

the dynamics of choice behaviors during repeated social interactions [15, 24]. It is assumed 
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in reinforcement learning theory that the outcome or reward is determined entirely, albeit 

probabilistically, by the current state of the decision maker’s environment and their chosen 

action. Estimates for the outcomes are referred to as value functions, which can be defined 

for specific states (state value functions) or specific actions chosen from each state (action 

value functions).

Reinforcement learning algorithms can be divided into two categories, depending on how 

value functions are updated through experience [2, 24–28]. In simple or model-free 

reinforcement learning algorithms, the outcome of each chosen action is compared to the 

prediction from the current value functions. The resulting difference is referred to as reward 

prediction error and is used to update the value function for the chosen action or the most 

recently visited state. Model-free reinforcement learning algorithms are robust, since they 

rely on only a small number of parameters, but relatively inflexible, since the value 

functions are updated incrementally only for the chosen action and specific states visited by 

the decision maker. Therefore, if there is a sudden change in the environment, many trials 

would be required before all the value functions are appropriately adjusted. In contrast, 

model-based reinforcement learning algorithms compute the value functions directly from 

the decision maker’s knowledge of their environment. Often, such knowledge is embodied 

in the transition probabilities between different states of the environment and reward 

probabilities from different states, which can be used to simulate the experience of the 

decision maker. The fictive or hypothetical outcomes generated during this simulation are 

then used to update the value functions. Although computationally intensive, such 

simulations can be performed extensively, allowing the value functions to be updated more 

quickly and rendering model-based reinforcement learning algorithms more flexible than 

model-free algorithms.

Both types of reinforcement learning can be applied to iterative decision making in a social 

context. For example, Nash equilibrium strategies in many games require the decision 

makers to make their choices stochastically, rather than choosing one option exclusively. 

This is referred to as a mixed strategy. Previous studies have shown that for games with 

mixed-strategy equilibria, human and non-human primates tend to use model-free 

reinforcement learning algorithms to approximate equilibrium strategies [15, 29, 30]. 

However, even for relatively simple games, model-free reinforcement learning algorithms 

might be supplemented by model-based reinforcement learning algorithm [31–36], 

analogous to the findings from studies with non-social multi-stage decision making tasks 

[37–39].

In game theory, players might update their beliefs about the choices of other players through 

experience and then choose their strategies expected to produce the best outcomes given 

such beliefs [15, 40,41]. This is known as belief learning, and is equivalent to model-based 

reinforcement learning. For example, in models of fictitious play, the belief about the 

strategy of a given player is determined by the frequency of each strategy previously chosen 

by the same player [42]. Algorithmically, belief learning or fictitious-play models can be 

implemented in two different ways. First, after each play, the estimates for the frequency of 

other players playing each strategy might be updated based on their observed behaviors. 

This is analogous to updating the transition probability according to the state prediction 
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errors during a non-social multistage decision making task [43]. Once reliable internal 

models of other plays are constructed, then, they can be used to compute the value functions 

of alternative actions during subsequent interaction with the same players through mental 

simulations, namely, recursive strategic reasoning [12,17, 22]. Second, it is also possible 

that the value functions for multiple alternative actions might be updated immediately after 

each trial according to the hypothetical outcome signals inferred from the observed 

behaviors of other players [34, 35]. For example, if the opponent chooses a rock during a 

rock-paper-scissors game, then the value functions for paper and scissors might be increased 

and decreased, respectively, according to their positive and negative hypothetical payoffs. In 

this case, the process of mental simulation would not be required during subsequent trials. It 

might be possible to distinguish between these two possibilities by carefully examining the 

amount of time needed for decision making, since mental simulation is likely to be a time-

consuming process. In addition, understanding the nature and time course of different 

computations involved in belief learning would be important for the studies on the 

underlying neural mechanisms.

Neural mechanisms for learning in social domain

Since the computational process of comparing and updating the value functions for 

alternative actions are similar for both social and non-social decision making, the neural 

mechanisms for strategic social decision making might substantially overlap with those 

involved in individual decision making [9]. The neural mechanisms for model-free 

reinforcement learning might be distributed in a large number of cortical areas and the basal 

ganglia [24], and might be shared for both social and non-social decision making. For 

example, during model-free reinforcement learning, the signals related to the previous 

choices and their outcomes must be integrated properly to update the value functions, and 

these signals are present in multiple areas of the brain, including the prefrontal cortex and 

basal ganglia [24, 44–48]. Similarly, signals related to previous reinforcement and 

punishment can be decoded from the blood-oxgygen-level-dependent (BOLD) signals from 

almost the entire brain of human participants during competitive games against a computer 

opponent [49]. These outcome-related BOLD signals are attenuated when the participants 

face a different opponent compared to when they face the same opponent as in the previous 

trial, suggesting that they are specifically linked to the opponent identity and do not merely 

reflect the passive decay in the BOLD signals [50].

For optimal performance, the rate of learning should be adjusted according to the 

uncertainty or volatility of the decision maker’s environment. When the environment is 

highly unstable or uncertain, the learning rate should be set high so that the memory about 

the remote past can be replaced more rapidly by the new information about the present [51, 

52]. Neuroimaging studies found that the activity in the anterior cingulate cortex was related 

to the volatility of the environment, suggesting that this area might play an important role in 

regulating the rate of learning according to the level of uncertainty in the decision maker’s 

environment [51]. Neurophysiological studies have also found that signals encoded by the 

individual neurons in the anterior cingulate cortex and other regions of the primate 

prefrontal cortex encode the animal’s previous reward history in multiple time scales, and 

thus might provide the flexible memory signals necessary to regulate the rate of 
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reinforcement learning adaptively [44, 53, 54]. There is also some evidence that the ACC 

sulcus and gyrus might be specialized for monitoring the outcomes of individual and social 

decision making, respectively [55–59].

Compared to the neural mechanisms for model-free reinforcement learning, how various 

types of model-based reinforcement learning are implemented in the brain is less well 

known. In addition, as representations and computations for model-based reinforcement 

learning must be tailored to the specific decision-making problems, functions localized in a 

given brain area for such learning might also vary. Nevertheless, recent studies have begun 

to provide important insights into the candidate neural correlates of model-based 

reinforcement learning, including those involved in social interactions. For example, 

changes in the environment that do not match the predictions based on the decision maker’s 

knowledge produce the so-called state prediction errors, and this leads to increased 

activation in the intraparietal sulcus and lateral prefrontal cortex, suggesting that these brain 

areas might be involved in updating the probabilities of state transitions [39, 43]. When the 

predictions about the behaviors of other are violated, similar error signals can be generated. 

These so-called simulated-other’s action prediction errors (sAPE) were also reflected in the 

BOLD signals in the dorsolateral prefrontal cortex (Figure 1A) [36]. Therefore, errors in the 

knowledge of the decision makers in both social and non-social domains might be processed 

by common or overlapping neural systems. However, the social environment that includes 

the intentions and preferences of others is typically more complex than the physical 

environment, and therefore, the acquisition and revision of its knowledge might involve 

additional areas of the brain. For example, signals related to sAPE were found not only in 

the lateral prefrontal cortex, but also in the dorsomedial prefrontal cortex (dmPFC; Figure 

1A) [36] as well as the temporal parietal junction (TPJ) and the posterior superior temporal 

sulcus (pSTS). Similarly, when choices are made based on the advice from another person, 

the activity in the dmPFC reflected the prediction error for the accuracy of the advice [60]. 

In addition, predictions about the behaviors of others can be improved not only based on the 

simulated-other’s action prediction errors, but also by simulating the reward prediction 

errors computed by others. These so-called simulated reward prediction error signals were 

found in the ventromedial prefrontal cortex [36].

The dorsomedial and ventromedial prefrontal cortex might also play an important role in 

learning and encoding the preference of others during social interactions. However, the 

precise anatomical areas encoding the signals related to the preference of self and others 

might vary according to the nature of choices and the personal traits of decision makers. For 

example, previous studies examined the nature of value signals encoded in these two brain 

areas while the decision makers chose for themselves and others alternatingly [60]. When 

the choices were for the decision makers themselves, the value difference between the 

chosen and unchosen options of the decision makers and their partners were reflected in the 

activity of the vmPFC and dmPFC, respectively. The locations of the value difference 

signals for the self and others were exchanged, when the choices were made for the partners, 

suggesting that the activity in the vmPFC and dmPFC reflected the value signals for 

executed and simulated choices, respectively, rather than the preferences of self vs. others 

[60]. Consistent with this hypothesis, the activity in the dmPFC increased when human 

participants made accurate predictions about the preference of others [61]. Furthermore, a 
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recent study showed that pro-sociality of the decision makers might further influence the 

extent to which the values of others influence the activity in the vmPFC (Figure 1B) [62].

The process of estimating the value functions from the information about the likely actions 

of others and their preference might be implemented in multiple brain areas. For example, 

neural recording in rodents as well as lesion and neuroimaging studies in human subjects 

have suggested that the of simulated outcomes might rely on the hippocampus [63–66]. In 

particular, the information decoded from the ensemble activity in the hippocampus might be 

related to the internal simulation of the animal’s future actions [67–69]. Simulating the 

outcomes from alternative actions during social decision making might also rely on a set of 

cortical areas often associated with the theory of mind, such as the dmPFC and TPJ [6, 7, 13, 

70, 71]. Although it has been suggested that the theory of mind is uniquely human, the 

middle superior temporal sulcus (STS) in the macaque brain displays a pattern of resting-

state functional connectivity that is similar to that of the human TPJ [72]. Therefore, 

understanding the nature of information encoded by the neurons in the macaque middle STS 

might provide important clues about the contribution of TPJ in social decision making. In 

addition, the depth of recursive reasoning during social decision making was reflected in the 

activity of medial and lateral prefrontal cortex, suggesting that these areas might play an 

important role in predicting outcomes of social decision making according to the 

information about the likely behaviors of others [22, 73].

During repeated social interactions, decision makers might update not only their internal 

models about the behaviors of others, but also the value functions for their own actions 

based on counterfactual inferences. Lesion and neuroimaging studies have previously 

implicated the orbitofrontal cortex in counterfactual reasoning during individual decision 

making when the decision makers receive the information about the outcomes from 

unchosen actions [74, 75]. Signals related to the values of unchosen outcome have also been 

localized in the frontopolar cortex and dmPFC [76, 77]. The brain areas responsible for 

integrating counterfactual outcome or counterfactual reward prediction error signals into 

value functions during social interactions might at least partially overlap with those involved 

in counterfactual outcome processing for non-social decision making. For example, during 

repeated strategic interactions, value functions are updated not only according to the 

previous outcomes from the same action and counterfactual outcomes from unchosen action, 

but also based on the changes in the behaviors of others expected to occur in response to the 

participant’s own actions. These so-called influence update signals were found in the 

superior temporal sulcus and medial prefrontal cortex [33]. In addition, signals related to 

belief prediction errors, namely, prediction errors related to belief learning or model-based 

reinforcement learning during iterative social decision making were found in the rostral 

anterior cingulate cortex [35]. On the other hand, activity in the striatum reflects both reward 

prediction error and belief prediction error during social decision making [35], consistent 

with the findings from studies on non-social multi-stage and financial decision making [37, 

78]. Single neuron recording studies have also found that the signals related to actual 

outcomes from chosen actions and hypothetical outcomes from unchosen actions are often 

encoded by the same neurons in the prefrontal cortex [34] and anterior cingulate cortex [79].
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Neural mechanisms for arbitration between learning algorithms

Many computations performed by the brain involve combining multiple sources of 

information, as when trying to estimate the location of an object based on multiple sensory 

cues [80]. For optimal performance, it is necessary to adjust the weights for different types 

of information according to their uncertainty [81]. Similarly, when multiple learning 

algorithms are available for a particular problem of decision making, the value functions 

computed by different algorithms must be combined with the weights determined by their 

accuracy [25]. During a multi-stage decision making, signals related to the accuracy of 

model-free reinforcement learning algorithm were found in the striatum, whereas those 

related to the accuracy of model-based algorithm were found in multiple cortical areas, 

including the dmPFC [39]. In addition, multiple regions of the prefrontal cortex might be 

involved in arbitrating between the two learning algorithms [39, 82]. Given that model-free 

reinforcement learning algorithms are more efficient computationally and require a fewer 

free parameters than model-based algorithms, the brain might rely on model-free algorithms 

as a default, especially when the decision makers lack accurate knowledge about their 

environment, and switch away from model-free algorithms when appropriate [83]. In fact, 

the correlation in the activity of the prefrontal cortex and striatum was inversely related to 

the reliability of model-based algorithm, and might be related to this switching process [39].

Neurophysiological studies in non-human primates have also identified switching signals 

that might be involved in the suppression of habitual automatic behaviors. For example, 

activity of the neurons in the medial prefrontal cortex often reflected a switching between 

individual motor responses or between different sequences of actions [84, 85]. This brain 

area might be also involved in switching away from a model-free reinforcement learning 

algorithm that can be exploited by a more sophisticated opponent during competitive social 

interactions [86]. In particular, during a computer-simulated biased matching pennies game, 

activity of neurons in the dmPFC displayed switching signals whose strength was correlated 

with the animal’s tendency to switch away from the use of model-free reinforcement 

learning algorithm (Figure 2) [86].

Conclusions

The research on the neural basis of strategic decision making during social interactions 

poses a number of challenges due to its complexity and diversity. Therefore, computational 

tools developed in economics and machine learning play an important role in precisely 

characterizing the nature of various algorithms that underlie social decision making. In 

addition, the complexity of human social interactions occurring in the natural environment 

makes it difficult to study them in animal models, whereas the currently available non-

invasive methods of measuring brain activity in human subjects do not provide the necessary 

spatial and temporal resolutions (Box 1). Therefore, studies on the neural basis of strategic 

decision making in humans would benefit by integrating the results from animal studies, 

especially given that there is a large overlap between the neural systems involved in social 

and non-social decision making.
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Glossary

Beauty contest 
game

A game in which each player chooses a number between 0 and 100 

and the winners are the players with their choice closest to a 

particular fraction (commonly 2/3) of the average of all choices.

Model-free 
reinforcement 
learning

A type of reinforcement learning in which the value functions are 

updated only for chosen actions and current states exclusively 

based on the reward prediction error, namely, the difference 

between the actual and expected rewards.

Model-based 
reinforcement 
learning

A type of reinforcement learning in which the value functions are 

calculated from the knowledge or internal model of the decision 

maker’s environment.

Nash equilibrium a set of strategies defined for each player in a game such that no 

individual players can improve their payoffs by deviating from it 

unilaterally.

Reinforcement 
learning theory

A theory that provides a collection of algorithms that can be used 

by an agent trying to maximize their future reward within an 

environment that has a Markov property, namely, an environment 

in which the probability of transition to a particular state is entirely 

determined by the current state and action chosen by the agent.

Stag-hunt game A game in which each player chooses between a small constant 

payoff (“hare”) and a large but uncertain payoff (“stag”) which is 

earned only when both players choose it and hence cooperate.
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Box 1

Outstanding Questions

• Do the regions in the human brain identified as key for the arbitration between 

model-free and model-based reinforcement learning algorithms, such as the 

inferior lateral prefrontal cortex and frontopolar cortex [39], also play a similar 

role during social interactions? If so, how do these cortical areas interact with 

those implicated in social cognition, such as TPJ?

• How are the neural signals related to the value functions for alternative actions 

and predicted behaviors of others influenced by more subjective social cues, 

such as facial features and personal traits of others, during social interactions?

• Are the weights given to different algorithms of strategic decision making and 

their parameters under the influence of neuromodulators and hormones, such as 

oxytocin and testosterone [87, 88]?

• What are the neural substrates of mental simulation during social decision 

making? Does the recursive reasoning and mental simulation during social 

decision making depend on the default mode network, including the posterior 

cingulate cortex [89, 90]?
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Trends

• Social decision making relies on recursive inferences about the behaviors of 

others as well as learning from previous social interactions.

• Multiple areas in the association cortex and basal ganglia contribute to both 

individual and social decision making.

• Temporal parietal junction and medial prefrontal cortex are specifically 

involved in accurately predicting the behaviors of others during social 

interactions.

• Medial prefrontal cortex plays an important role in the arbitration between 

multiple strategies and learning algorithms during individual and social decision 

making.
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Figure 1. Activity in the medial prefrontal cortex related to learning and simulating the actions 
of others
A. Activity in the dorsomedial prefrontal cortex correlated with the simulated other’s action 

prediction errors (top) and activity in the ventromedial prefrontal cortex correlated with the 

simulated reward prediction error (bottom) [36]. B. Spatial gradient in the activity within a 

set of regions of interests (top) related to the value of chosen option for self vs. others in 

prosocial (middle) and selfish (bottom) individuals [62].
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Figure 2. Neuronal activity in the dorsomedial prefrontal cortex related to strategic decision 
making
A. Monkeys deviated systematically from model-free reinforcement learning to avoid the 

exploitation by the computer opponent during a biased matching pennies task, in which the 

payoff to the animal was determined jointly by the choices of the monkey and computer 

(left). S and R, safe and risky target, respectively, and the number in the payoff matrix 

indicates the number of tokens received by the animal. The color of each box in the decision 

tree (middle) and the position of each circle in the scatter plot (right) indicate how much the 

probability of choosing the safe target following a particular choice-outcome history 

deviated from a model-free reinforcement learning algorithm, P (safe)-PRL(safe), and how 

this increased or decreased the probability of winning compared to the equilibrium strategy, 

P(token)-PNASH(token). R−, R+, denote loss and gain from the risky target, whereas S0 and 

S+ indicate neutral outcome and gain from the safe target. B. The strength of neural signals 

(ordinate) related to the tendency to switch away from a model-free reinforcement learning 

(abscissa) across different choice-outcome history (shown in A) for a single neuron in the 

dorsomedial prefrontal cortex. C. Same neural-behavioral correlation for switching for the 

population of neurons recorded in the dorsolateral prefrontal cortex (dlPFC), dorsomedial 

prefrontal cortex (dmPFC), dorsal anterior cingulate cortex (ACCd), lateral intraparietal area 
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(LIP), caudate nucleus (CN), and ventral striatum (VS). White and gray bars indicate the 

results obtained from a token-based biased matching pennies task [45, 86] and a symmetric 

matching pennies task [44, 48], respectively.
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