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SUMMARY

Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the 

oral microbiota and the host immunity. While the innate immune response is important for disease 

initiation and progression, the innate immune receptors that recognize both classical and putative 

periodontal pathogens that elicit an immune response have not been elucidated. By using the 

Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant 

oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. 

Ten of the identified species were evaluated in greater depth, 6 being classical pathogens and 4 

putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone 

marrow–derived macrophages (BMDM) from wild-type (WT) and toll-like receptor (TLR)-

specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, 

Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas 
gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. C. concisus, C. 
rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells 

from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney (HEK) cells 

demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit 

robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra 
have the highest NOD2-stimulatory activity. These studies allowed us to provide important 

evidence on newly-identified putative pathogens in periodontal disease pathogenesis showing that 
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these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 

(Clinicaltrials.gov NCT01154855).
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INTRODUCTION

Periodontitis is an immune-inflammatory infection of the tooth-supporting structures that is 

prevalent in 47% of the American adult population in mild, moderate, or severe forms (Eke 

et al., 2010). It is well established that periodontal disease development is based on a 

combination of factors: a susceptible host, environmental factors, and the presence of oral 

microorganisms. Over 600 bacterial species have been identified in the periodontal 

microbiota, both cultivable and not-yet-cultivable (Paster et al., 2006). Analysis of clinical 

plaque samples and disease correlation analysis have classically grouped microorganisms 

into 5 major complexes, with the 2 most relevant for chronic periodontal disease being the 

red complex with Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola 
and the orange complex with Fusobacterium nucleatum, Prevotella intermedia, Prevotella 

nigrescens, Parvimonas micra and other associated species (Socransky et al., 1998). Clinical 

studies have provided clues based on disease association and allowed for the development of 

in vitro and in vivo studies that have further contributed to explaining the mechanisms 

involved in periodontal disease development. Currently, the pathogen mostly explored in 

periodontal disease pathogenesis has been P. gingivalis. Investigation of this pathogen over 

the years has led to the novel and important keystone-pathogen hypothesis in which very low 

colonization levels of P. gingivalis lead to changes in the amount and composition of 

commensal microflora (dysbiosis) and further inflammatory periodontal bone loss 

(Hajishengallis et al., 2012, Hajishengallis & Lamont 2012, Hajishengallis et al., 2011). The 

development of novel methods for microbial identification in clinical plaque samples over 

the past 12 years has confirmed the importance of P. gingivalis and other classical 

periodontal bacterial species in disease and allowed for the detection of numerous novel 

potential commensal and pathogenic species (Kumar et al., 2005, Lourenco et al., 2014, 

Teles et al., 2011). Unfamiliar species such as Porphyromonas endodontalis, Eubacterium 
saphenum, and Filifactor alocis are now being proposed to play important roles in the 

development of disease (Belstrom et al., 2014, Colombo et al., 2012, Perez-Chaparro et al., 

2014). These studies along with the concept of polymicrobial infection emphasize the 

importance of further investigating newly-identified pathogens in periodontal disease 

pathogenesis.

The host response that develops against microorganisms initiates with the innate immune 

response, including their recognition via pattern-recognition receptors (PRRs), such as toll-

like receptors (TLR) and nucleotide-binding oligomerization domain (NOD) receptors 

(NLR) (Kawai & Akira 2009). Sensing by TLR2 and TLR4 (most extensively studied TLR) 

leads to production of inflammatory mediators via adaptors MyD88, while sensing by 

NOD1 and NOD2 (two well-characterized NLR) occurs mainly via receptor-interacting 

Marchesan et al. Page 2

Mol Oral Microbiol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://Clinicaltrials.gov


serine/threonine kinase (Alhawi et al.,) (Hasegawa et al., 2008). Some classical periodontal 

pathogens have been mechanistically explored in this context. Previous studies have reported 

that P. gingivalis (Burns et al., 2006, Jain et al., 2013) and T. forsythia (Myneni et al., 2011) 

are recognized by TLR2, Campylobacter rectus is recognized mainly by TLR4 (Arce et al., 

2012), while multiple PRRs (including TLR2, TLR4, and NOD1) were suggested to mediate 

cytokine expression upon Fusobacterium nucleatum and Aggregatibacter 
actinomycetemcomitans stimulation (Park et al., 2014). Recent studies also indicate that 

NOD2 and TLR9 are also involved in P.gingivalis infection (Kim et al., 2015, Prates et al., 

2014). Overall, these studies suggest that PRRs play important roles in the host response 

against periodontal pathogens and emphasize the importance of further characterizing the 

immune response to other newly-identified pathogens involved in periodontitis. However, 

the interaction between host PRRs and the majority of newly-identified periodontal 

pathogens remains unknown. In this study, we identified a group of predominant oral 

microorganisms, including classical and putative periodontal bacterial species, which are 

highly correlated with plaque biofilm derived from patients afflicted with severe 

periodontitis. Furthermore, we characterized the TLR2, TLR4, NOD1 and NOD2 

stimulatory activity of these identified periodontal bacterial species. Our data support that 

these newly-identified bacterial species associated with periodontitis individually possess 

distinct immunostimulatory properties and suggests that TLR4, NOD1 and NOD2 are 

important in mediating the immune response to these pathogens.

METHODS

Study population

This descriptive study was approved by the University of Michigan Health Sciences 

Institutional Review Board and was registered with the NIH clinical trials registry 

(Clinicaltrials.gov NCT01154855) and conformed to STROBE guidelines for observational 

studies. After informed consent was provided, 40 individuals were recruited at the Michigan 

Center for Oral Health Research. Patients included in the study were 35 years old or older. 

All subjects possessed at least 20 teeth and had not received long-term (over 2 weeks) 

antibiotic-related therapy for medical or dental reasons within 3 months prior to study 

inclusion. Patients were also excluded if they received long-term use of medications known 

to affect periodontal status such as anti-inflammatory drugs, aspirin and ibuprofen. Patients 

on immunosuppressive therapies, including glucocorticoids or cyclosporines, were excluded 

from participation in this study (corticosteroid inhalers were allowed). The patients showed 

no history of metabolic bone diseases such as rheumatoid arthritis or post-menopausal 

osteoporosis. Pregnant women were excluded from participating in both groups due to x-ray 

exposure and possible harm to the fetus. All women were questioned regarding pregnancy 

status at the start of the study. Patients were enrolled into either healthy group or severe 

periodontitis group as previously described (Ramseier et al., 2009). Healthy category 

patients exhibited no probing depths (PD) >4 mm, possessed minimal to no radiographic 

bone loss, and < 20% of sites possessing bleeding on probing (BOP). Severe periodontitis 

subjects exhibited at least 8 sites with evidence of radiographic bone loss, had at least 8 sites 

with PD >4 mm, and >30% of sites with clinical attachment loss (Perez-Chaparro et al.,) >3 
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mm. Patients were excluded if they had any periodontal treatments in the 12 months prior to 

study initiation.

Plaque collection and analysis by the Human Oral Microbe Identification Microarray 
(HOMIM)

Within two weeks of screening, a subgingival plaque/biofilm sample was collected from the 

most affected tooth and site in each sextant from patients in both groups as previously 

described (Beikler et al., 2006, Ramseier et al., 2009). Subgingival plaque was collected 

from the designated teeth, dried with a gentle blast of air prior to sampling, using a sterile 

Gracey curette by scraping with slight pressure against the tooth. The plaque was collected 

and immediately placed in a labeled vial containing 150 μl of TE buffer and stored at −20° 

for further analysis using HOMIM as previously described (Colombo et al., 2012, Lourenco 

et al., 2014). Briefly, a total of 400 16S rRNA-based reverse-capture oligonucleotide probes 

targeting ~300 bacterial taxa were utilized. Data were normalized by comparing individual 

signal intensities to the average of signals from universal probes.

Bacteria and culture conditions

E. saphenum ATCC 49989, F. alocis ATCC 35896, P. endodontalis ATCC 35406, S. infelix 
ATCC 700230, and C. concisus ATCC 33237 were purchased from ATCC. C. rectus ATCC 

33238, T. forsythia ATCC 43037, E. nodatum ATCC 33099, and P. micra ATCC 33270 were 

a gift from Dr. Ricardo Teles of the Forsyth Institute. P. gingivalis W83 was a gift from the 

lab of Dr. Christopher Fenno of the University of Michigan. Bacterial identification was also 

confirmed by DNA sequencing using 16S ribosomal RNA gene consensus primers: 16s 

commonS1 CCAAACTCCTACGGGAGGCAGCAG and 16s commonA1 

CATGGACTACCAGGGTATCTAATC. The 16S rDNA was amplified from a single 

bacterial colony - by 35 cycles of PCR at 94 °C for 1 min, 55 °C for 1 min, and 72 °C for 1 

min. PCR products were verified by agarose gel electrophoresis and followed by gel 

purification (QIAquick Gel Extraction Kit) and sequenced from both ends using the same 

primers. The sequences were subjected to an online BLASTN analysis (NCBI, National 

Institutes of Health) for confirmation of the bacterial identity.

F. alocis ATCC 35896, P. endodontalis ATCC 35406, S. infelix ATCC 700230, P. micra 
ATCC 33270, and P. gingivalis ATCC W83 were cultured on Brucella Blood Agar mono 

plates (AS-141, Anaerobe Systems). Eubacterium nodatum ATCC 33099 was cultured on 

Brucella Blood Agar mono plates supplemented with Arginine (0.5%) (Hill et al., 1987). E. 
saphenum ATCC 49989 was cultured on Brucella Blood Agar mono plates supplemented 

with Lysine (0.3%) (Uematsu et al., 2003). T. forsythia ATCC 43037 was cultured on TSA 

blood plates supplemented with 10mg/L N-acetyl muramic acid (NAM). All the above 

bacteria were cultured with anaerobic incubation (80% N2; 10% H2; 10% CO2). C. concisus 
ATCC 33237 and C. rectus ATCC 33238 were cultured on Trypticase soy agar (TSA) blood 

plates supplemented with 25mM formate and 50mM furmarate. Both Campylobacter species 

were cultured under microaerophilic conditions (80% N2, 6% O2, 8% CO2 and 6% H2).

A single bacterial colony on each plate was inoculated into broth to obtain a bacterial liquid 

culture P. endodontalis ATCC 35406 and P. gingivalis ATCC W83 were cultured in Brain 
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heart infusion (BHI) supplemented with hemin (5 μg/ml) and vitamin K (0.5 μg/ml). F. 
alocis ATCC 35896 was cultured in BHI supplemented with hemin, vitamin K and 0.5% 

arginine and 0.1% cysteine. P. micra ATCC 33270 and S. infelix ATCC 700230 were 

cultured in Brucella broth supplemented with hemin and vitamin K. E. nodatum ATCC 

33099 was cultured in Brucella broth supplemented with hemin, vitamin K and 1% 

Arginine. E. saphenum ATCC 49989 was cultured in Brucella broth supplemented with 

hemin, vitamin K and 0.3% Lysine. T. forsythia ATCC 43037 was cultured in Trypticase soy 

Broth (TSB) supplemented with hemin, vitamin K and 10mg/L NAM. C. concisus ATCC 

33237 and C. rectus ATCC 33238 were cultured in TSB supplemented with hemin, vitamin 

K, 25mM formate and 50mM fumarate. The final concentrations of hemin and vitamin K in 

all liquid medium were 5μg/ml and 0.5μg/ml. All organisms were grown at 37°C to an early 

steady state. Numbers of bacteria were determined spectrophotometrically (optical density at 

600 nm (OD600)). Bacterial cultures were inactivated by heating at 98°C for 10 min.

Human peripheral blood monocytes (HPBMs) isolation and bacterial stimulatory assay

HPBMs were purified from filter buffy coats obtained from a pool of healthy human donors 

from the blood bank at the University of Michigan. Human peripheral blood mononuclear 

cells (PBMCs) were isolated by density gradient centrifugation using Ficoll-Hypaque 

(Meyer et al., 2005). Freshly isolated PBMCs were diluted into 1X106 cells/ml of Monocyte 

Attachment Medium (PromoCell, C-28051) and 200ul was seeded in 96 well plates. The 

cells were incubated at 37° under 5% CO2 without any further manipulation to allow 

monocyte attachment. After 1.5h incubation, the Monocyte Attachment Medium was 

changed into HPBMs culture medium (RPMI-1640 supplemented with 5% heat inactivated 

Human AB serum and 1% Penicillin-streptomycin (P/S) solution) and subsequently 

incubated overnight. The culture medium was changed after overnight culture, and the cells 

were then stimulated with heat-inactivated whole bacterial culture at a bacterial/HPBMs 

ratio of ~10:1, 1:1 and 0.1:1 for 12h. Presence of cytokines in the cell culture supernatants 

was measured by Human IL-6 ELISA Kit (BD OptEIA™) according to the manufacturer's 

recommended protocol.

Animal sources of cells used in the study

Mice deficient in MyD88, TLR2/TLR4, TLR2, TLR4, and NOD1 have been previously 

described (Hasegawa et al., 2010, Kim et al., 2013). All mice were crossed at least 5 times 

on a C57BL/6 background. All animal experiments were approved by the Institutional 

Animal Care and Use Committee of the University of Michigan (Ann Arbor, MI).

BMDMs Cell culture and bacterial stimulatory assay

WT, MyD88, TLR2/TLR4, TLR2, and TLR4 KO macrophages were prepared from the 

femur and tibia of C57BL/6 mice and cultured for 3 to 7 days in Iscove's Modified 

Dulbecco's Medium (IMDM) supplemented with 10% fetal bovine serum (FBS, Invitrogen 

Life Technologies), 30% L-cell supernatant, non-essential amino acids, sodium pyruvate, 2-

ME, and 1% P/S solution (Park et al., 2007). After 5 to 7 days of differentiation, BMDMs 

were detached by scraping cells in cold PBS and then seeded in 96-well plates at a density of 

5×104 cells per well. After overnight culture, cells were stimulated with heat-inactivated 

whole bacterial culture at a bacteria/macrophage ratio of ~10:1 and 1:1 for 12h. The 

Marchesan et al. Page 5

Mol Oral Microbiol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



presence of cytokine in cell culture supernatants was measured by Mouse IL-6 DuoSet 

ELISA kits (R&D Systems, DY-406) according to the manufacturer's recommended 

protocol.

Preparation of primary mesothelial cells and stimulation with different bacterial species

Mesothelial cells from C57BL/6 WT and NOD1-KO mice were prepared from the 

peritoneum and external surface of the liver, spleen, and kidneys of adult mice as described 

(Park et al., 2007). Briefly, pieces of the peritoneum and intact organs were obtained from 

sacrificed mice and digested with 0.25%-trypsin-EDTA solution for 50 min at 37°C. Intact 

tissues and tissue debris were discarded and the cell suspension was centrifuged at 1000 rpm 

for 5 min. The pellet was resuspended in Dulbecco's modified eagle medium (DMEM) 

supplemented with 15% heat-inactivated FBS and 1% P/S and cultured overnight. The next 

day, non-adherent cells were removed and the resultant mesothelial cells were grown in the 

above culture medium for 1 week. Mesothelial cells were used between passages 2 and 4 for 

the stimulatory assay. The cells were stimulated with heat-inactivated bacteria at a bacteria/

mesothelail cells ratio of ~10:1, 1:1 and 0.1 for 12h. Culture supernatants were collected and 

assayed for CXCL1 production by mouse CXCL1/KC DuoSet ELISA (R&D Systems, 

DY453).

Bioassay for NOD2 receptor

HEK 293 cells stably expressing human NOD2 (HEK293-NOD2) and an NF-κB luciferase 

reporter were cultured in DMEM with 10% FBS and 1% of P/S (Warner et al., 2013). 

HEK293-NOD2 cells were seeded in 48-well plates at a density of 5X104 cells and then 

cultured overnight. Whole bacterial cultures were added to each well giving a bacterial/

HEK293-NOD2 cell ratio of ~10:1 and 1:1. Different concentrations of MDP (0, 0.1, 0.5, 

0.75 and 1.5ng) were added to each well to establish a standard curve. After 16h stimulation, 

culture supernatants were removed and reporter lysis buffer (75ul) was added to each well to 

lyse cells. Thirty microliters of each sample of lysed cell supernatant was mixed with 30ul of 

substrate and luciferase assay. Each sample was carried using the fluorometer FluoroCount 

(PerkinElmer Life Sciences) with excitation at 485 nm and emission at 530 nm.

Statistical analysis

Demographical and clinical data were analyzed using the unpaired two-tailed Student's t-

test. HOMIM data was evaluated using non-parametric Wilcoxon Rank Sum Test (adjusted 

with Benjamini-Hochberg). Statistical analyses among different bacterial species to HPBM, 

murine BMDM and HEK-293-NOD2 were analyzed by one-way analysis of variance 

(ANOVA) and the Bonferroni multiple-comparison test. Statistical analyses between WT 

and NOD1 group were performed using a two-tailed t test with unequal variance (Aspin-

Welch's t test; Excel, Microsoft). Differences were considered significant at p≤0.05.

RESULTS

Demographics and clinical measurements

Fifty-eight patients were screened for study eligibility, of which 40 patients met all study 

criteria and were evenly distributed between the healthy and diseased groups. Demographic 
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and clinical characteristics are described in Table 1. Thirty and fifty percent were male for 

the healthy and diseased group, respectively. The mean number of teeth differed between 

groups, with a mean of 26.8 teeth for the healthy group and 24.4 teeth for the diseased 

group. All the clinical parameters that classified each category in healthy or diseased were 

significantly different between groups, including percent sites with BOP (10.5% in healthy 

and 60.1% in disease), gingival redness (31.6% in healthy and 83.4% in disease), and sites 

with plaque (41.0% in healthy and 81.8% in disease). The mean PD was 1.8mm for healthy 

individuals and 3.3mm for individuals with the disease (p<0.001), with zero sites and 

20.42% with PD>4mm in healthy and disease groups respectively. Healthy subjects had a 

mean CAL of 0.7mm, and diseased individuals had a mean 3.5mm of CAL (p<0.001).

Microbial analysis of plaque samples

Based on the microbial analysis by HOMIM in plaque samples (Table S1), twenty-five 

microorganisms were significantly associated with the periodontitis group (Table S2). The 

periodontitis group included species from the red and orange complexes defined by 

Socransky (Socransky et al., 1998), including P. gingivalis, T. forsythia, P. micra, P. 
intermedia, E. nodatum and C. rectus. Other putative periodontal bacterial species were 

correlated to the diseased group, including F. alocis, E. saphenum, S. infelix, and P. 
endodontalis. The periodontal disease group was further evaluated based on the 

microorganism's predominance in the biofilm shown by the highest relative signal. The top 

50 most predominant species found in the periodontitis group included again emerging 

periodontal pathogens P. micra with a 3.4 score, P. endodontalis with a 2.05 score, and F. 
alocis with a 1.45 score, and classic periodontal pathogens C. rectus, T. forsythia, P. 
gingivalis, and E. nodatum with scores 3.95, 2.95, 2.05, 1.9, respectively (Table S1 and 2). 

Based on these 2 analyses correlation to periodontal disease and predominance in the 

plaque, 15 bacterial species were initially selected to test for their immunostimulatory 

activity in vitro (Table 2). Peptostreptococcus stomatis was excluded due to the lack of 

commercial availability. Dialister pneumosintes, Mogibacterium timidum and Treponema 
maltophilum were excluded due to lack of bacterial growth in liquid media. Finally, we were 

able to obtain liquid culture for 10 species, comprised of 6 classical pathogens and 4 

potential pathogens, and were selected for further evaluation (Table 2).

Immunostimulatory activity of various periodontal bacteria in human peripheral blood 
monocytes (HPBMs)

In order to determine the immunostimulatory activity of the identified periodontal bacterial 

species, HPBMs, a key component of the innate immune system, were stimulated with 

different doses of heat-inactivated periodontal bacteria for 12h. Culture supernatants were 

collected and IL-6 release was measured by ELISA. IL-6 is one of the major 

proinflammatory cytokines secreted by monocytes in response to specific microbial 

molecules. Three ratios of bacteria to HPBMs (10:1, 1:1 and 0.1:1) were chosen for the 

stimulatory experiments (Fig. 1). Following stimulation with different ratios of periodontal 

bacteria, HPBMs released IL-6 in a dose-related fashion. Consistent with previous studies 

(Jiang et al., 1996), P. gingivalis showed strong immunostimulatory activity to induce IL-6 

in HPBMs, which is comparable to the positive control Escherichia coli lipopolysaccharide 

(LPS) (Fig. 1). C. concisus, C. rectus, S. infelix, P. endodontalis, and T. forsythia also 
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released an amount of IL-6 that was comparable to that produced by the control E. coli LPS 

(Fig. 1). In contrast, E. nodatum, E. saphenum, F. alocis, and P. micra showed weak 

stimulation of IL-6 production in HPBMs (Fig. 1). Consistent with previous studies (Fritz et 

al., 2005), our results also indicate that human monocytes stimulated by NOD1 and NOD2 

agonists produced significantly lower amounts of IL-6 compared with the same amount of 

LPS. We further assessed the IL-6 production by stimulating HPBMs with different 

concentration of TLR4, TLR2, NOD1 and NOD2 agonist with 12 h incubation, the results 

showed that LPS, Pam3CysSerLys4 (Pam3CSK4) and muramyl dipeptide (MDP) can induce 

robust IL-6 production, γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) cannot induce 

significant IL-6 production with high concentration (Fig S1). Overall, these results indicated 

HPBMs exhibited different IL-6 production to distinct innate receptor agonists, more 

importantly; these results indicated that different oral pathogens exhibited variable degrees 

of immunostimulatory activity in HPBMs. It strongly suggested that different oral pathogens 

may depend on different PAMPs to activate HPBMs (Fig. 1).

TLR4 is the major receptor for three periodontal microbes in murine BMDMs

The family of TLRs has been extensively studied as critical PRRs expressed at either the cell 

surface or the endosome membranes to recognize microorganisms (Kawai & Akira 2009). 

To investigate TLRs, essential for the immunologic recognition of periodontal bacteria, we 

first used BMDMs from wild type (WT) mice stimulated with various doses of oral bacteria 

for 12h (MOI 10:1 and 1:1), and the levels of IL-6 were measured from the culture 

supernatant. Consistent with HPBMs, E. coli LPS control, C. concisus, C. rectus, and S. 
infelix also induced robust IL-6 production in mice WT BMDMs (Fig. 2A). Meanwhile, iE-

DAP, MDP, E. nodatum, E. saphenum, F. alocis, P.micra were also weak stimulators of IL-6 

production in WT mice BMDMs (Fig. 2A). We also stimulated murine BMDM with 

different concentration of TLR4, TLR2, NOD1 and NOD2 agonist, the results indicated that 

LPS and Pam3 CSK4 induce robust IL-6 but ie-DAP and MDP cannot induce significant 

IL-6 production with high concentration (Fig S2). Unexpectedly, under MOI 10:1 and 12h 

stimulation, IL-6 production induced by P. gingivalis, P. endodontalis, and T. forsythia in 

murine WT BMDMs is not as robust as C. concisus, C. rectus, and S. infelix. Furthermore, 

IL-6 production induced by P. gingivalis, P. endodontalis, and T. forsythia is not in parallel 

with HPBMs in the same stimulatory condition (Fig. 2A). Coincidently, these three bacterial 

species all belong to the phylum Bacteroidetes. This result suggests murine immune cells 

may exhibit lower sensitivity to human Bacteroidetes as compared to other oral pathogens 

such as C. concisus, C. rectus, and S. infelix as well as human immune cells. TLR2 and 

TLR4 are two members of the TLR family which have been extensively studied. To further 

clarify the involvement of TLR2 and TLR4-induced cytokine production, oral bacteria with 

high immunostimulatory responses, including C. concisus, C. rectus and S. infelix, were 

used to stimulate BMDMs from MyD88, TLR2/4 double knock-out (DKO), TLR2 KO and 

TLR4 KO mice with the same doses of bacteria as WT BMDMs for 12h. Levels of IL-6 

were measured from the culture supernatant. The production of IL-6 in response to these 

oral pathogens was completely impaired in MyD88, TLR2/4 DKO, and TLR4 KO 

macrophages in both MOI 10:1 (Fig. 2B) and 1:1 (Fig. S3). However, IL-6 production was 

as robust as WT in TLR2-deficient macrophages infected with these oral pathogens at MOIs 

of 10:1 (Fig. 2B) and 1:1 (Fig. S3). These results indicated that TLR4 is the major TLR that 
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is responsive to C. concisus, C. rectus, and S. infelix in mice BMDMs, and suggested that 

these three periodontal bacterial species may induce inflammation during the development 

of periodontitis primarily via LPS.

Diversity of NOD1 and NOD2 stimulatory activity among different periodontal bacterial 
species

In addition to TLRs, NOD1 and NOD2 represent 2 well-characterized PRRs of the NOD-

like receptor (NLR) family and provide another level of microbial surveillance in the host 

cytosol to sense distinct peptidoglycan (PGN) products found in the cell wall of many types 

of bacteria (Caruso et al., 2014). NOD1 has been reported to be expressed by a variety of 

cells such as epithelial cells, stromal cells and endothelial cells (Caruso et al., 2014). 

Mesothelial cells are specialized epithelial cells that line the internal organs and the body 

wall of the peritoneal, pleural, and pericardial cavities that function monitor infection. 

Previous studies have shown that neutrophil-recruiting chemokines (CXCL1, CXCL2, and 

human IL-8) are secreted from mesothelial cells upon NOD1 stimulation (Park et al., 2007). 

Therefore, to determine the NOD1 stimulatory activity of periodontal bacteria, we 

stimulated WT and NOD1 KO mesothelial cells (Park et al., 2007) with various periodontal 

bacteria at the indicated ratio of 10:1 and 1:1 (Fig. 3) and 0.1:1 (Data not shown as no 

difference between WT and NOD1 KO was observed). The levels of CXCL1 in NOD1 KO 

mesothelial cells culture supernatant were compared with WT cells at 12h poststimulation. 

We found that E. nodatum, E. saphenum, and F. alocis showed significantly reduced levels 

of CXCL1 in NOD1 KO mesothelial cells (Fig. 3). However, the induction of CXCL1 

secretion by C. concisus, C. rectus, S. infelix, P. gingivalis, P. endodontalis, T. forsythia, and 

P. micra was not dependent on NOD1 (Fig. 3). These data indicated that the periodontal 

bacteria E. nodatum, E. saphenum, and F. alocis display NOD1 stimulatory activity. These 

periodontal bacteria may potentially contribute to the pathogenesis of periodontal disease via 

NOD1 stimulatory ability. Surprisingly, unlike mice BMDMs, three members of 

Bacteroidetes (P. gingivalis, P. endodontalis, and T. forsythia) can induce strong CXCL1 

production in mice mesothelial cells.

We next tested the NOD2 stimulatory activity of different periodontal bacteria by using 

human embryonic kidney (HEK) 293 cells with permanent transfections of NOD2 receptor 

(Warner et al., 2013). In this experiment, HEK293-NOD2 cells were stimulated with 

periodontal bacteria for 16h at the ratio of 10:1 and 1:1; then the luciferase assay was used to 

measure the NOD2 stimulatory activity. The data demonstrated that P. micra and P. 
endodontalis had the highest NOD2-stimulatory activity in HEK293-NOD2 cells (Fig. 4A 

and B). Meanwhile, S. infelix, E. saphenum, and E. nodatum also exhibited considerable 

NOD2 stimulatory activity, but to a lower extent (Fig. 4A and B). In contrast, C. concisus, C. 
rectus, F. alocis, P. gingivalis, and T. forsythia exhibited very weak NOD2 stimulatory 

activity (Fig. 4A and B). These results suggest that specific periodontal bacteria with high 

NOD2-stimulatory activity may induce the innate immune response by the NOD2 pathway.
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DISCUSSION

Periodontal bacteria are regarded as the causative agents that induce an excessive 

inflammatory response in a susceptible host. Recent studies demonstrated that the 

periodontal bacteria of health and disease are dramatically shifted from a symbiotic 

microbial community to a dysbiotic microbial community (Hajishengallis et al., 2011). A 

current study monitored the bacterial composition and diversity of plaque samples between 

healthy and periodontitis patients using HOMIM (Colombo et al., 2012). Consistent with 

previous studies (Griffen et al., 2012), our data also show that the oral microbiome in 

periodontitis patients exhibits greater disparities from healthy subjects (Table S1). It implies 

that these shifts in oral microbiota may be associated with the development of periodontal 

disease. As specific species indicate relative abundance in the bacterial community, the 

predominant composition of the oral microbiota in subjects with periodontitis may be 

relatively critical to the pathogenesis of periodontal disease. Based on the above two 

standards, we identified 15 bacterial species that not only significantly correlate with 

periodontitis, but also indicate predominance in the microbial community of periodontitis 

afflicted individuals. Our analysis showed that several classic pathogens and putative 

pathogens, including E. saphenum, F. alocis, P. endodontalis and S. infelix, were strongly 

associated with periodontal disease. This is in accordance to previous studies demonstrating 

that subjects with chronic periodontitis or general periodontitis are infected with these 

bacterial species more frequently and at higher levels as compared to healthy subjects 

(Belstrom et al., 2014). The presence of P. endodontalis was recently shown an a risk 

indicator for periodontal disease along with T. forsythia (Lourenco et al., 2014). 

Interestingly, two of these potential periodontal pathogens F. alocis and P. endodontalis were 

shown to persist or increase along with classic periodontal pathogens after mechanical 

detriment in refractory periodontitis patients (Colombo et al., 2012). A recent systematic 

review identified E. saphenum, F. alocis, and P. endodontalis as microorganisms with 

moderate evidence to be set as newly described periodontal pathogens (Perez-Chaparro et 

al., 2014). Together, the data indicate that the pathogenesis of these emerging periodontal 

pathogens requires further exploration.

As periodontal bacteria are the trigger of inflammatory immune response in periodontitis, 

their immunostimulatory activity to induce a host immune response is tightly related to the 

pathogenesis of periodontal disease. Recent studies have provided evidence that oral 

bacterial species possess different levels of immunostimulatory activities (Jiao et al., 2014). 

In this study, we observed a robust IL-6 production in HPBMs after stimulation by C. 
concisus, C. rectus, S. infelix, P. endodontalis, P. gingivalis and T. forsythia. However, four 

Clostridia including E. saphenum, E. nodatum, F. alocis and P. micra showed weak ability to 

induce cytokine in HPBMs. We also observed robust IL-6 production in WT mouse 

macrophages after stimulation by Campylobacter concisus, C. rectus, and S. infelix. As 

expected, the specific Clostridia remained unable to induce cytokine production in WT 

murine macrophages. Surprisingly, inconsistent with HPBMs, WT murine macrophages 

showed weak responses to three Bacteroidetes including P. endodontalis, P. gingivalis and T. 
forsythia compared to Campylobacter concisus, C. rectus, and S. infelix at MOI 10:1. These 

data may reflect the difference in immune response sensitivity to Bacteroidetes between 
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human and mouse immune cells. Immunological differences between murine and human 

cells have been previously acknowledged. Interestingly, the expression of TLR2 in murine 

peripheral blood leukocytes has been reported to be low compared to the constitutive 

expression in human leukocytes (Mestas & Hughes 2004). This finding could partly explain 

our results of low IL-6 expression in murine macrophage compared to human monocyte in 

response to human Bacteroidetes since several human Bacteroidetes such as P. gingivalis, T. 

forsythia and Bacteroides fragilis have been reported to induce responses mainly via TLR2 

(Alhawi et al., 2009, Hajishengallis et al., 2006, Onishi et al., 2008). Further studies are 

necessary to more completely elucidate the mechanisms why murine BMDMs exhibit lower 

inflammatory responses to human Bacteroidetes than human monocyte. In contrast to our 

current data, previous studies demonstrate that P. gingivalis showed stimulatory activity in 

murine macrophages, expressing IL-6 after stimulation (Kim et al., 2015, Shaik-

Dasthagirisaheb et al., 2010). This difference is attributed to the fact that our study applied 

lower MOI and shorter stimulation time compared with previous studies. All of these studies 

support that the P.gingivalis stimulates murine BMDM to induce the immune response but 

significantly lower than the same challenger of Campylobacter concisus, C. rectus, or S. 
infelix.

Previous studies have reported that bacterial component such as lipoteichoic acid, 

lipoarabinomannan, LPS, and muropeptides degraded from peptidoglycan are highly heat-

stable (Grunfeld et al., 1999, Hasegawa et al., 2006, Magalhaes et al., 2007). This finding 

indicates that the heat-killed bacteria will maintain immunostimulatory activity for TLR2, 

TLR4, NOD1 and NOD2, but limited the potential for other virulence factors such as 

proteinases. Since the goal of this study was to evaluate the innate immune response elicited 

via TLR2, TLR4, NOD1 and NOD2 to periodontal pathogens, we selected heat–killed 

bacteria for the assays. Interestingly, unlike murine macrophages, murine mesothelial cells 

were found to be sensitive to these three human oral Bacteroidetes (Table 3). Similar to our 

findings, previous studies have indicated that murine peritoneal mesothelial cells can 

mediate significant immune responses in response to B. fragilis (Kim et al., 2012). These 

results strongly suggest that murine mesothelial cells have great potential as a valuable 

murine cell type to study the immunostimulatory property of human Bacteroidetes. Further 

studies using murine mesothelial cells with specific gene-deficiency may assist in 

characterizing the pathogen-associated molecular patterns (PAMPs) of human oral 

Bacteroidetes.

Although the function of PRRs in response to several periodontal pathogens has been widely 

studied (Burns et al., 2006, Jain et al., 2013, Myneni et al., 2011, Park et al., 2014), there is 

also a paucity of information on the interaction between host PRRs and periodontal 

microbes, especially specific newly-identified periodontal pathogens. We used assays from 

BMDMs, mesothelial cells, and NOD2-HEK-293 cells to estimate the immunostimulatory 

activities of TLR2, TLR4, NOD1 and NOD2 ligands in the present study. Consistent with 

previous findings (Arce et al., 2012), we noted that C. concisus, C. rectus, and S. infelix 
showed strong TLR4-stimulatory activity. E. saphenum, E. nodantum, and F. alocis showed 

considerable NOD1-stimulatory activity. P. micra and P. endodontalis had the highest 

NOD2-stimulatory activity. Our studies support that these periodontal bacterial species may 

contribute to the pathogenesis of periodontitis relying on TLR4, NOD1 and NOD2 (Table 3 
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and Fig. 5). It will be important to further determine whether these newly-identified putative 

pathogens induce periodontitis in vivo. Recent exploration of infection with F. alocis in a 

murine subcutaneous chamber model showed that this microorganism can establish a 

proinflammatory and proapoptotic local infection with neutrophil influx (Wang et al., 2014). 

One of the potential mechanisms that F. alocis induced neutrophil recruitment is by CXCL1 

expression via NOD1, as we observed in our in vitro assay.

In this study, we evaluated IL-6 and CXCL-1 production since these are classical 

inflammatory cytokines and chemokines subsequent to bacterial stimulation. Similar parallel 

responses for TNF-α and IL-1β expression will be expected according to previous studies 

(Kim et al., 2015, Shaik-Dasthagirisaheb et al., 2010). However, future studies will be 

necessary to assist in better understanding the inflammatory response of these individual oral 

pathogens.

As mentioned above, in order to focus on the innate immune responses that are elicited via 

TLR2, TLR4, NOD1 and NOD2, we utilized heat-killed bacteria, which can potentially 

inactivate other pathogenic virulence factors, such as proteinases, toxins and bacterial 

invasion. However, we acknowledge that the expression of other virulence factors in these 

new-identified putative periodontal pathogens may also be critical for affecting the host 

immune response. Further investigation using live bacteria with the presence of other 

potential virulence factors will be important for future studies to better understand the 

virulence of these periodontal pathogens. In addition, some PAMPs for other TLRs and 

NLRs may be heat-labile (Akira et al., 2006). Therefore, the immunostimulatory activity of 

these heat-labile PAMPs may need to be tested by live bacteria or by non-heat inactivation 

methods such as antibiotics, sonication and paraformaldehyde fixation.

CONCLUSIONS

In summary, evidence is provided to support the concept of potential novel periodontal 

pathogens in periodontitis. Our study identified a group of oral microbes including classical 

and putative pathogens in periodontitis patients. Specifically, this is the first report that 

characterizes the TLR2, TLR4, NOD1 and NOD2 stimulatory features of newly-identified 

putative pathogens. Finally, we demonstrate that specific bacterial species exhibit distinct 

immunostimulatory properties that may be involved in the pathogenesis of periodontitis by 

distinct innate immune receptor activation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

This study was supported by Colgate Palmolive Co, NIH DE13397 (to W.V.G) and NIH F32DE021934 (to JTM). 
The authors would like to thank Dr. Gabriel Nunez (University of Michigan) for providing MyD88 and TLR2/4 
double KO mice mouse BMDM and NOD2-HEK293, Drs. R. Teles (Forsyth Institute) and C. Fenno (University of 
Michigan) for providing bacteria, Dr. Robertson Davenport (University of Michigan) for providing filter buffy coat. 
The authors would also thank Dr. Thomas Braun (University of Michigan School of Public Health) for the 
biostatistics discussion. The authors would also like to thank James Sugai, Christina Huffman, Anna Galloro, Hilye 
Pittman, Amy Collins for clinical and laboratory support.

Marchesan et al. Page 12

Mol Oral Microbiol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



REFERENCES

Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006; 124:783–801. 
[PubMed: 16497588] 

Alhawi M, Stewart J, Erridge C, Patrick S, Poxton IR. Bacteroides fragilis signals through Toll-like 
receptor (TLR) 2 and not through TLR4. J Med Microbiol. 2009; 58:1015–1022. [PubMed: 
19528164] 

Arce RM, Caron KM, Barros SP, Offenbacher S. Toll-like receptor 4 mediates intrauterine growth 
restriction after systemic Campylobacter rectus infection in mice. Mol Oral Microbiol. 2012; 
27:373–381. [PubMed: 22958386] 

Beikler T, Schnitzer S, Abdeen G, Ehmke B, Eisenacher M, Flemmig TF. Sampling strategy for 
intraoral detection of periodontal pathogens before and following periodontal therapy. J Periodontol. 
2006; 77:1323–1332. [PubMed: 16881801] 

Belstrom D, Fiehn NE, Nielsen CH, et al. Differences in bacterial saliva profile between periodontitis 
patients and a control cohort. J Clin Periodontol. 2014; 41:104–112. [PubMed: 24303924] 

Burns E, Bachrach G, Shapira L, Nussbaum G. Cutting Edge: TLR2 is required for the innate response 
to Porphyromonas gingivalis: activation leads to bacterial persistence and TLR2 deficiency 
attenuates induced alveolar bone resorption. J Immunol. 2006; 177:8296–8300. [PubMed: 
17142724] 

Caruso R, Warner N, Inohara N, Nunez G. NOD1 and NOD2: signaling, host defense, and 
inflammatory disease. Immunity. 2014; 41:898–908. [PubMed: 25526305] 

Colombo AP, Bennet S, Cotton SL, et al. Impact of periodontal therapy on the subgingival microbiota 
of severe periodontitis: comparison between good responders and individuals with refractory 
periodontitis using the human oral microbe identification microarray. J Periodontol. 2012; 83:1279–
1287. [PubMed: 22324467] 

Eke PI, Thornton-Evans GO, Wei L, Borgnakke WS, Dye BA. Accuracy of NHANES periodontal 
examination protocols. J Dent Res. 2010; 89:1208–1213. [PubMed: 20858782] 

Fritz JH, Girardin SE, Fitting C, et al. Synergistic stimulation of human monocytes and dendritic cells 
by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur J Immunol. 2005; 35:2459–
2470. [PubMed: 16021602] 

Griffen AL, Beall CJ, Campbell JH, et al. Distinct and complex bacterial profiles in human 
periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012; 6:1176–1185. [PubMed: 
22170420] 

Grunfeld C, Marshall M, Shigenaga JK, Moser AH, Tobias P, Feingold KR. Lipoproteins inhibit 
macrophage activation by lipoteichoic acid. J Lipid Res. 1999; 40:245–252. [PubMed: 9925653] 

Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 
2012; 10:717–725. [PubMed: 22941505] 

Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial 
synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012; 
27:409–419. [PubMed: 23134607] 

Hajishengallis G, Liang S, Payne MA, et al. Low-abundance biofilm species orchestrates inflammatory 
periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011; 
10:497–506. [PubMed: 22036469] 

Hajishengallis G, Tapping RI, Harokopakis E, et al. Differential interactions of fimbriae and 
lipopolysaccharide from Porphyromonas gingivalis with the Toll-like receptor 2-centred pattern 
recognition apparatus. Cell Microbiol. 2006; 8:1557–1570. [PubMed: 16984411] 

Hasegawa M, Fujimoto Y, Lucas PC, et al. A critical role of RICK/RIP2 polyubiquitination in Nod-
induced NF-kappaB activation. EMBO J. 2008; 27:373–383. [PubMed: 18079694] 

Hasegawa M, Osaka T, Tawaratsumida K, et al. Transitions in oral and intestinal microflora 
composition and innate immune receptor-dependent stimulation during mouse development. Infect 
Immun. 2010; 78:639–650. [PubMed: 19933833] 

Hasegawa M, Yang K, Hashimoto M, et al. Differential release and distribution of Nod1 and Nod2 
immunostimulatory molecules among bacterial species and environments. J Biol Chem. 2006; 
281:29054–29063. [PubMed: 16870615] 

Marchesan et al. Page 13

Mol Oral Microbiol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hill GB, Ayers OM, Kohan AP. Characteristics and sites of infection of Eubacterium nodatum, 
Eubacterium timidum, Eubacterium brachy, and other asaccharolytic eubacteria. J Clin Microbiol. 
1987; 25:1540–1545. [PubMed: 3624445] 

Jain S, Coats SR, Chang AM, Darveau RP. A novel class of lipoprotein lipase-sensitive molecules 
mediates Toll-like receptor 2 activation by Porphyromonas gingivalis. Infect Immun. 2013; 
81:1277–1286. [PubMed: 23381996] 

Jiang Y, Russell TR, Graves DT, Cheng H, Nong SH, Levitz SM. Monocyte chemoattractant protein 1 
and interleukin-8 production in mononuclear cells stimulated by oral microorganisms. Infect 
Immun. 1996; 64:4450–4455. [PubMed: 8890191] 

Jiao Y, Hasegawa M, Inohara N. Emerging roles of immunostimulatory oral bacteria in periodontitis 
development. Trends Microbiol. 2014; 22:157–163. [PubMed: 24433922] 

Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009; 
21:317–337. [PubMed: 19246554] 

Kim DJ, Park JH, Franchi L, Backert S, Nunez G. The Cag pathogenicity island and interaction 
between TLR2/NOD2 and NLRP3 regulate IL-1beta production in Helicobacter pylori infected 
dendritic cells. Eur J Immunol. 2013; 43:2650–2658. [PubMed: 23818043] 

Kim PD, Xia-Juan X, Crump KE, Abe T, Hajishengallis G, Sahingur SE. Toll-Like Receptor 9-
Mediated Inflammation Triggers Alveolar Bone Loss in Experimental Murine Periodontitis. Infect 
Immun. 2015; 83:2992–3002. [PubMed: 25964477] 

Kim TH, Lee KB, Kang MJ, Park JH. Critical role of Toll-like receptor 2 in Bacteroides fragilis-
mediated immune responses in murine peritoneal mesothelial cells. Microbiol Immunol. 2012; 
56:782–788. [PubMed: 22938101] 

Kumar PS, Griffen AL, Moeschberger ML, Leys EJ. Identification of candidate periodontal pathogens 
and beneficial species by quantitative 16S clonal analysis. J Clin Microbiol. 2005; 43:3944–3955. 
[PubMed: 16081935] 

Lourenco TG, Heller D, Silva-Boghossian CM, Cotton SL, Paster BJ, Colombo AP. Microbial 
signature profiles of periodontally healthy and diseased patients. J Clin Periodontol. 2014; 
41:1027–1036. [PubMed: 25139407] 

Magalhaes PO, Lopes AM, Mazzola PG, Rangel-Yagui C, Penna TC, Pessoa A Jr. Methods of 
endotoxin removal from biological preparations: a review. J Pharm Pharm Sci. 2007; 10:388–404. 
[PubMed: 17727802] 

Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J 
Immunol. 2004; 172:2731–2738. [PubMed: 14978070] 

Meyer TP, Zehnter I, Hofmann B, et al. Filter Buffy Coats (FBC): a source of peripheral blood 
leukocytes recovered from leukocyte depletion filters. J Immunol Methods. 2005; 307:150–166. 
[PubMed: 16325197] 

Myneni SR, Settem RP, Connell TD, Keegan AD, Gaffen SL, Sharma A. TLR2 signaling and Th2 
responses drive Tannerella forsythia-induced periodontal bone loss. J Immunol. 2011; 187:501–
509. [PubMed: 21632710] 

Onishi S, Honma K, Liang S, et al. Toll-like receptor 2-mediated interleukin-8 expression in gingival 
epithelial cells by the Tannerella forsythia leucine-rich repeat protein BspA. Infect Immun. 2008; 
76:198–205. [PubMed: 17967853] 

Park JH, Kim YG, McDonald C, et al. RICK/RIP2 mediates innate immune responses induced through 
Nod1 and Nod2 but not TLRs. J Immunol. 2007; 178:2380–2386. [PubMed: 17277144] 

Park JH, Kim YG, Shaw M, et al. Nod1/RICK and TLR signaling regulate chemokine and 
antimicrobial innate immune responses in mesothelial cells. J Immunol. 2007; 179:514–521. 
[PubMed: 17579072] 

Park SR, Kim DJ, Han SH, et al. Diverse Toll-like receptors mediate cytokine production by 
Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages. Infect 
Immun. 2014; 82:1914–1920. [PubMed: 24566622] 

Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal 
pocket and other oral sites. Periodontol 2000. 2006; 42:80–87. [PubMed: 16930307] 

Perez-Chaparro PJ, Goncalves C, Figueiredo LC, et al. Newly identified pathogens associated with 
periodontitis: a systematic review. J Dent Res. 2014; 93:846–858. [PubMed: 25074492] 

Marchesan et al. Page 14

Mol Oral Microbiol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Prates TP, Taira TM, Holanda MC, et al. NOD2 contributes to Porphyromonas gingivalis-induced bone 
resorption. J Dent Res. 2014; 93:1155–1162. [PubMed: 25239844] 

Ramseier CA, Kinney JS, Herr AE, et al. Identification of pathogen and host-response markers 
correlated with periodontal disease. J Periodontol. 2009; 80:436–446. [PubMed: 19254128] 

Shaik-Dasthagirisaheb YB, Kantarci A, Gibson FC 3rd. Immune response of macrophages from young 
and aged mice to the oral pathogenic bacterium Porphyromonas gingivalis. Immun Ageing. 2010; 
7:15. [PubMed: 21114831] 

Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival 
plaque. J Clin Periodontol. 1998; 25:134–144. [PubMed: 9495612] 

Teles FR, Teles RP, Siegelin Y, Paster B, Haffajee AD, Socransky SS. RNA-oligonucleotide 
quantification technique (ROQT) for the enumeration of uncultivated bacterial species in 
subgingival biofilms. Mol Oral Microbiol. 2011; 26:127–139. [PubMed: 21375703] 

Uematsu H, Sato N, Hossain MZ, Ikeda T, Hoshino E. Degradation of arginine and other amino acids 
by butyrate-producing asaccharolytic anaerobic Gram-positive rods in periodontal pockets. Arch 
Oral Biol. 2003; 48:423–429. [PubMed: 12749914] 

Wang Q, Jotwani R, Le J, et al. Filifactor alocis infection and inflammatory responses in the mouse 
subcutaneous chamber model. Infect Immun. 2014; 82:1205–1212. [PubMed: 24379289] 

Warner N, Burberry A, Franchi L, et al. A genome-wide siRNA screen reveals positive and negative 
regulators of the NOD2 and NF-kappaB signaling pathways. Sci Signal. 2013; 6:rs3. [PubMed: 
23322906] 

Marchesan et al. Page 15

Mol Oral Microbiol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. IL-6 production from Human peripheral blood monocytes (HPBMs) after exposure to 
periodontal bacteria
HPBM were stimulated with the indicated ratios of bacteria to HPBM (MOI: 10:1, 1:1 and 

0.1:1). After 12h stimulation, the supernatants were collected and pro-inflammatory IL-6 

release was analyzed by ELISA. As positive controls, cells were incubated with 50 ng/ml E. 
coli O55B5 LPS, 50 ng/ml NOD1 ligand iE-DAP and 50 ng/ml NOD2 ligand MDP (with 10 

times gradient dilution). Cells were stimulated with culture medium alone as a negative 

control. Results shown as mean ± SD of triplicate samples are representative of three 

independent experiments. Asterisks indicate statistically significant to culture medium 

negative control (P < 0.05) as determined by One-way ANOVA with Bonferroni post-test 

analysis.
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Figure 2. IL-6 production from wild-type (WT) and knock-out (KO) mice Bone marrow-derived 
macrophages (BMDMs) after exposure to periodontal bacteria
(A) BMDMs from WT mice were stimulated with various periodontal bacteria at the 

indicated MOI of 10:1 and 1:1. At 12 h after stimulation, culture supernatants were 

collected, and IL-6 production was measured by ELISA. As positive controls, cells were 

incubated with 50 ng/ml E. coli LPS, 50 ng/ml NOD1 ligand iE-DAP and 50 ng/ml NOD2 

ligand MDP (with 10 times gradient dilution). As negative controls, cells were stimulated 

with culture medium alone. Asterisks indicate statistically significant to culture medium 

negative control (P < 0.05) as determined by One-way ANOVA with Bonferroni post-test 

analysis. (B) BMDMs from MyD88 and different TLRs KO mice were stimulated with these 

three periodontal bacterial species which can induce robust IL-6 production to WT BMDMs 

at MOI 10:1. 50 ng/ml E. coli LPS were used as positive control for stimulation. Culture 

supernatants were also collected for IL-6 detection at 12h after stimulation. Data are shown 

as mean ± SD of triplicate samples from one representative of three independent 

experiments. Asterisks indicate statistically significant to WT BMDM control (P < 0.05) as 

determined by One-way ANOVA with Bonferroni post-test analysis.
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Figure 3. NOD1 stimulatory activities of various periodontal bacteria
Mesothelial cells were prepared from both WT and NOD1 KO mice as described under 

“Material and Methods” and then stimulated with periodontal bacteria at defined ratios 

(MOI: 10:1, 1:1) for 12 h and the levels of CXCL1 secretion in cell culture supernatant was 

determined by ELISA. As positive controls, cells were incubated with 50 ng/ml E. coli LPS, 

50ng/ml Nod1 ligand iE-DAP and 50 ng/ml NOD2 ligand MDP (with 10 times gradient 

dilution). Culture medium also was used as negative control for stimulation. The data shown 

represent the means ± SD from triplicate wells from one representative experiment of at 

least three separate experiments.
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Figure 4. NOD2 stimulatory activities of specific periodontal bacteria
The NOD2 stimulatory activities were determined by the human embryonic kidney (HEK)-

NOD2 cells. Defined ratios of periodontal bacteria (MOI: 10:1 and 1:1) were added to the 

cells for 16 h, the cells were lysed, and the amount of luciferase produced was determined. 

(A) Values are reported as the fold increase of relative luciferase compared to the 

nonstimulated control response, which was set at 1. Different concentrations of MDP were 

used as positive control. Culture medium was also used to stimulate cells as negative control. 

(B) The activity of bacterial culture is also given as KU/109 bacteria of the original culture 

according to the standard curve of MDP. One unit of the NOD2-stimulatory activity is 

equivalent to those of 1 ng of MDP. The data shown represent the means ± SD from 

triplicate wells from one experiment of at least three separate experiments. Asterisks 

indicate statistically significant to culture medium negative control (P < 0.05) as determined 

by One-way ANOVA with Bonferroni post-test analysis.
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Figure 5. Specific periodontal bacterial species induce specific cytokine production via specific 
pattern recognition receptors (PRRs)
Three gram-negative bacteria including C. concisus, C. rectus and S. infelix can stimulate 

host to induce dramatic immune response via TLR4. Three gram-positive bacteria including 

E. nodatum, E. saphenum and F. alocis can be recognized by host via NOD1. Meanwhile, P. 
micra and P. endodontilis are predominantly sensed by host through NOD2. S. infelix, C. 
concisus and C. rectus also show considerable ability to induce host response through 

NOD2. According to previous studies, the host can sense two Bacteroidales including P. 
gingivalis and T. forsythia through TLR2. P. endodontilis also belongs to Bacteroidales, so it 

may also have TLR2 stimulatory activity. These events indicated that specific periodontal 

pathogens exhibit different properties to activate innate immune activation. It also suggested 

that the host may recognize these bacteria to initiate responses for defending against 

pathogens.
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Table 1

Demographics and clinical measurements of periodontal disease in patient population

Healthy (Magalhaes et al., ) Periodontal disease (Magalhaes et al., ) p values

Subjects (n) 20 20 NA

Males (%) 30 50 0.10

Caucasian (%) 95 85 0.15

Current tobacco users (%) 15 25 0.22

Former tobacco users (%) 35 70 ≤0.05

Mean number of teeth 26.8 (24 – 28) 24.45 (19 – 28) ≤0.05

Mean age (years) 46.1 (24 – 74) 53 (39 – 66) ≤0.05

Sites with BOP (%) 10.46 (0 - 22.62) 60.08 (32.10 – 86.31) ≤0.001

Sites with gingival redness (%) 31.57 (0 – 82.10) 83.42 (37.68 – 100) ≤0.001

Sites with plaque (%) 41.04 (0 – 88.27) 81.8 (51.45 – 100) ≤0.001

Mean PD (Beikler et al., ) 1.83 (1.21 – 2.46) 3.27 (2.19 – 4.13) ≤0.001

Sites with PD>4mm (%) 0 20.42 ≤0.001

Mean CAL (Beikler et al., ) 0.7 (0.06 – 1.93) 3.45 (2.06 – 6.83) ≤0.001

BOP = bleeding on probing; PD = probing depth; CAL = clinical attachment level. Healthy category patients exhibited no probing depths (PD) >4 
mm, possessed minimal to no radiographic bone loss, and < 20 percent sites with bleeding on probing (BOP). Severe periodontitis subjects 
exhibited at least 8 sites with evidence of radiographic bone loss, had at least 8 sites with PD >4 mm, and >30% of sites with clinical attachment 
loss (Perez-Chaparro et al., ) >3 mm.
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Table 2

Microorganisms predominant in periodontal plaque samples and significantly correlated with human 

periodontitis

Relative signal
* Bacterial species Human Oral Taxon Pathogen classification

p value
***

3.95 Campylobacter concisus / Campylobacter rectus HOT-575**

HOT 748**

Green complex/Orange complex 0.045

3.4 Parvimonas micra HOT-111** Orange complex 0.029

2.95 Tannerella forsythia HOT-613** Red complex 0.001

2.9 Eubacterium [XI][G-5] saphenum HOT-759** Potential pathogen 0.016

2.4 Peptostreptococcus stomatis HOT-112 Potential pathogen 0.005

2.35 Porphyromonas endodontalis HOT-273** Potential pathogen 0.004

2.3 Porphyromonas gingivalis HOT-619** Red complex 0.001

2.2 Eubacterium [XI][G-6] nodatum HOT-694** Orange complex 0.001

2.1 Selenomonas infelix HOT-639** Potential pathogen 0.045

2.1 Desulfobulbus sp. HOT-041 Potential pathogen 0.001

2.05 Dialister pneumosintes HOT-736 Potential pathogen 0.025

2.05 Treponema maltophilum HOT-664 Potential pathogen 0.015

1.95 Filifactor alocis HOT-539** Potential pathogen 0.029

1.9 Mogibacterium timidum HOT-042 Potential pathogen 0.001

*
Relative signal = mean signal intensity compared to the universal probe signal ranging from 0-5, categorized as 0=signal absence and 5=highest 

signal, as described by Colombo et al 2009.

**
Microorganisms evaluated in this study

***
p values adjusted with Benjamini–Hochberg procedure
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