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Abstract

Purpose—To evaluate the performance of an edge-based registration technique in correcting for 

respiratory motion artifacts in MR renographic data and to examine the efficiency of a semi-

automatic software package in processing renographic data from a cohort of clinical patients.

Materials and Methods—The developed software incorporates an image-registration algorithm 

based on the generalized Hough transform of edge maps. It was used to estimate GFR, RPF, and 

MTT from 36 patients who underwent free-breathing MR renography at 3T using saturation-

recovery turbo-FLASH. Processing time required for each patient was recorded. Renal parameter 

estimates and model-fitting residues from the software were compared to those from a previously 

reported technique. Inter-reader variability in the software was quantified by the standard 

deviation of parameter estimates among three readers. GFR estimates from our software were also 

compared to a reference standard from nuclear medicine.

Results—The time taken to process one patient’s data with the software averaged 12 ± 4 

minutes. The applied image registration effectively reduced motion artifacts in dynamic images by 

providing renal tracer-retention curves with significantly smaller fitting residues (P < 0.01) than 

unregistered data or data registered by the previously reported technique. Inter-reader variability 

was less than 10% for all parameters. GFR estimates from the proposed method showed greater 

concordance with reference values (P < 0.05).

Conclusion—These results suggest that the proposed software can process MR renography data 

efficiently and accurately. Its incorporated registration technique based on the generalized Hough 

transform effectively reduces respiratory motion artifacts in free-breathing renographic 

acquisitions.
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INTRODUCTION

MR renography (MRR) is emerging as a reliable technique for evaluating single-kidney 

glomerular filtration and perfusion (1-6). Following intravenous injection of a bolus of 

contrast agent, MR images are repeatedly acquired to record the passage of tracer through 

the kidneys. Tracer enhancement and excretion from a kidney over time reflect its 

glomerular and tubular function (4,6). Using a tracer-kinetic model to analyze the tracer 

retention vs. time curves, we can estimate functional parameters such as glomerular 

filtration rate (GFR), renal plasma flow (RPF), and mean transit time (MTT) (4,6-8). Over 

the past decade, technical improvements have been made on multiple aspects of the 

technique, including data acquisition and analysis (9), making MRR a promising tool for the 

assessment of renal function.

One major obstacle to the widespread application of MRR is the lack of an efficient software 

package that performs rapid data post-processing (9), particularly one with robust image 

registration. In human subjects, respiratory motion may displace the kidneys by 5-10 mm 

(10), and this relative motion between images acquired at different time-points may 

introduce substantial error into the estimation of functional parameters. Techniques for the 

correction of respiratory motion include acquisition during suspended respiration (6,11,12), 

which can be challenging for elderly or infirm patients, or post-acquisition image 

registration (3,13-15).

Registration of dynamic kidney images faces multiple challenges. First, signal intensity is 

different between dynamic frames due to tracer enhancement, and different regions enhance 

differently. Therefore, correlation-based registration techniques may fail. Second, 

surrounding organs such as the liver and spleen might have similar signal-intensities as the 

kidneys and thereby interfere with registration. Third, poorly-functioning kidneys usually 

display little contrast enhancement, making their separation from background difficult. 

Because of these challenges, a robust registration scheme requires a combination of 

automatic registration and manual guidance. Involvement of manual guidance, however, 

introduces inter-observer variability.

Another strategy for respiratory motion correction makes use of the direction of respiratory 

motion. Since breathing primarily moves the kidneys along the head-to-toe direction, renal 

cortical signals sampled from an axial slice are less affected by motion (3) and therefore 

avoid the need for registration. Medullary signals, on the other hand, are better sampled 

from a coronal slice. We term this method “composite sampling” (3) because cortical and 

medullary signals are sampled from different slices. This method works well, but requires 

the acquisition and analysis of dynamic images from two slices.

In this study, we evaluated the performance of an edge-based registration technique in 

correcting respiratory motion artifacts in free-breathing MRR and examined the efficiency 
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of a software package developed to accelerate the post-processing of MR renographic data 

with tracer-kinetic models.

MATERIALS AND METHODS

MRR Data Acquisition

This study was approved by the institutional review board (IRB) at the University of Utah. 

Thirty-six patients (24 male, 12 female; ages 28-81 years) with suspected liver diseases were 

recruited from the Liver Center at the University of Utah between February 2012 and May 

2014. Subjects were instructed to fast overnight before their examination. Following written 

informed consent, MRI scans were performed on a 3T scanner (TimTrio; Siemens Medical 

Solutions, Erlangen, Germany) following a previously reported protocol (3).

Briefly, MRR data was acquired using a two-dimensional (2D), T1-weighted turbo fast low-

angle shot (FLASH) sequence prepared with saturation recovery, with the following 

sequence parameters: slice thickness 7 mm, TR 526 ms, TE 1.21 ms, saturation-recovery TI 

300 ms, flip angle 16°, FOV 382×420 mm, matrix 154×176. In each acquisition, three 2D 

slices were covered: coronal and axial slices through the middle of the kidneys, and a 

coronal or sagittal slice through the abdominal aorta. Temporal resolution was ~1.5 sec per 

frame. After 5 baseline acquisitions, 4 ml gadoteridol (ProHance; Bracco Diagnostics, 

Milan, Italy) was administered intravenously at a rate of 2 ml/sec, followed by a 20 ml 

saline flush at the same rate. Data acquisition continued for 5 minutes. To quantify tracer 

concentration from MR signals, proton-density-weighted images (M0) were acquired from 

the same three slices and using the same sequence but with a longer TR of 4 sec. As part of 

the clinical protocol for these liver patients (16), high-resolution three-dimensional (3D) T1-

weighted volumetric interpolated breath-hold examinations (VIBEs) were acquired to cover 

the liver and the kidneys before and after the injection of 0.1 mmol gadoteridol per kilogram 

of body weight: slice thickness 3 mm, TR 3.5 ms, TE 1.22 ms, flip angle 10°, FOV 

450×340×240 mm, matrix 320×240×80. High corticomedullary contrast in the post-contrast-

injection VIBE allowed the volume of the renal cortex to be measured. Medullary volume 

was measured by subtraction of the cortical volume from the whole kidney volume (without 

the collecting system) measured from the pre-contrast-injection VIBE. These volumes were 

then used in quantitative MRR analysis (3).

Reference GFR Measurement

As a reference standard, GFR values for the subjects were also measured from urinary 

clearance of 99mTc-DTPA on the same day as their MR scans. Following intravenous 

injection of a bolus of 5 mCi 99mTc-DTPA, two urine samples were collected at 150 and 240 

minutes after contrast injection and peripheral venous blood samples were collected at 60, 

150, and 240 minutes after contrast injection. The MRI scan was performed between the 60-

minute and 150-minute blood samples. From each urine sample, GFR was estimated with 

the formula: UV/P, where U is the urine concentration of DTPA (in counts/min/ml), V is the 

urine flow rate (in ml/min), and P is the estimated concentration of contrast in the blood 

samples before and after urine collection (3,17,18). The GFR values estimated from the two 
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urine samples were averaged and used as the reference GFR (termed “nuc-GFR” in this 

study).

Edge-based Image Registration

The image registration implemented in our developed software is based on the generalized 

Hough transform (19-22) of edge maps of the dynamic MR images. First, a template for 

registration is generated using the following procedure: We choose an image frame with a 

visually detectable kidney boundary, crop the image, and generate an edge map (Fig. 1a) 

using Canny edge-detection (23); our software provides slider widgets that enable the user to 

control multiple edge-detection parameters, such as the smoothing factor and upper and 

lower thresholds for edge-pixels to ensure the generation of well-defined kidney contours. 

With a built-in paintbrush tool in the software, the user then highlights the kidney contour in 

the edge map (Fig. 1b), and this user-defined contour will be used as a template for aligning 

all other frames. Second, using the generalized Hough transform, we characterize each pixel 

on the kidney contour in the template by two parameters: an angle (θ) that defines the 

orientation of the contour at this location and a vector (v) pointing from the pixel to the 

center of the contour (Fig. 2a). A lookup table is generated containing angles θ and vectors v 

for all pixels on the contour. Third, to align an image frame (example in Fig. 2b) to the 

template, an edge map of the image is computed using Canny edge-detection. Without the 

user’s manual highlight, this edge map contains spurious edges due to either noise or non-

kidney related boundaries in addition to the true kidney boundary. Fourth, for each edge 

pixel in the edge map to be registered, the orientation angle θ is computed and compared to 

those in the lookup table for the template. If the angle matches any angle in the template, the 

corresponding vector v in the lookup table is used to point to a candidate location for the 

center of the kidney contour. This process is repeated for all edge pixels. The location with 

the most vectors pointing to it is the true center of the kidney in the current image frame 

(Fig. 2c). Once the center of the kidney is determined, the frame is aligned to the template 

based on the relative displacement of the kidney-centers using an affine transformation (Fig. 

3). Upsampling of the images occurs prior to alignment to account for sub-voxel 

displacements. This process is repeated for all dynamic frames.

Rotational motion is not a significant problem with the kidneys, but the software still 

provides optional correction for in-plane rotation. Within a user-defined range of rotation 

angles, the software rotates the template in increments and compares the rotated template to 

each frame. The angle with the best match between the image frame and the template is 

subsequently used to rotate the image frame.

MRR Image Processing

A software package was developed in C++ that incorporates robust image registration and 

all other post-processing steps to facilitate MRR data processing. With an intuitive graphical 

user interface (GUI) (Fig. 4), the software enables rapid visualization and cropping of the 

dynamic images to isolate the kidneys. After manually cropping the kidney, image 

registration as described above is performed. Following registration, regions of interest 

(ROIs) can be drawn over the cortex and medulla in a frame displaying high 

corticomedullary contrast (Fig. 4a). These ROIs are automatically applied to all the 
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registered frames, and the average signal intensity within the ROIs is computed for each 

frame (Fig. 4b and 4c), as well as for the proton-density (M0) images. With our current 

acquisition protocol, MR images of the kidneys are acquired from axial and coronal slices as 

required for composite sampling, but now with our effective edge-based registration, we can 

sample both cortical and medullary signals from the coronal slice.

Using the saturation-recovery formula and T1-shortening effect of gadolinium, the tracer 

concentration at each time point is calculated from the signal intensity and M0 value 

(3,4,12). Arterial signals are sampled from the abdominal aorta and are converted to arterial 

tracer concentration (otherwise known as the arterial input function (AIF)) using the same 

method as for the kidney tissue signals. Image registration is not needed for the aortic 

frames because the aorta is minimally affected by respiratory motion (24).

The volumes of the renal cortex and medulla, required for GFR estimation, can be obtained 

by segmenting the 3D VIBE data using ITK-SNAP (25), a widely used image-analysis tool 

conveniently linked to our software package. Once the volumes are available, our software 

then proceeds to automatically fit tissue retention vs. time curves to estimate renal functional 

parameters. While other tracer kinetic models can be easily incorporated, the current version 

of the software performs curve fitting with two models: a whole-kidney (WK) model that 

considers renal parenchyma as a single compartment (26), and a corticomedullary (CM) 

model that treats cortex and medulla separately (11). Curve fitting with both models 

provides estimates of GFR, RPF, and vascular and whole-kidney MTTs. By separating 

cortical and medullary signals, the CM model also gives an insight into tubular function 

(6,11,27).

Performance of Image Registration

We compared results from the 36 patient datasets with and without registration of the 

coronal kidney images. For the same datasets, we also applied composite sampling, using 

cortical signals from unregistered axial images and medullary signals from manually 

registered coronal images (3). All processing was done by the same user (CC). To estimate 

the motion artifacts in the raw and registered images, we computed the residues between the 

tissue retention curves from the images and their best curve-fit by the tracer-kinetic models, 

using the residues as an approximation of the amount of respiration-induced oscillation in 

the retention curves. Parameter estimates (GFR, RPF and MTT) obtained using the different 

strategies were compared using two-tailed, paired t-tests. P-values less than 0.05 were 

considered to be significant.

Performance of the Software in Processing MRR Patient Data

We evaluated inter-reader variability effects on functional-parameter estimates. Three 

readers with different levels of experience (CC with 3 years of experience processing MRR 

data, JZ with 12 years, and YZ with 3 months) processed the same 36 datasets using the 

developed software. For each parameter of each kidney, the standard deviation (SD) of the 

estimates by the three readers was computed and averaged across all kidneys. We also 

computed the coefficient of variation (CV = SD/mean) as a relative metric of variation. 

Paired t-tests were used to compare the inter-reader variability of estimates of the same 
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parameter by the two tracer kinetic models. To evaluate the efficiency of the software, we 

recorded the time each reader spent processing each MRR dataset.

Using the developed software, we estimated GFR values from the 36 patient datasets, and 

the values, denoted as MR-GFR, were compared to the reference nuc-GFR values. To 

evaluate the overall accuracy of MR-GFR for the 36 cases, we computed the percentage of 

cases whose MR-GFR was within ±10%, ±20%, and ±30% of the nuc-GFR, in accordance 

with National Kidney Foundation guidelines (28). For comparison, we also processed the 

data using our in-house MATLAB (Mathworks; Natick, PA) program that uses composite 

sampling (manual registration of coronal images for sampling medullary signals). The 

program implements the same algorithms for signal-concentration conversion and tracer-

kinetic model fitting as the new software, and is termed the manual processing method.

RESULTS

Performance of Image Registration

To quantify the motion artifacts in contrast-enhancement curves from kidney tissue, and 

thereby the performance of the applied image-registration, we computed the fitting residues 

between the curves and their model-fits. Without registration, the fitting residues for all the 

patient cases were 14% ± 6% of their respective curve magnitudes. Using composite 

sampling and the proposed registration technique, the residue was reduced to 10% ± 6% and 

8% ± 4%, respectively, indicating a mitigation of motion artifacts. Residues for the separate 

cortical and medullary retention curves in the CM-model were significantly larger than the 

whole-kidney retention curve in the WK-model (P < 0.01): 18% ± 7% without registration, 

13% ± 6% for composite sampling, and 10% ± 4% for our proposed technique. Compared to 

composite sampling, the reduction in curve-fitting residues achieved using our technique 

was significant (P < 0.01).

Table 1 lists the parameter estimates obtained using different registration techniques: no 

registration (using coronal images), composite sampling, and the edge-based registration in 

our software. For both the WK model and the CM model, estimated GFR values were 

significantly different between the edge-based registration and the no-registration 

estimation, with differences ranging from −9 to 14 ml/min for the WK model (P < 0.01) and 

−20 to 11 ml/min for the CM model (P < 0.01). No significant difference was observed 

between GFR values estimated using the edge-based registration and those by composite 

sampling (P = 0.06). RPF estimates obtained without registration and with composite 

sampling differed significantly from the edge-based registration (P < 0.01). RPF values from 

composite sampling were found to be significantly higher than those from the other two 

techniques (P < 0.01). No significant difference between the methods was observed for the 

MTT estimates (P = 0.34).

Performance of the MRR-processing Software

All MRR patient data were successfully processed using the software. Processing time for 

each patient (two kidneys) averaged 12 ± 4 minutes, as compared to 40 ± 16 minutes with 

the manual processing method based on composite sampling.

Conlin et al. Page 6

J Magn Reson Imaging. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table 2 shows the SD and CV computed from the parameters estimated by the three readers 

using the software. All three parameters (GFR, RPF, and MTT) showed low inter-reader 

variability, with an average CV of less than 9.2%. In particular, inter-reader variability for 

GFR averaged 2-3 ml/min. The WK model provided GFR and RPF with slightly lower 

variability than the CM model, but the differences were not significant (P values of 0.40 and 

0.14 for GFR and RPF, respectively). MR-GFR estimates from the new software were more 

likely to agree with nuc-GFR values than those from the manual processing method (Table 

3).

DISCUSSION

In this study, we demonstrated the efficiency and precision of a new software package for 

processing MRR data. With 36 patients, we showed that the robust image registration 

effectively corrected respiratory motion artifacts and greatly accelerated MRR data analysis, 

with low inter-reader variability.

Despite increasing acceptance of MRR as a means to assess single-kidney function, time-

intensive post-processing has limited its adoption in clinical practice. Post-processing of 

renographic images commonly takes up to 45 minutes, largely because of labor-intensive 

image registration (1,3). In our software, we applied an edge-based registration algorithm 

that utilizes the generalized Hough transform to concisely characterize edge maps of 

dynamic image frames. With minimal effort, the user helps to localize the true kidney 

boundary in a template image, and the overall time to register both kidneys in a given patient 

averaged less than 10 minutes among three users with varying degrees of experience.

A previous protocol used composite sampling which requires the acquisition of at least two 

slices: an axial slice for cortical signals and a coronal slice for medullary signals. With 

effective registration of coronal images, however, both cortical and medullary signals can be 

recorded from a single coronal slice. Eliminating the need for axial images either enables 

increased spatial resolution, increased temporal resolution, or both. Higher temporal 

resolution would enable improved definition of the arterial input function and vascular peaks 

in renal tissue curves, improving measures of voxel-wise perfusion for detecting 

heterogeneous renal ischemia. In addition, sampling cortical and medullary signals from the 

same slice ensures that these signals do not vary artificially as a result of different coil-

sensitivity profiles between the slices.

The proposed software provided GFR estimates with an inter-reader variability of 2-3 ml/

min. GFR values agreed more often with reference methods than estimates from the manual 

processing did. While GFR is relatively robust to motion artifacts, other parameters of renal 

physiology are not. Using the vascular phase of the dynamic data, for example, voxel-wise 

perfusion can be estimated to study the spatial distribution of renal perfusion (29). Voxel-

wise perfusion is highly sensitive to respiratory motion. Similarly, registration is also critical 

for analyzing MR renographic data of renal tumors (5,30), in which kidney and tumor tissue 

needs to be separated accurately and analyzed by different tracer-kinetic models. We expect 

that improved registration algorithms will benefit these clinical applications.
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This study has multiple limitations. First, while most of our subjects had impaired renal 

function, none had diseases causing renal structural abnormality. The benefit of effective 

image registration for such diseases therefore warrants further study. Second, our software 

does not currently have an embedded component for measuring renal volumes, which are 

necessary for quantifying GFR in the selected tracer kinetic models. Third, due to the 

direction of respiratory motion and kidney anatomy, the proposed edge-based registration 

technique works best for dynamic images acquired in the coronal plane and not the axial 

plane. Fourth, we use a saturation recovery sequence for data acquisition and then measure 

proton density (M0) to convert the signals to Gd concentration. Other groups might choose 

to use other sequences, or may measure pre-contrast T1 for signal conversion. This would 

not impact other steps of post-processing such as image registration, signal sampling, or 

model fitting, but the formula for signal conversion may need to be changed accordingly.

In conclusion, the proposed software for analyzing MRR data utilizes a robust image 

registration algorithm and an intuitive graphical user interface for efficient post-processing. 

The software greatly accelerates the analysis of MRR data and provides parameter estimates 

with high precision. Its potential benefit in other kidney diseases will be explored in future 

studies. The proposed software has the potential to increase the adoption of MRR as a 

clinical tool for the assessment of renal function.
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Figure 1. 
Template generation after edge detection. a) Cropped image of a kidney. b) Edge map of the 

image overlaid with a user-defined contour template (red).
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Figure 2. 
Identifying the center of the kidney with the generalized Hough transform. a) Template of a 

kidney contour. Each edge pixel (colored blue in the blue circle) along the contour is 

indexed by its orientation angle (θ) and a vector (v) that points towards the contour’s center. 

b) An MRR image frame that we want to register to the template. c) A map with the same 

matrix size as the image frame. The value of each element represents the number of edge 

pixels that regard the current element as the center of the kidney contour in the current 

frame. The brightest point in the red circle is the true center, and is used for registering the 

current frame to the template.
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Figure 3. 
Registration of a dynamic frame to the template. This figure shows an MRR frame before 

(a) and after (b) upsampling and affine alignment to the template shown by the red overlay. 

Upsampling allows for correction of sub-voxel displacements.
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Figure 4. 
Region-of-interest (ROI) analysis using our developed software. a) The user interface of the 

software displays control buttons that enable efficient post-processing of MRR data. In the 

stage of processing shown, ROIs have been drawn for the cortex (green) and medulla (blue). 

After drawing the ROIs, averaged signals within each ROI are automatically converted to 

tracer concentration based on algorithms embedded in the software. b) Tracer concentration 

vs. time curve for the cortical ROI. c) Tracer concentration vs. time curve for the medullary 

ROI.
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Table 1

Comparison of different registration strategies in estimating GFR, RPF, and MTT.

Registration
GFR (ml/min) RPF (ml/min) MTT (s)

WK CM WK CM WK CM

No-registration 30 ± 10* 32 ± 12* 154 ± 48* 158 ± 50* 211 ± 49 219 ± 69

Composite sampling 32 ± 10 33 ± 12 191 ± 68* 195 ± 72* 220 ± 61 203 ± 54

Edge-based method 32 ± 11 33 ± 12 161 ± 51 165 ± 52 225 ± 61 215 ± 55

The values are mean ± standard deviation across all 72 kidneys. Asterisks indicate a significant difference (P < 0.05) as evaluated by a paired t-test 
between the value and the estimate from the edge-based method (bottom row). WK refers to the whole-kidney model, CM to the corticomedullary 
model.
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Table 2

Inter-reader variability of MRR parameters estimated with the proposed software.

GFR (ml/min) RPF (ml/min) MTT (s)

Model WK CM WK CM WK CM

SD
(CV)

2.0 ± 2.0
(7.4% ± 6.4%)

3.0 ± 3.0
(8.0% ± 8.8%)

13.1 ± 12.0
(8.6% ± 7.5%)

14.7 ± 15.0
(9.2% ± 8.6%)

21 ± 20
(8.6% ± 7.1%)

20 ± 19
(8.8% ± 8.3%)

Standard deviation (SD) values were computed from the parameter values estimated by the three readers and then were averaged across all kidneys. 
The coefficient of variation (CV) for a parameter is the ratio of the SD over the mean value between the three readers. WK refers to the whole-
kidney model, CM to the corticomedullary model.
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Table 3

Percentage of MR GFR values within ±10, ±20, and ±30% of the nuc-GFR values obtained from 99mTc 

clearance on the same day as the MR examination.

Accuracy interval
Percentage of cases within accuracy interval

Manual processing Proposed software

±10% 11% 17%

±20% 27% 33%

±30% 50% 58%
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