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Abstract We propose a multiscale chemo-mechanical model of cancer tumor development
in epithelial tissue. The model is based on the transformation of normal cells into a can-
cerous state triggered by a local failure of spatial synchronization of the circadian rhythm.
The model includes mechanical interactions and a chemical signal exchange between neigh-
boring cells, as well as a division of cells and intercalation that allows for modification of
the respective parameters following transformation into the cancerous state. The numeri-
cal simulations reproduce different dephasing patterns—spiral waves and quasistationary
clustering, with the latter being conducive to cancer formation. Modification of mechanical
properties reproduces a distinct behavior of invasive and localized carcinoma.
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1 Introduction

Over the past decades, cancer modeling has become a challenging problem for mathemati-
cians, physicists, and other researchers working in the biological sciences [1].

One of the main problems of mathematical modeling of cancer (as, indeed, of any bio-
logical system) is the multiscale nature of this phenomenon [2–5]. One can identify at least
three characteristic spatial scales including the microscopic (the size of the cell’s nucleus,
less than 10 mμ), mesoscopic (cell’s size, 10-100 mμ) and macroscopic scale (the size
of the tumor or the organism as a whole). At the microscopic scale, a system of ordinary
differential equations can be used to simulate the system within the population dynamics,
where each variable corresponds to some biological property characteristic to all cells of
the same population. The paper [6] seems to be the first to apply population dynamics mod-
els focused on cancer. This direction has been further developed to account for finer effects
(see, for example, survey [7]). The advantage of this approach is that the models are eas-
ily manipulable and enable a relatively fast determination of the governing parameters. It
omits, however, spatial effects and some other important aspects. Another type of model-
ing, supplementing the population dynamics by certain variables determining the average
structure of a population of cancer cells (for example, the age of cells), can be attributed to
the class of semi-phenomenological models with an internal structure [8].

A large body of literature has been dedicated to models linking the microscopic scale
to the tumor scale [2]. This approach allows one to understand how changes in cell-to-cell
communications influence macroscopic properties of a malignant growth. Most commonly,
the tumor is considered as a continuous medium. It is described by a system of partial
differential equations including the mass balance equation for the cellular medium and
reaction-diffusion equations describing the field of signaling between cells. The tumor may
be viewed as a solid porous matrix [9] that interacts with a filling cellular liquid of healthy
cells. In this way, one can describe some spatial features of a real tumor (for example, its
fractal structure). In a more recent work of this kind [10], the tumor was represented as a
multiphase medium simulated in three-dimensional geometry by a finite elements method.
A disadvantage of such models is their inherently phenomenological character.

An alternative approach is cell-based discrete modeling. In contrast with continuous
medium models, discrete models enable tracing the functioning of individual cells. Thanks
to the progress in biotechnologies, there is an increasing amount of experimental data avail-
able at a single cell level that should be taken into account in mathematical models. Simpler
models of this kind are based on cellular automata [11] or a random walk of cells [12]. The
latter approach allows one to consider the stochastic processes of tumor formation but can-
not account for their mechanical properties. A large group of models combine interactions
at both the sub-cellular and cellular level [2, 4]. This approach is motivated by the fact that
the biological system as a whole is driven by genetic mutations: for example, a too strong
expression of certain genes can lead to a malfunction of the cells, i.e., transition to the can-
cerous state [13]. A stochastic description of gene regulation processes can be naturally
applied here [14].

Since cancer is a multiscale phenomenon, the most realistic approach to modeling
requires involving processes at all levels of description. Due to the difficulties of this
approach, there are not so many works of this kind. One of the first attempts to imple-
ment a hybrid approach included a model of cellular automata whose state is determined
by a continuous distribution of oxygen around a blood vessel near the origin of the tumor
[15]. In another remarkable work [16], the authors examined a spherically growing tumor
within the framework of a lattice model of mechanically interacting discrete cells, in which
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the gene regulation processes were simulated separately for each cell in the population. A
good review of recent developments in multiscale cancer modeling can be found in Ref. [4].
We would also like to mention the book [5] covering state-of-the-art methods of multiscale
cancer modeling.

We conclude that any realistic model of tumor growth should involve a dynamical model
of interaction of a large number of cells [17]. Such a model must take into account the
physical properties of individual cells in the ensemble, e.g., to describe dynamically chang-
ing volumes and surfaces of cells, their elastic response to external mechanical impacts, the
ability to move, divide, etc. These processes must be influenced by the exchange between
the cells of the various signals generated at either the subcellular (transcription/translations)
or macroscopic level (collective behavior). The model should combine therefore a discrete
description of individual cell dynamics and a continuous description of chemical fields that
are common to the whole ensemble. The development of such models is not easy, but the
progress in this area over the last decade and the simultaneous breakthroughs in computer
technology are bringing the researchers closer to the realistic simulation of the living tissue
functioning.

This communication combines modeling of signaling regulation of cancer formation
with cell-based mechanical modeling of deformations and rearrangement of epithelial tis-
sue. It has been recognized in recent years that core circadian genes are important in tissue
homeostasis and tumorigenesis. In recent years, a significant number of works have shown
that disruption of the circadian mechanism is implicated in gene deregulation, leading to the
development of cancer and other diseases [18–20]. The main idea of this work is that tumor
occurrence is induced by a local disruption of the circadian rhythm in the epithelial tissue
when the control of the peripheral circadian oscillators by the suprachiasmatic nuclei weak-
ens or vanishes completely. We supplemented the mechanical epithelium model that was
developed earlier [21] by two simple models of circadian rhythms suggested in our previ-
ous papers [22–24], where the crucial element of the mechanism of oscillations is a delay of
protein synthesis during the process of gene regulation. These constitutive parts are supple-
mented by a simple phenomenological model of the cell transformation into the cancerous
state leading to modification of its physical properties.

2 Description of the model

2.1 General principles

Epithelium can be defined as a relatively avascular aggregation of cells that are in apposition
over a large part of their surfaces and are specialized for absorptive, secretory, protective,
or sensory activities [25]. Epithelia may occur as sheets of cells, characterized as covering
and lining epithelium, as in the lining of the intestine, or as solid aggregations of cells, as in
glandular organs. We focus our attention on the first type and construct a two-dimensional
model of a single layer of epithelial cells. Epithelial cells can be shaped in diverse ways. The
three basic cell shapes in covering and lining epithelia, distinguished by their appearance
in microscopic sections, are squamous, cuboidal, and columnar, but the distinctions are
often blurred. The cells adhere to each other by forming specialized attachment structures
(adherens junctions or desmosomes) that ensure coherence and strength of tissue.

We will further concentrate on modeling of carcinomas. Carcinoma is a type of cancer
that develops from epithelial cells. It may affect the skin, colon, prostate, breast, and lung,
and is among the most widespread forms of cancer in adults, caused when DNA is altered
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or damaged to such an extent that the cells start to exhibit abnormal malignant properties.
The following properties of cancer cells will be taken into account in our model:

• a normal cell can turn into a cancer cell ([1, p.7]);
• cancer cells do not undergo reverse transformation ([1, p.7]);
• cancer cells exhibit a number of alterations of their physical properties in comparison

to normal cells ([1, p.285]);
• cancer cells show uncontrolled mitotic divisions causing disorganized growth ([1, p.45];

[26, 27]);
• cancer cells are far less adhesive than normal cells and therefore tend to wander through

tissues causing cancerous growth in different parts of the body ([1, p.215]);
• cancer cells exhibit a number of alterations in their genes: for example, their circadian

rhythm is disrupted and they cease to exchange signals with normal cells ([1, p.39];
[26–28]).

In order to arrive at a realistic description with the stress field and velocity distribution in
the epithelium, we developed a discrete chemo-mechanical model. The main components
of our model are mechanical, involving elastic interactions between cells, their proliferation
and division and genetic, involving the mechanism of circadian rhythms and intercellular
signaling. The mechanism of the cell transformation is the third important element of the
model. Their relationships are schematically shown in Fig. 1.

The mechanical submodel presents the epithelium as an elastic two-dimensional array of
cells, approximated by polygons. The evolution of the system starts from hexagonal cells
constituting the plane. In the course of proliferation, division, and transformation, the initial
lattice deforms incorporating also irregular polygons. The deformation of the epithelial lay-
ers, composed of cells that tightly adhere to one another, is a crucial process in tissues since
it plays a central role in gastrulation, an early phase in the embryonic development that ini-
tiates the formation of three-dimensional structures of tissues and organs [29]. The physical
properties of cancer cells significantly differ from those of normal cells [1, 26, 27]. Thus,
the transformation of the cell into a cancerous state changes the mechanics of cell behavior.
This assumption establishes the important link between the elements of the model shown in
Fig. 1.

The key feature of our genetic model is the influence of periodic inputs. Biological
rhythms are periodical fluctuations, which are quite characteristic for all forms of life on
Earth. Rhythms are closely connected adaptive phenomena to periodic changes in envi-
ronmental factors. We concentrate here on circadian rhythms that synchronize with daily

Fig. 1 Principal components of the model and their relationships
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changes of the environment. A remarkable feature of these rhythms is that they are produced
by an autonomous intracellular mechanism [30].

To date, it is widely accepted that the genetic mechanism is responsible for circadian
oscillations [31]. It is now realized that circadian rhythms manifest themselves even on the
subcellular scale in the form of RNA and protein fluctuations. As soon as transport proteins
pass through the cell membranes and trigger intracellular interactions, circadian oscillations
inevitably develop at the mesoscopic and macroscopic scales. At the organism scale, the
signals from individual cells are synchronized, thus forming a generalized rhythm for the
organism as a whole. Now it is established that the main circadian rhythm in mammals is
produced by the suprachiasmatic nucleus (SCN), a group of cells located in the hypotha-
lamus. One of the principal discoveries was the finding of an ultra-fast synchronization
of oscillations within 2–3 periods due to a strong coupling between SCN neurons via a
unique mechanism of neuropeptidergic signaling [32]. As a consequence, any pattern for-
mation cannot occur in such a medium: SCN cells maintain full synchrony as a population
[33]. This may imply that the circadian clock of higher organisms can behave differently
[34, 35]. For example, the authors of [35] proposed to use phase response curve analysis
to show that the coupled period within the SCN stays near the population mean instead of
a Hill-type regulation widely assumed in previous mathematical models. Though the SCN
clock is the circadian pacemaker for the whole organism, the peripheral circadian oscilla-
tors in mammals are not just a passive medium. It has been shown that peripheral clocks are
cell-autonomous and can produce rhythm irrespective of SCN [36]. Thus, the master clock
rather synchronizes peripheral clocks that work locally and autonomously than sends direct
commands to control the local circadian physiology.

The problem of spatial synchronization of a large number of interacting oscillators is
actively discussed in the physical literature [37]. Biological applications were hindered,
until recently, by the lack of experimental data, but the situation has begun to change
due to the appearance of sophisticated experimental techniques. Some examples are gene
expression data analyzed from postmortem brains [38] and attempts at spatial analysis of
fluorescent genes [39], but still, most studies largely concentrate on the temporal rather than
the spatial organization of rhythms.

The principal issue for pattern formation is a local coupling between clocks in the periph-
eral cells. Although peptidergic signaling is absent in peripheral tissues, other mechanisms
should be present. For example, it was reported in [40] that the peripheral tissues of SCN-
lesioned mouse still demonstrate some degree of synchronization in the local circadian
clocks. Of course, the coupling between peripheral oscillators is much weaker than in SCN
but it still exists [36]. This means that when the SCN control disappears, the weak coupling
of local oscillators leads to a greater freedom of each of them in a whole group and hence
to the possible formation of collective patterns.

Since there is extensive experimental evidence that gene deregulation influenced by the
circadian clock is involved in the development of cancer [18–20], the molecular mechanism
of the circadian rhythm disruption and its propagation due to cell-to-cell signaling should
become an essential factor in the transformation of cells. In mammals, it is now known that
if the connection between the peripheral clocks and the pacemaker in SCN is destroyed, the
organism has a high risk of cancer. For example, it was demonstrated in [41] that when the
peripheral tissues in mice deduced from the SCN control were artificially synchronized by
meal timing, the cancer growth was reduced by 40%.

Analyzing all the above, one can conclude that, without the SCN control, the local cir-
cadian oscillators are left to themselves and can weakly interact with each other, forming
poorly synchronized patterns that induce locally the cell transformation. This assumption
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establishes the principal link between these two elements of the model (Fig. 1). This link
operates in both directions: on the one hand, the circadian patterns cause the cell transfor-
mation ([28, 42, 43], see discussion below); on the other hand, the circadian rhythms in
cancer cells are either switched off or seriously damaged ([26–28]).

2.2 Mechanical cellular model of epithelial tissue

We adopt a two-dimensional mechanical model of the epithelial layer along the lines of
an earlier study of wound healing [21]. The cells always remain attached to each other
forming a continuous two-dimensional epithelial surface (Fig. 2). The curvature of the layer
(presumed small compared to the cell size) and thickness inhomogeneities are neglected.
The following features of the model described in detail below make it suitable for realistic
simulations of the epithelium:

• allowing for changing the size and shape of cells;
• allowing for tissue spreading via the mechanism of cell division (Fig. 2a);
• allowing for motion of cells by the mechanism of intercalation (Fig. 2b);
• including the dynamics of signaling species taking part in the regulation of intracellular

processes;
• including the exchange of chemical signals between adjacent cells through their shared

borders (Fig. 2c).

The mechanical model is based on the elastic potential energy U of the tissue [44]:

U = 1

2

∑

cells

(
μP 2 + η(A − A0)

2
)

, (1)

where P and A are the perimeter and area of the cell, respectively. Here the coefficient μ

characterizes the effect of contractile forces within the perimeter of the cell and η character-
izes the elastic resistance to stretching or compressing the cell with respect to the reference
cell area A0.

Fig. 2 Elements of the chemo-mechanical model of epithelium: cell division (a); cell intercalation (b);
cell-to-cell communications (c)
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Vertices of the polygons representing the cells form a lattice. Evolution of the tissue is
modeled by moving the lattice nodes (Fig. 2). We define the mechanical force acting on any
j th node in a standard way:

Fj = − ∂U

∂Rj

, (2)

where Rj denotes the position of the node.
We consider the internal movement of cells in the tissue as a strongly overdamped

process, so the equation of motion for the ith node can be written as:

Vi = dRi

dt
= KFiH (|Fi | − F0) , (3)

where Vi is the velocity, K is the mobility coefficient, and H is the Heaviside function. The
threshold force F0 has been introduced in (3) to take into account the situation when the
node remains immobile even if the force is not zero.

An important feature of the model is the ability of cells to divide. This allows the tissue
to carry out internal movement through the redistribution of internal stresses in the environ-
ment. It is assumed that the division occurs when the longest edge of the polygon and its
corresponding opposite edge are divided in half (Fig. 2a). In order to minimize the grow-
ing disorder in the distribution of nodes in the process of cell division, the probability to
divide was connected to the number of vertices of the polygon nj according to the following
formula (see [21] for more detail):

pdiv = p0q
n−6, (4)

where q is a distribution constant and p0 is a scaling factor. One can see that for q > 1, the
polygons with a number of sides over 6 experience the division more frequently. Thus, the
most likely shape of the cell according to (4) is a hexagon. For cancer cells, the dependence
of the number of nodes is suspended and the division rate is set at a considerably higher
level.

In fact, real epithelial tissues can demonstrate the effect of extrusion of some cells leading
to their death. There is also increasing evidence that clones of cells exhibiting differential
proliferation rates, such as those induced through oncogenic transformation, lead to cell
competition effects [45]. For the sake of simplicity, we here neglect all these phenomena.

Another mechanism that increases the liquidity of the tissue and excludes the severe
deformation of some cells is intercalation [21, 46]. We introduce here a special parameter
l0, which determines the moment when the intercalation can occur. Then the probability of
the event can be written in the simple form:

pint =
{
1, li < l0
0, li ≥ l0

. (5)

One can see from (5) that if the length of the border separating two cells becomes less than
l0, it is substituted by a link of a slightly larger length in the normal direction (Fig. 2b). Inter-
calation is known to be important in many tissue-reshaping processes. Since cancer cells are
far less adhesive than normal cells, the respective l0 is set at a higher level, thereby mak-
ing the intercalation of cancer cells more probable. Altogether, (1–5) define the mechanical
dynamics of tissue on the cellular level.

2.3 Genetic models of circadian rhythms

As mentioned above, we intend to investigate the effect of pattern formation of peripheral
circadian rhythms on the occurrence of cancer. For this reason, the mathematical models
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of rapid synchronization of the entire community of oscillators developed for SCN cells
similar to those in [33–35] are not very suitable for our purposes. In this paper, we use two
simple models of circadian oscillations. The first is a single-gene auto-repressor model with
dimerization where the negative feedback loop is delayed in time suggested in [23]. The
second is a two-variable model with both negative and positive feedback loops [22], which
is a simplified version of time-delayed models proposed earlier [47, 48] for Neurospora.
Both models allow not only a full synchronization of spatially distributed oscillators but
also demonstrate the pattern formation at a small enough coupling between oscillators.

2.3.1 Circadian model I: single-gene auto-repressor with time-delay

The classical Goodwin model is considered to be a minimal oscillator based on a negative
feedback loop [49]. It includes a three-step chain of reactions for the clock gene mRNA,
the clock protein and the transcriptional repressor that inhibits the production of the first
component. The problem is that no limit-cycle oscillations can occur in this model until
the degree of a Hill term becomes greater than 8 [50]. However, a generalization of the
Goodwin model to the case of time-delayed feedback is much more practical because the
oscillatory behavior can be obtained for the smaller value of a Hill coefficient [33]. Time-
delay seems to be the most common cause of oscillations in genetic systems, since gene
regulation processes are typically very slow and comprise multistage biochemical reactions
engaging the sequential assembly of long molecules and therefore are likely to generate
time-delays.

In fact, a three-stage scheme of the Goodwin model can be further simplified, if we take
into account that the delay may also include other intermediate steps of the process. Let us
consider a single-gene protein synthesis with negative auto-regulation (Fig. 3a). This is a
popular motif in genetic regulatory circuits and its temporal dynamics has been analyzed
within both deterministic and stochastic frameworks [51]. The generalized version of this
system, taking into account that the production of the auto-repressor protein takes a finite
amount of the delay time, has been studied in [23, 24].

Fig. 3 Network architecture of the molecular components of the circadian rhythm: a Single-gene auto-
repressor model with time-delay where only the x gene defines the oscillatory activity. X stands for the
concentration of the protein produced by the x gene. b Two-genes model with positive and negative feed-
back loops where there is a pair of the principal genes, x and y, which are responsible for maintaining the
rhythm in the cell. The τ symbol represents steps with a delay and X and Y stand for corresponding protein
concentrations (see text for details)
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Suppose that the protein that is responsible for the circadian rhythms can exist both in the
form of isolated monomers X and dimers D. Both forms actively interact with each other
via the reactions dimerization and undimerization:

X + X
k+d→ D, D

k−d→ X + X, (6)

where k+d , k−d stand for reaction rates.
We denote the unoccupied and occupied state of the promoter site of the gene as S0 and

S1, respectively. Let us postulate that the chemical state of the operator sites S∈ {S0,S1}
determines the production of the corresponding protein at time t + τ . If the operator at time
t is unoccupied (S0), then the protein may be produced at time t + τ . Otherwise, if the
operator is occupied, (S1), the production at time t + τ is blocked. The transitions between
operator states for each protein occur with rates k+1, k−1 when some dimer binds to the
promoter or unbinds from it respectively:

S0 + D
k+1→ S1, S1

k−1→ S0 + D. (7)

An important role in this model comes from the delay τ in the synthesis:

St
0

AI→ St+τ
0 + Xt+τ , (8)

where AI is the reaction rate of a time-delayed production. Finally, the system should be
supplemented by the effect of protein degradation with rate B:

X
B→ ∅. (9)

Altogether, (6–9) define the gene regulation at a single-cell level.
The dynamics of the system (6–9) is governed by the following set of delay-differential

equations (DDEs):

dX(t)

dt
= −2k+dX

2(t) + 2k−dD(t) + AIS0(t − τ) − BX(t),

dD(t)

dt
= 2k+dX

2(t) − 2k−dD(t) − k+1S0(t)D(t) + k−1S1(t),

dS0(t)

dt
= −k+1D(t)S0(t) + k−1S1(t), (10)

dS1(t)

dt
= k+1D(t)S0(t) − k−1S1(t),

where the average numbers of monomers and dimers at time t are denoted as X(t) and
D(t), respectively. The continuous variables S0(t) and S1(t) stand for the average number
of unoccupied and occupied operator sites of the clock gene at time t , respectively. Then we
assume that:

S0 + S1 = 1, (11)

where the copy number that indicates how many copies of monomers are produced in a
single act of transcription/ translation is assumed to be 1.

The main approximation we make here is an assumption that the reactions of dimer-
ization (6) and binding/unbinding (7) are fast in comparison with production/degradation
(8–9), i.e., ki >> AI , B. Thus, we can suppose that the dynamics of the operator-site and
dimers quickly enters into a local equilibrium, where the concentrations of reagents become:

D = εX2, S1 = εδS0X
2, (12)

where ε ≡ k+d/k−d , δ ≡ k+1/k−1.
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We introduce the total number of the folded monomers in all forms as:

XT = X + 2D + 2S1 = X + 2εX2 + 2
εδX2

1 + εδX2
, (13)

where (11–12) were taken into account. In fact, the last term in (13) is sufficiently small
compared to the other terms if ε << 1 and δ << 1.

By taking into account (11–13), system (10) can be reduced to the following single
equation for the total number of monomers:

dXT (t)

dt
= AI

1 + εδX2(t − τ)
− BX(t). (14)

In fact, this equation is a further simplification of the Goodwin model because the interme-
diate steps of the multi-stage reaction with the formation of mRNA and the transcriptional
repressor have been hidden in the delay term. A typical time series of the number of X
monomers obtained by solving (14) for a single cell is shown in Fig. 4a. For the parame-
ter values given in the figure caption, the period of oscillations is about 27 h. This is about
three times greater than the time-delay τ .

In order to describe the effect of intercellular signaling, we suggest for simplicity that
the monomer can penetrate to other cells via the mechanism of diffusive transport. Thus,
we can generalize (14) for the case of a multi-cellular system with circadian signaling in the
following way:

dXi (t)

dt
= 1

1 + 4εXi (t)

(
AI

1 + εδX2
i (t − τ)

− BXi (t)

)
+

+ α
∑

j∈adj (i)

Pij (Xj (t) − Xi (t)), (15)

where the subscript “i” refers to the i-cell. The prefactor has appeared in (15) due to formula
(13) where the number of dimers binding to the promoter has been neglected. The last term
in (15) describes the transport of the signaling species between neighboring cells i and j

(adj (i) stands for “adjacent to i-cell), with the flux being proportional to the boundary
length Pij and tuned by the coefficient α. This implies that the transport rate is limited by
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Fig. 4 Typical time series obtained during a single-cell simulation: a Dynamics of the X protein within
Circadian model I defined by (14) with parameters τ = 8 h, AI = 5000 nM h−1, B = 5 h−1, ε = 0.1 nM−1,
δ = 0.2 nM−1; b Dynamics of the X (solid line) and Y (dashed line) proteins within Circadian model II
defined by (26, 27) with parameters τ = 6 h, AX = 8 nM h−1, AY = 4 nM h−1, BX = 0.3 h−1, BY = 0.4
h−1, εi = 5 nM−1, δi = 5 nM−1
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the transfer through cell membranes. After a cell divides, the daughter cells inherit the phase
of the circadian rhythm of the parent cell. We assume for simplicity that the same X protein
transports the circadian signal outside the cell.

At a single-cell level without intercellular signaling (α = 0), (14) has only a positive
steady-state solution:

X∗ = − B

2AIεδ
+

√
B2

4A2
I ε

2δ2
+ 1

εδ
. (16)

By linearizing (14) near the fixed point (16) and looking for a solution of the form X(t) : eλt ,
where λ = χ + iω, we obtain:

χ = 1

τ
Re(W(−2τAI εδx

∗eτB)) − B, (17)

ω = 1

τ
Im(W(−2τAI εδx

∗eτB)), (18)

where W(z) stands for the Lambert function defined as W(z)eW(z) = z. The condition
for the vanishing of function (17) gives the analytical expression for the Hopf bifurcation
curve and the frequency of neutral oscillations is defined by (18). The big advantage of the
models with a delay is the weak dependence of the oscillation period on the reaction rates of
genetic reactions. This is especially important when describing the circadian rhythms, as it
significantly increases the robustness of the model. The period of oscillations in the models
with a strong delay heavily depends on the delay time. Mathematically, it can be explained
by the asymptotic behavior of the Lambert function in (18).

2.3.2 Circadian model II: two-gene oscillator with positive and negative feedback
loops

Figure 3b shows a graphical scheme of the general network architecture. The genes are
labeled as x and y and their proteins as X and Y, respectively. They constitute a system
having both activating and repressing elements [22]. One can see from Fig. 3b that the
protein Y dimerizes and then works as a positive regulator of X by initiating its transcription.
X operates symmetrically with respect to Y. During the circadian cycle, the proteins are
degraded by turns, which enables the cycle to restart again and again. The scheme also takes
into account that X can be also removed by associating with Y to form a heterodimeric X/Y
complex. The synthesis of both X and Y occurs with a delay of several hours (Fig. 3b).

The molecular mechanism described above can be presented as a set of biochemical
reactions:

X + X
kX+d→ DX, Y + Y

kY+d→ DY , (19)

DX

kX−d→ X + X, DY

kY−d→ Y + Y, (20)

SX
0 + DY

kX+1→ SX
1 , SY

0 + DX

kY+1→ SY
1 , (21)

SX
1

kX−1→ SX
0 + DY , SY

1

kY−1→ SY
0 + DX, (22)
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SX
1

AX→ SX
1 + Xt+τ , SY

1

AY→ SY
1 + Y t+τ , (23)

X
BX→ ∅, Y

BY→ ∅, (24)

X + Y
k→ ∅. (25)

Here, the reactions of dimerization and dedimerization are given by (19) and (20); the
dynamics of operator-sites during binding/unbinding of dimers are described by (21) and
(22); the time-delayed synthesis of proteins is given by (23); the linear and non-linear degra-
dations are described by (24) and (25), respectively. Assuming that reactions of dimerization
and binding/unbinding are fast compared to the processes of production and degradation
of proteins, so that they quickly reach a local equilibrium, we obtain two delay differential
equations (in fact, the procedure of derivation is similar to those for Circadian model I):

dXT (t)

dt
= AX − AX

1 + εY δXY2(t − τ)
− BXX(t) − kX(t)Y(t), (26)

dYT (t)

dt
= AY − AY

1 + εXδYX2(t − τ)
− BYY(t) − kX(t)Y(t), (27)

where εX ≡ kX+d/kX−d , δX ≡ kX+1/kX−1, εY ≡ kY+d/kY−d , δY ≡ kY+1/kY−1 are equilibrium
constants of the fast stages. The average numbers of the X and Y monomers at time t are
denoted as X(t) and Y(t), respectively. XT and YT are the total number of the folded X
and Y monomers in all forms defined in the same way as was done in (13). For simplicity,
the delay time τ is assumed to be same for both genes. In fact, the delay in the model (26,
27) includes all possible multi-stage events between the moment of the transcription start
and the moment when the protein becomes capable of regulation. For example, the delay in
(26) includes Y complexation and nuclear entry of the complex, X translation and multiple
post-transcriptional phosphorylations. The delay in (27) is the time taken for the X protein
to activate the y-gene and the production of Y. It includes X nuclear entry, Y translation,
and possible multiple phosphorylation of Y. Thus, the phosphorylation reactions of the X
and X/Y complexes are not taken into consideration explicitly and are lumped in the delays
because the number of X phosphorylations is not definitely known but only appears to be
high. This is the difference with the 23-variable model suggested in [47]. The same way
was chosen in the paper [48] (see the discussion in the reference).

A typical time series of the total number of X and Y monomers obtained by solving (26,
27) for a single cell is shown in Fig. 4b. One can see that the X protein dominates in the “day
time”, reaching its maximum at “noon” when the concentration of the Y protein is close to
zero. During the “night”, the situation is opposite: X→ 0 and Y is maximal.

As before, we can generalize (26, 27) for the multi-cellular case with circadian signaling
between cells in the following way:

dXi (t)dt = 1

1 + 4εXXi (t)

(
AXεY δXY2

i (t − τ)

1 + εY δXY2
i (t − τ)

− BXXi (t) − kXi (t)Yi (t)

)
+ (28)

+α
∑

j∈adj (i)

Pij (Xj (t) − Xi (t)),

dYi (t)dt = 1

1 + 4εYYi (t)

(
AY εXδYX2

i (t − τ)

1 + εXδYX2
i (t − τ)

− BYYi (t) − kXi (t)Yi (t)

)
, (29)

where the subscript “i” refers to the i-cell and Xi and Xi are defined as specific quantities
(per square unit) and are set pointwise in each cell. We assume that the X protein transports
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the circadian signal outside the cell, while its partner Y is confined within the cell volume.
Similar dynamic equations were studied earlier in the framework of a continuous spatially
extended reaction-diffusion model [22].

In fact, the intracellular circadian clock can be generally affected by a cell size change.
The robustness of the oscillations in this case was studied recently in [52] within the stochas-
tic description. Since we work here in terms of the concentration, rather than the number of
molecules as is commonly used in stochastic models, this possible dependence is not taken
into account.

2.4 Submodel of the transformation of cells

As mentioned above, the main circadian genes appear to greatly influence tumorigenesis.
As is known, the rhythmicity demonstrated in the expression of clock-controlled genes reg-
ulates various functions of cells, such as their division and proliferation (see, for example,
theoretical papers [53, 54] and experimental observations [55]). Desynchronization of this
rhythmicity can be involved in some pathologies, including the development of tumors.
There is increasing evidence linking malfunction of the bioclockwork and pathogenesis of
cancer [18–20, 27, 28, 56, 57]. In review [28], there are a large number of examples of the
connection between circadian genes, circadian periodicity, aging-related phenotypes and
cancer. For instance, it was shown experimentally that mice homozygous for disruption of
circadian clock genes that result in loss of rhythmicity have many phenotypic anomalies.
Among these phenotypes are increases in basal cancer occurrence or in the occurrence of
cancer following genotoxic stress or in genetically cancer-prone models [56]. In another
review [57], the emerging role of circadian genes in hematological and hormone-related
malignancies was discussed and it was even declared that “manipulating circadian biology
is a possible way to fight cancer”.

However, what is the exact mechanism linking circadian rhythmicity and the occurrence
of cancer? Some details of this connection have begun to appear in the literature. For exam-
ple, it was shown recently that the transcriptional regulator at the core of the circadian
clock mechanism hPer2 directly affects hp53 levels, which plays a key role as a human
tumor suppressor [42]. This important result obtained experimentally was reported in [58].
The authors checked whether the circadian rhythm was connected to cell-cycle oscillation
in immortalized rat-1 fibroblasts by observing cell-cycle gene promoter-driven luciferase
activity. It was revealed that there was no direct phase relationship between the circadian
and cell rhythms. These data imply that the circadian system does not govern the cell-
mitosis rhythm in rat-1 fibroblasts. These experimental results rather differ from numerous
studies that assume a priori that cell mitosis is regulated by a circadian system in mam-
malian tissues in vivo. Thus, it was suggested that there is no direct coupling between the
circadian rhythm and cell cycle but the timing of cell mitosis is synchronized with the
rhythmic host environment [58]. Another study implying that the coupling among cell pop-
ulation can play a role in preventing the carcinoma is [43], where authors theoretically
show that the coupling between neighboring cells significantly improves the sustainabil-
ity of hp53 pulses. Since the exact mechanism linking circadian oscillations with cancer is
still unknown, we propose a simple phenomenological model. Based on the papers cited
above, the main idea of the alteration mechanism is a synchronization failure of a local
oscillation phase in the common field of spatially synchronized circadian rhythms in the
epithelial tissue.

Preliminary numerical simulations of the spatially extended problems within Circadian
model I (15) and model II (28–29) have shown that when the number of cells is large enough,
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a complete synchronization, i.e., the total alignment of the oscillation phases in all cells,
cannot be achieved when the coupling is small (see the numerical examples in the next
section). Instead, the cells are organized in collective spatio-temporal patterns including
clusters of cells oscillating with almost the same phase. The thin layer of cells between
clusters exhibits oscillations with intermediate phase. Thus, we introduce a new variable that
characterizes the local dephasing defined as the phase difference of the circadian rhythm of
an ith cell and the average phase of the adjacent cells:

�i(t) =< |ϕi(t) − ϕk(t)| >k∈adj (i) . (30)

Oscillation phase ϕ can be defined in different ways but we choose a physical rather than
formal definition and characterize it by the concentration difference:

Model I : ϕI
i (t) = Xi (t)

max(Xi )
, (31)

Model II : ϕII
i (t) = Xi (t) − Yi (t)

max(Xi ,Yi )
, (32)

where both expressions are normalized by their maximal value. If the i-th cell is in a fully
synchronized field, the value of �i , obviously, will be zero. On the other hand, dephasing
(30) increases near the boundary of the clusters. The maximum value of the dephasing
would occur in case of an isolated cell within a phase cluster. According to our hypothesis,
this cell is most at risk to become a cancer cell. Apparently, in a dynamically changing
pattern where cluster boundaries are varying in time, the cell transformation should occur
much less frequently.

At this stage, we need to determine more accurately what we mean by cancer in our
work. Generally speaking, the metamorphosis of a healthy cell into cancer looks like a
chain reaction caused by initial errors, which results in more severe errors, each increasingly
enabling the cell to avoid the controls that limit normal tissue growth. This implies that the
cell undergoes several transformations in sequence, until it finally becomes a full-fledged
cancer cell, part of the invasive tumor. Since in this paper we focus on the dynamics of a
large number of cells entering into the chemo-mechanical interaction, we restrict ourselves
to the simultaneous transformation of a healthy cell into a cancer cell, which allows the use
of a simple model of bistability.

Bistability is known to be an important phenomenon for understanding main events of
cellular functioning, such as decision-making processes during cell cycle, differentiation,
apoptosis, and so on. This concept is also extensively used to describe the loss of cellular
homeostasis associated with the early development of cancer [59]. More importantly, the
behavior of bistable systems exhibits hysteresis. It means it can generate different output
values for the same input value depending on its state, a key property for the switch-like
control of cellular processes. This is what we need in our case.

Under these assumptions, the equation for the state of the ith cell can be written as:

dZi

dt
= −λZi(1 − Zi)(ζ − Zi) + N�iξi(t), (33)

where Z is the state function, λ is the damping parameter, ξ(t) is an uncorrelated zero mean
noise input in the range ξ ∈ [−1; 1] and N is the amplitude of the noise, assumed to be
multiplicative. Without noise, (33) has two stable stationary solutions: Z = 0, standing for



Multiscale modeling of tumor growth induced by circadian rhythm... 121

the normal state of the cell and Z = 1 corresponding to the cancer state (indicated in Fig. 5a
by black circles). These solutions are separated by an unstable steady state that separates
their domains of attraction (open circle in Fig. 5a).

The parameters of the model (see Table 1) are calibrated in such a way that tran-
sition would occur under the influence of noise but only at a high value of the
dephasing (30) and the reverse transition of an already transformed cell is impossible
(Fig. 5b).

3 Numerical results

3.1 Numerical methods

The initial configuration of the system is a regular hexagonal lattice comprising 1560
healthy cells and no cancer cells. The shape and location of each cell are defined by its
nodes. The tissue as a whole has the form of a stripe with two free borders with periodic
boundary conditions applied. The typical values of the parameters for normal cells are given
in Table 1. Most of the parameter values of the mechanical submodel were taken from our
previous work [21], where the values were calibrated so as to give realistic results. Param-
eter values for the circadian rhythms submodel were taken from [47, 48], and we have also
added some of our own, e.g., for dimerization and diffusion.

The set of differential equations describing the dynamics of the mechanical sub-
system (1–5), the circadian rhythms and signaling (15) or (28–29) depending on the
circadian model) and the state function dynamics (30–33) was solved using the explicit
Euler method, whose stability was warranted by a sufficiently small time step �t =
0.005. The time step for the calculation of the molecular processes in cells was syn-
chronized with the step of calculating the mechanical movement of the tissue cells. In
order to avoid storing a large amount of data for long time-delay intervals, we used
a novel numerical simulation algorithm [22] based on adaptive storing in the com-
puter memory of some selected nodal data only and a subsequent interpolation to
calculate the intermediate values. This adaptive numerical scheme for data storing can
speed up the calculation up to eight times without visible deviations from benchmark
simulation.

Fig. 5 a The phase portrait of (33) without noise (top) and with a non-zero stochastic input (bottom); b A
time series for a normal cell (blue) and a cell transforming into the cancerous state (red)
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Table 1 List of principal parameters

μ = 1.0 FL−1 K = 1.0 LF−1h−1

η = 1.0 FL−3 F0 = 0.02 F

p0 = 2 × 10−4 l0 = 0.15 L

q = 1.4 λ = 10 h−1

α = 0.1 L−1h−1 ζ = 0.15

τ = 6.0 h A0 = 3
√
3/2 L2

εX = 5.0 nM−1 εY = 5.0 nM−1

δX = 5.0 nM−1 δY = 5.0 nM−1

k = 30 nM−1h−1 BX = 0.3 h−1

AX = 8.0 nM h−1 BY = 0.4 h−1

AY = 4.0 nM h−1 N = 2.5 h−1

Spatial dimensions and force are measured in terms of arbitrary units L and F, respectively

3.2 Synchronization of circadian rhythms

3.2.1 Circadian model I

We take as the initial condition a random phase distribution. In the process of evolution,
the rhythms in cells try to synchronize through a weak non-linear interaction given by
the last term in (15), generating various spatio-temporal patterns. From the perspective of
biology, an arbitrary distribution of phases in cells taken as the initial conditions looks
artificial, since synchronization of rhythms happens at the stage of embryonic develop-
ment. Nevertheless, a numerical study with random initial conditions allows us to better
understand the self-organization properties of the system and to evaluate the mechanisms
of pattern formation.

The typical values of the parameters governing the circadian rhythms in each cell
within model I are as follows: AI = 5000 nM h−1, B = 5 h−1, ε = 0.1 nM−1,
δ = 0.2 nM−1, τ = 8 h (see Fig. 4a). Figure 6 presents the results of numerical sim-
ulation of the temporal evolution of the system (15). The patterns of the concentration
x, the dephasing � and the state function Z are shown for two consecutive moments of
time. We found that the spatial dynamics includes the slow development of quasi-standing
waves, which arise against the mean field oscillating with the basic period 27 h (Fig. 6,
left column). Dephasing � calculated according to (30, 31) reaches a maximum value
on the boundary of the standing waves domain (Fig. 6, central column). The cells that
fall into this region are at high risk to transform into a cancerous state. The right col-
umn in Fig. 6 confirms this conclusion: most of the transformed cells are grouped in a
zone of an uncertain oscillation phase characterized by maximal dephasing. The impor-
tant point is the small mobility of the pattern shown in the figure. Since the boundary
of the standing waves changes slowly, the same cells are always at risk of the transfor-
mation. Note that the parameter values for the transformation submodel (33) have been
calibrated so that the number of transformed cells was sufficient to demonstrate the effect
(λ = 10 h−1, ζ = 0.15, N = 0.1 h−1).

In order to characterize how the dephasing jump can speed up the cell transformation,
we introduce a measure given by dephasing � computed in terms of the area of the dissyn-
chronization zone (i.e., the number of cells where �(t) is larger than an arbitrary threshold
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Fig. 6 Evolution of X protein concentration (first column), dephasing � (second column) and state function
Z (third column) in epithelium comprising 1560 cells calculated for Circadian model I with transformation
parameters λ = 10 h−1, ζ = 0.15, N = 0.1 h−1. The evolution of the system starts from random phase
distribution. The upper and lower rows of the frames correspond to t = 350 h and 500 h, respectively

�0) normalized by the total number of cells in the system versus time. In other words, we
compute as a function of time the quantity:

R(t) = 1

M

M∑

i=1

ψi, (34)

where ψ = 1 if �(t) > �0 and ψ = 0 otherwise and M is the total number of cells. In
fact, the spatial dephasing function R(t) is the analogue of the spatial reaction rate calcu-
lated commonly in pattern formation studies in non-linear chemistry. The typical value we
used for the threshold �0 is 0.2�max . Figure 7 presents the number of transformed cells
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Fig. 7 The number of transformed cells (left axis) and spatial dephasing function R(t) (right axis) as a
function of time calculated for Circadian model I with transformation parameters λ = 10 h−1, ζ = 0.15,
N = 0.1 h−1
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(left axis) and spatial dephasing function R(t) (right axis) as a function of time. It can be
seen that the spatial dephasing function oscillates with the period of the basic circadian
rhythm reaching a maximum value once per day. The absolute majority of irreversible cell
transformations occur just at this period of time.

3.2.2 Circadian model II

We found that the spatio-temporal dynamics observed within Circadian model II is more
varied compared with model I. The principal dynamical mode of the system is a traveling
spiral wave pattern, similar to a related continuous system [22]. The waves arise from ini-
tial disturbances and travel outward from the source, until this pattern spreads to the entire
area. The wavefront is originally well ordered but secondary instabilities appear due to
numerous secondary excitation nuclei. Non-linear interplay between wave structures results
in the development of a chaotic pattern via the mechanism of core breakup. Spiral wave
patterns are most common in two-dimensional systems far from equilibrium [60, 61]. Spi-
ral waves are observed in a wide range of biological and chemical systems, i.e., in liquid
phase reaction-diffusion systems [62, 63], on catalytic surfaces [64], and in subcellular
processes [65].

Figure 8 presents the results of numerical simulation of the temporal evolution of the
system (28, 29) with the effect of cell transformation governed by (30–33). The patterns of
concentration x, dephasing � and state function Z are shown at the same time t = 500 h.

If the degradation rate is low (the upper row in Fig. 8) the scenario is as follows.
After the evolution of the system starts from random phase distribution, the non-linear
dynamics demonstrates two different spatio-temporal behaviors: mean field oscillations
with a period about 22.6 h and a spiral traveling wave pattern (Fig. 8, first frame in
the upper row). Since the spiral wave moves rapidly in space, the number of cell trans-
formations occurring due to dephasing is small (Fig. 8, second and third frames in
the upper row).

When the rate of degradation of proteins increases sharply, we observe, instead of the
traveling waves, quasi-steady clustering. The cells are self-organized in two large groups
with a particular phase of oscillations separated by cells fluctuating with intermediate phases
(Fig. 8, the lower row). Cluster formation in the systems with a large number of discrete ele-
ments that exchange signals has also been recently observed in interacting synthetic genetic
oscillators [66]. This kind of clustering seems to be a significant feature of diverse com-
munities. Therefore it may strongly affect the differentiation of cells in various organs. The
effect of the transition to a quasi-steady clustering pattern with a sharp increase of linear
protein degradation in cells may be also responsible for ageing of tissues.

Our numerical experiments show that with the clustering regime, like in the case of Cir-
cadian model I, alternation of healthy cells (Fig. 8, second and third frames in the lower row)
is promoted in the stagnant zone between the clusters. Thus, a sharp rise of protein degra-
dation and change of the spatial dynamics can be seen as key events in the transformation
process.

3.3 Tumor development

The entire set of information available to date about cancer cells suggests that their chemo-
mechanical and biological properties are substantially modified compared to normal cells.
The most important differences have been underlined in the Introduction. While a regular
cell stops dividing if some genetic alternation occurs, the cancer cell continues to divide.
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As a result of continued cell division, many daughter cells with abnormal DNA emerge.
They constitute a separate species of cells that form their own medium: the tumor. To model
this transition, we introduced two distinct sets of parameters characterizing the physical and
chemo-mechanical properties of the two types of cells, normal and cancerous.

The proposed model includes the following special properties of cancer cells:

• the average size of cancer cells is governed by the same reference cell area A0 (cancer
cells can be either larger or smaller normal tissue cells);

• changes of the perimeter and the area of cancer cells are governed by different values
of elasticities μ and η;

• the mode of a cancer cell division does not follow the probability relation (4) depending
on the shape of the cell but is forced instead to a specific period of division T with a
weak scattering;

• the mechanism of cell transformation prevents the reverse transition of cancer cells into
normal state;

• the high mobility (invasivity) of cancer cells is set by the parameter l0, the higher values
of which initiate the process of intensive intercalation in the ensemble of cancer cells;

• since the circadian genes in cancer cells mutate and the circadian rhythm does not work
properly, the circadian dynamics defining the rhythm is suspended in cancer cells;

• the cancer cells do not exchange signals with normal cells and do not participate in the
synchronization of the circadian rhythm throughout tissue.

At the same time, the cancer cells continue to interact mechanically with tissue and, in
turn, put pressure on the healthy cells. It is natural that each descendant of the cancer cell
inherits all properties of its parent.

Figures 9 and 10 present numerical simulations of two different types of cancer. Figure 9
shows the evolution of a non-invasive tumor consisting in fairly large transformed cells.
The parameters defining the properties of cancer cells are A0 = 3

√
3/2 L2, μ = 1.2 FL−1,

Fig. 8 Concentration of the X protein (first column), dephasing � (second column) and state function Z

(third column) in the epithelium comprising 1560 cells calculated for Circadian model II shown at t = 500
h. The evolution of the system started from random phase distribution. The frames correspond to the case
of small degradation with BX = 0.3 h−1, BY = 0.4 h−1 (upper row) and large degradation BX = 6 h−1,
BY = 8 h−1 (lower row). Please check the supplementary multimedia files to see the animation
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Fig. 9 Evolution of a non-invasive tumor in epithelial tissue in time: the color code shows the relative cell
size with respect to the average size of a normal cell (left) and the state function Z where Z = 1 and
Z = 0 stand for cancer and normal cells, respectively (right). The frames arranged from correspond to times
t = 20, 40, 60, 80 h, respectively. The parameters defining the properties of a cancer cell are A0 = 3

√
3/2

L2, μ = 1.2 FL−1, η = 1.0 FL−3, l0 = 0.15 L, T = 12 ± 2 h. Please check the supplementary multimedia
files to see the tumor growth in dynamics
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Fig. 10 Evolution of an invasive cancer tumor in epithelial tissue in time: the color code shows the relative
cell size with respect to the average size of a normal cell (left) and the state function Z where Z = 1 and
Z = 0 stand for cancer and normal cells, respectively (right). The frames arranged from top to bottom
correspond to times t = 20, 40, 60, 80 h, respectively. The parameters defining the properties of a cancer
cell are A0 = 3

√
3/2 L2, μ = 1.2 FL−1, η = 1.0 FL−3, l0 = 0.4 L, T = 12 ± 2 h. Please check the

supplementary multimedia files to see the tumor growth in dynamics
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η = 1.0 FL−3, l0 = 0.15 L, T = 12 ± 2 L. In order to focus upon the development of the
tumor, the alteration process was stopped during the simulation run just after the first cell
turned into a cancer cell. This moment of time was fixed to t = 0 h.

One can see that the size and shape of the cells becoming cancerous differ from those
of the normal members of the community. Cancer cells are approximately twice as large
and irregular in shape. The healthy cells that border on cancer cells experience a significant
stress: they are squeezed and shrunk under the onslaught of cancer cells. Since the period
of the division of cancer cells is shorter, the tumor evolves rapidly, increasing the occupied
area. The tumor remains in this case roughly round with the front between healthy and
cancerous cells being relatively stable (Fig. 9). It is interesting to note the internal structure
of the tumor itself—it looks like a cyst with walls lined with relatively large cells, while
the internal space consists in smaller cells. The forced proliferation of cancer cells is the
reason why in the bulk of the tumor the cells are also strongly squeezed and may become
irregularly shaped.

Another type of tumor development is shown in Fig. 10. Here, one can see the evolu-
tion of a vigorously invasive carcinoma, consisting in relatively small cells. The parameters
defining the properties of cancer cells are A0 = 3

√
3/2 L2, μ = 1.2 FL−1, η = 1.0 FL−3,

l0 = 0.4 L, T = 12±2 h. The main difference with the previous case is that the threshold of
intercalation l0 for cancer cells has been sharply increased in comparison with normal cells.
This condition allows to reduce a high level of potential energy in cells by restructuring their
form due to the intercalation process. The characteristic rate of cell intercalation exceeds the
division frequency and the front between the tumor and the healthy tissue becomes unstable.
Because of the easy intercalation, active proliferation, and relatively small size, the can-
cer cells actively change their location, move apart and migrate through the healthy tissue.
Thus, this simulation models a key property of the invasive type of cancer being capable to
penetrate into various tissues and organs.

The time evolution of the radial positions of all tumor cells is presented in Fig. 11.
It is clearly seen that the pathways of cancer cells often overlap, reflecting the active
intercalation process. One can also notice that the “center of gravity” of the tumor, gen-
erally, also moves, slowly departing from the location of the starting alteration event.
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Fig. 11 Time series of radius positions of cancer cells for the invasive carcinoma shown in Fig. 10,
demonstrating tumor proliferation and the intercalation of cancer cells
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The instability of the front between normal and cancer cells, clearly visible in Fig. 10,
looks similar to a fingering instability at the interface of two immiscible fluids [67]
when a fluid with a lower viscosity is pushed into a fluid of higher viscosity. Although
tissue is neither a liquid nor a granular medium and cannot be characterized as either
miscible or immiscible, the analogy is natural, as the effective viscosity of the tumor
is lowered by easy intercalation, while the driving pressure is generated by division of
cancerous cells.

4 Conclusions and outlook

Cancer formation is certainly a complex biophysical process and therefore cancer mod-
eling necessitates a multiscale mathematical approach. We propose a minimal multiscale
chemo-mechanical model that includes three natural scales of the tumor formation. Pro-
cesses on the mesoscopic (cellular) scale are activated by circadian rhythm signals generated
on the microscopic (subcellular) scale and exert an influence over cooperative phenomena
occurring at the macroscopic level characterized by a long-range coordination of cells. The
medium where the tumor grows and spreads is modeled taking into account both the trans-
port of signaling species and mechanical interactions between the cells. Many details of this
model still need experimental verification.

This paper contains several new results. Two simple schemes have been suggested to
describe circadian rhythms: one is a single-gene auto-repressor model and the other is a
two-variable model with dimerization. The main difference between these models is that
the first model includes only a negative feedback loop, while the second one in addition
has a strong positive feedback loop. Positive feedback is a process that makes the input
larger and therefore it tends to lead the system to instability. In contrast, a system with
negative feedback tends to reduce the perturbation. Thus, the concept of positive feed-
back is closely related to the concept of active continuous medium in which energy is
pumped from the medium into the propagating wave. Since the elements of positive feed-
back were reliably found in the molecular network architecture of the circadian rhythms
for some simple organisms, Circadian model II seems to be more realistic. However, Cir-
cadian model I gives an example of the simplest oscillating system. As a consequence,
if model I describes spatial dynamics in the form of quasi-standing waves, model II can
demonstrate the development of vigorous traveling waves (in the case when the positive
feedback is stronger than the negative one). We have shown within our transformation sub-
model that the alternation process of a healthy cell is promoted when the negative feedback
dominates because the pattern formation here becomes more steady and stagnant. Thus,
the occurrence of a cancer cell may be associated with a local failure in the circadian
rhythms caused by the features of a synchronized protein pattern in the tissue. We demon-
strated numerically that the invasive form of cancer may occur due to the physical properties
of cancer cells, which have a higher mobility in tissue: the interface between the tumor
and healthy tissue is experiencing a wave instability due to a collective chemo-mechanical
interaction of cells.

We believe that if biologists turn to spatially distributed experimental data it would
gradually open up opportunities for modeling spatially distributed biochemical processes.
Such spatio-temporal experimental data on circadian rhythms obtained using fluorescent
reporters have been appearing recently more and more often [38, 39, 68]. This is the
time to switch from focusing mostly on temporal dynamics. Regarding the topic of this
article, first of all one needs to check whether the peripheral oscillators, being free of
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SCN control, form circadian patterns of weakly synchronized oscillations. The detec-
tion of such patterns can help to establish a link between the rhythm disruption and the
occurrence of cancer.

In our opinion, a new type of simulation should be able to include new experimen-
tally discovered molecular mechanisms. Our model is designed in such a way that it can
be readily modified to take account of any newly understood gene regulation processes
and feedback mechanisms affecting chemo-mechanical properties of cells. In the current
version of the model, we considered only one molecular mechanism: the effect of cir-
cadian rhythms responsible for the synchronization of cell activity in the tissue. Other
mechanisms can be added to the general framework of the model. Moreover, since the
present model includes individual behavior of each cell with its own gene regulation
dynamics, it can be used to simulate targeted therapeutic interventions for the various
types of cancer.
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