Skip to main content
. 2016 Jan 11;11(1):e0146727. doi: 10.1371/journal.pone.0146727

Table 1. Basic topological features of example networks.

Where, e is the efficiency of a network and defined as e=2n(n1)i,jV,ijlij1 [51], c is clustering coefficient [4], r is assortative coefficient [33], h is degree heterogeneity and defined as h=k2k2, where 〈k〉 is average degree of a network [16]. d is the diameter of a network. lcp is the correlation between LCP and CN indices presented in [3]. For more definitions and details of the mentioned topological measures, please reference to [5153].

n m e c r h d lcp
USAir 332 2126 0.406 0.749 -0.208 3.46 6 0.9799
PB 1224 19090 0.397 0.361 -0.079 3.13 8 0.9286
INT 5022 6258 0.167 0.033 -0.138 5.05 15 0.8067
Neural 297 2148 0.308 0.2924 -0.1632 1.8008 5 0.9056
Word 112 425 0.442 0.1728 -0.1293 1.8149 5 0.8528
NS 1461 2742 0.016 0.878 0.462 1.85 17 0.9474
Grid 4941 6594 0.063 0.107 0.003 1.45 46 0.8456
FT 115 613 0.4504 0.4032 0.1624 1.01 4 0.8931
Email 1133 5451 0.2999 0.254 0.0782 1.94 8 0.8538
Jazz 198 2742 0.5132 0.633 0.0202 1.3951 6 0.9484