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Abstract

We propose a novel technique to boost the power of testing a high-dimensional vector H : θ = 0 

against sparse alternatives where the null hypothesis is violated only by a couple of components. 

Existing tests based on quadratic forms such as the Wald statistic often suffer from low powers 

due to the accumulation of errors in estimating high-dimensional parameters. More powerful tests 

for sparse alternatives such as thresholding and extreme-value tests, on the other hand, require 

either stringent conditions or bootstrap to derive the null distribution and often suffer from size 

distortions due to the slow convergence. Based on a screening technique, we introduce a “power 

enhancement component”, which is zero under the null hypothesis with high probability, but 

diverges quickly under sparse alternatives. The proposed test statistic combines the power 

enhancement component with an asymptotically pivotal statistic, and strengthens the power under 

sparse alternatives. The null distribution does not require stringent regularity conditions, and is 

completely determined by that of the pivotal statistic. As specific applications, the proposed 

methods are applied to testing the factor pricing models and validating the cross-sectional 

independence in panel data models.
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1 Introduction

High-dimensional cross-sectional models have received growing attentions in both 

theoretical and applied econometrics. These models typically involve a structural parameter, 

whose dimension can be either comparable or much larger than the sample size. This paper 

addresses testing a high-dimensional structural parameter:
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where N = dim(θ) is allowed to grow faster than the sample size T. We are particularly 

interested in boosting the power in sparse alternatives under which θ is approximately a 

sparse vector. This type of alternative is of particular interest, as the null hypothesis 

typically represents some economic theory and violations are expected to be only by some 

exceptional individuals.

A showcase example is the factor pricing model in financial economics. Let yit be the excess 

return of the i-th asset at time t, and ft = (f1t,…, fKt)′ be the K-dimensional observable 

factors. Then, the excess return has the following decomposition:

where bi = (bi1,…, biK)′ is a vector of factor loadings and uit represents the idiosyncratic 

error. The key implication from the multi-factor pricing theory is that the intercept θi should 

be zero, known as the “mean-variance efficiency” pricing, for any asset i. An important 

question is then if such a pricing theory can be validated by empirical data, namely we wish 

to test the null hypothesis H0 : θ = 0, where θ = (θ1, …, θN)′ is the vector of intercepts for all 

N financial assets. As the factor pricing model is derived from theories of financial 

economics (Ross, 1976), one would expect that inefficient pricing by the market should only 

occur to a small fractions of exceptional assets. Indeed, our empirical study of the 

constituents in the S&P 500 index indicates that there are only a couple of significant 

nonzero-alpha stocks, corresponding to a small portion of mis-priced stocks instead of 

systematic mis-pricing of the whole market. Therefore, it is important to construct tests that 

have high power when θ is sparse.

Most of the conventional tests for H0 : θ = 0 are based on a quadratic form:

Here  is an element-wise consistent estimator of θ, and V is a high-dimensional positive 

definite weight matrix, often taken to be the inverse of the asymptotic covariance matrix of 

(e.g., the Wald test). After a proper standardization, the standardized W is asymptotically 

pivotal under the null hypothesis. In high-dimensional testing problems, however, various 

difficulties arise when using a quadratic statistic. First, when N > T, estimating V is 

challenging, as the sample analogue of the covariance matrix is singular. More 

fundamentally, tests based on W have low powers under sparse alternatives. The reason is 

that the quadratic statistic accumulates high-dimensional estimation errors under H0, which 

results in large critical values that can dominate the signals in the sparse alternatives. A 

formal proof of this statement will be given in Section 3.3.

To overcome the aforementioned difficulties, this paper introduces a novel technique for 

high-dimensional cross-sectional testing problems, called the “power enhancement”. Let J1 

be a test statistic that has a correct asymptotic size (e.g., Wald statistic), which may suffer 

from low powers under sparse alternatives. Let us augment the test by adding a power 

enhancement component J0 ≥ 0, which satisfies the following three properties:
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Power Enhancement Properties

a. Non-negativity: J0 ≥ 0 almost surely.

b. No-size-distortion: Under H0, P (J0 = 0|H0) → 1.

c. Power-enhancement: J0 diverges in probability under some specific regions of 

alternatives Ha.

Our constructed power enhancement test takes the form

The non-negativity property of J0 ensures that J is at least as powerful as J1. Property (b) 

guarantees that the asymptotic null distribution of J is determined by that of J1, and the size 

distortion due to adding J0 is negligible, and property (c) guarantees significant power 

improvement under the designated alternatives. The power enhancement principle is thus 

summarized as follows: Given a standard test statistic with a correct asymptotic size, its 

power is substantially enhanced with little size distortion; this is achieved by adding a 

component J0 that is asymptotically zero under the null, but diverges and dominates J1 

under some specific regions of alternatives.

An example of such a J0 is a screening statistic:

where , and  denotes a data-dependent normalizing factor, taken 

as the estimated asymptotic variance of . The critical value δN,T, depending on (N, T), is a 

high-criticism threshold, chosen to be slightly larger than the noise level 

 so that under H0, J0 = 0 with probability approaching one. In 

addition, we take J1 as a pivotal statistic, e.g., standardized Wald statistic or other quadratic 

forms such as the sum of the squared marginal t-statistics (Bai and Saranadasa, 1996; Chen 

and Qin, 2010; Pesaran and Yamagata, 2012). The screening set  also captures indices 

where the null hypothesis is violated.

One of the major differences of our test from most of the thresholding tests (Fan, 1996; 

Hansen, 2005) is that, it enhances the power substantially by adding a screening statistic, 

which does not introduce extra difficulty in deriving the asymptotic null distribution. Since 

J0 = 0 under H0, it relies on the pivotal statistic J1 to determine its null distribution. In 

contrast, the existing tests such as thresholding, extreme value, and higher criticism tests 

(e.g., Hall and Jin (2010)) often require stringent conditions to derive their asymptotic null 

distributions, making them restrictive in econometric applications, due to slow rates of 

convergence. Moreover, the asymptotic null distributions are inaccurate at finite sample. As 

pointed out by Hansen (2003), these statistics are non-pivotal even asymptotically, and 

require bootstrap methods to simulate the null distributions.
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As a specific application, in addition to testing the aforementioned factor pricing model, this 

paper also studies the tests for cross-sectional independence in mixed effect panel data 

models:

Let ρij denote the correlation between uit and ujt, assumed to be time invariant. The “cross-

sectional independence” test is concerned about the following null hypothesis:

that is, under the null hypothesis, the n × n covariance matrix Σu of {uit}i≤n is diagonal. In 

empirical applications, weak cross-sectional correlations are often present, which results in a 

sparse covariance Σu with just a few nonzero off-diagonal elements. Namely, the vector θ = 

(ρ12, ρ13,…, ρn−1,n) is sparse and should be incorporated to improve power of the test. The 

dimensionality N = n(n − 1)/2 can be much larger than the number of observations. 

Therefore, the power enhancement in sparse alternatives is very important to the testing 

problem. By choosing δN,T to dominate  as detailed in Section 5, 

under the sparse alternative, the set  “screens out” most of the estimation noises, and 

contains only a few indices of the nonzero off-diagonal entries. Therefore,  not only 

reveals the sparse structure of Σu, but also determines the nonzero off-diagonal entries with 

an over-whelming probability.

There has been a large literature on high-dimensional cross-sectional tests. For instance, the 

literature on testing the factor pricing model is found in Gibbons et al. (1989), MacKinlay 

and Richardson (1991), Beaulieu et al. (2007) and Pesaran and Yamagata (2012), all in 

quadratic forms. Gagliardini et al. (2011) studied estimation of the risk premia in a CAPM 

and its associated testing problem, which is closely related to our work. While we also study 

a large panel of stock returns as a specific example and double asymptotics (as N, T → ∞), 

the problems and approaches being considered are very different. This paper addresses a 

general problem of enhancing powers under high-dimensional sparse alternatives.

For the mixed effect panel data model, most of the testing statistics are based on the sum of 

squared residual correlations, which also accumulates many off-diagonal estimation errors in 

estimating the covariance matrix of (u1t, …, unt). See, for example, Breusch and Pagan 

(1980), Pesaran et al. (2008), and Baltagi et al. (2012). Our problem is also related to the test 

with a restricted parameter space, previously considered by Andrews (1998), who improves 

the power by directing towards the “relevant” alternatives; see also Hansen (2003) for a 

related idea. Chernozhukov et al. (2013) proposed a high-dimensional inequality test, and 

employed an extreme value statistic, whose critical value is determined through applying the 

moderate deviation theory on an upper bound of the rejection probability. In contrast, the 

asymptotic distribution of our proposed power enhancement statistic is determined through 

the pivotal statistic J1, and the power is improved via the contributions of sparse alternatives 

that survive the screening process.
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The remainder of the paper is organized as follows. Section 2 sets up the preliminaries and 

highlights the major differences from existing tests. Section 3 presents the main result of 

power enhancement test. As applications to specific cases, Section 4 and Section 5 

respectively study the factor pricing model and test of cross-sectional independence. Section 

6 presents simulation results are empirical evidence of sparse alternatives based on the real 

data. Section 7 provides further discussions. Proofs are given in the supplementary material.

Throughout the paper, for a symmetric matrix A, let λmin(A) and λmax(A) represent its 

minimum and maximum eigenvalues. Let ‖A‖2 and ‖A‖1 denote its operator norm and l1-

norm respectively, defined by  and maxi Σj |Aij|. For a vector θ, define 

 and ‖θ‖max = maxj |θj|. For two deterministic sequences aT and bT, we 

write aT ≪ bT (or equivalently bT ≫ aT) if aT = o(bT). Also, aT ⩆ bT if there are constants 

C1, C2 > 0 so that C1bT ≤ aT ≤ C2bT for all large T. Finally, we denote |S|0 as the number of 

elements in a set S.

2 Power Enhancement in high dimensions

This section introduces power enhancement techniques and provides heuristics to justify the 

techniques. The differences from related methods in the literature are also highlighted.

2.1 Power enhancement

Consider a testing problem:

where Θa ⊂ ℝN\{0} is an alternative set in ℝN. A typical example is Θa = {θ: θ ≠ 0}. 

Suppose we observe a stationary process  of size T. Let J1(D) be a certain test 

statistic, which will also be written as J1. Often J1 is constructed such that under H0, it has a 

non-degenerate limiting distribution F : As T, N → ∞,

(2.1)

For the significance level q ∈ (0, 1), let Fq be the critical value for J1. Then the critical 

region is taken as {D: J1 > Fq} and satisfies

This ensures that J1 has a correct asymptotic size. In addition, it is often the case that J1 has 

high power against H0 on a subset Θ(J1) ⊂ Θa, namely,
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Typically, Θ(J1) consists of those θ′s, whose l2-norm is relatively large, as J1 is normally an 

omnibus test (e.g. Wald test).

In a data-rich environment, econometric models often involve high-dimensional parameters 

in which dim(θ) = N can grow fast with the sample size T. We are particularly interested in 

sparse alternatives Θs ⊂ Θa under which H0 is violated only on a couple of exceptional 

components of θ. Specifically, Θs ∈ ℝN is a subset of Θa, and when θ ∈ Θs, the number of 

non-vanishing components is much less than N. As a result, its l2-norm is relatively small. 

Therefore, under sparse alternative Θs, the omnibus test J1 typically has a lower power, due 

to the accumulation of high-dimensional estimation errors. Detailed explanations are given 

in Section 3.3 below.

We introduce a power enhancement principle for high-dimensional sparse testing, by 

bringing in a data-dependent component J0 that satisfies the Power Enhancement 
Properties defined in Section 1. The component J0 does not serve as a test statistic on its 

own, but is added to a classical statistic J1 that is often pivotal (e.g., Wald-statistic), so the 

proposed test statistic is defined by

Our introduced “power enhancement principle” is explained as follows.

1. Under mild conditions, P (J0 = 0|H0) → 0 by construction. Hence when (2.1) is 

satisfied, we have

Therefore, adding J0 to J1 does not affect the size of the standard test statistic 

asymptotically. Both J and J1 have the same limiting distribution under H0.

2. The critical region of J is defined by

As J0 ≥ 0, P (J > Fq|θ) ≥ P (J1 > Fq|θ) for all θ ∈ Θa. Hence the power of J is at 

least as large as that of J1.

3. When θ ∈ Θs is a sparse high-dimensional vector under the alternative, the 

“classical” test J1 may have low power as ‖θ‖ is typically relatively small. On the 

other hand, for θ ∈ Θs, J0 stochastically dominates J1. As a result, P (J > Fq|θ) > P 

(J1 > Fq|θ) strictly holds, so the power of J1 over the set Θs is enhanced after 

adding J0. Often J0 diverges fast under sparse alternatives Θs, which ensures P (J > 

Fq|θ) → 1 for θ ∈ Θs. In contrast, the classical test only has P (J1 > Fq|θ) < c < 1 

for some c ∈ (0, 1) and θ ∈ Θs, and when ‖θ‖ is sufficiently small, P (J1 > Fq|θ) is 

approximately q.
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It is important to note that the power is enhanced without sacrificing the size asymptotically. 

In fact the power enhancement principle can be asymptotically fulfilled under a weaker 

condition J0|H0 →p 0. However, we construct J0 so that P (J0 = 0|H0) → 1 to ensure a good 

finite sample size.

2.2 Construction of power enhancement component

We construct a specific power enhancement component J0 that satisfies (a)–(c) of the power 

enhancement properties, and identify the sparse alternatives in Θs. Such a component can be 

constructed via screening as follows. Suppose we have a consistent estimator  such that 

. For some slowly growing sequence δN,T → ∞ (as T, N → ∞), 

define a screening set:

(2.2)

where  is a data-dependent normalizing constant, often taken as the estimated 

asymptotic variance of . The sequence δN,T, called “high criticism”, is chosen to dominate 

the maximum-noise-level, satisfying: (recall that Θa denotes the alternative set)

(2.3)

for θ under both null and alternate hypotheses. The screening statistic J0 is then defined as

By (2.2) and (2.3), under H0 : θ = 0,

Therefore J0 satisfies the non-negativeness and no-size-distortion properties.

Let {vj}j≤N be the population counterpart of . To satisfy the power-enhancement 

property, define

(2.4)

and in particular S(0) = ∅. We shall show in Theorem 3.1 below that , 

for all θ ∈ Θa ∪ {0}. Thus all the significant signals are contained in  with a high 

probability. If S (θ) ≠ Ø, then by the definition of  and δN,T → ∞, we have
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Thus, the power of J1 is enhanced on the subset

Furthermore,  not only reveals the sparse structure of θ under the alternative, but also 

determines the nonzero entries with an over-whelming probability.

The introduced J0 can be combined with any other test statistic with an accurate asymptotic 

size. Suppose J1 is a “classical” test statistic. Our power enhancement test is simply

For instance, suppose we can consistently estimate the asymptotic inverse covariance matrix 

of , denoted by , then J1 can be chosen as the standardized Wald-statistic:

As a result, the asymptotic distribution of J is  (0, 1) under the null hypothesis.

In sparse alternatives where ‖θ‖ may not grow fast enough with N but θ ∈ Θs, the combined 

test J0 + J1 can be very powerful. In contrast, we will formally show in Theorem 3.4 below 

that the conventional Wald test J1 can have very low power on its own. On the other hand, 

when the alternative is “dense” in the sense that ‖θ‖ grows fast with N, the conventional test 

J1 itself is consistent. In this case, J is still as powerful as J1. Therefore, if we denote Θ(J1) 

⊂ ℝN/{0} as the set of alternative θ’s against which the classical J1 test has power 

converging to one, then the combined J = J0 + J1 test has power converging to one against θ 

on

We shall show in Section 3 that the power is enhanced uniformly over θ ∈ Θs ∪ Θ(J1). In 

addition, the set  indicates which components may violate the null hypothesis.

2.3 Comparisons with thresholding and extreme-value tests

One of the fundamental differences between our power enhancement component J0 and 

existing tests with good power under sparse alternatives is that, existing test statistics have a 

non-degenerate distribution under the null, and often require either bootstrap or strong 

conditions to derive the null distribution. Such convergences are typically slow and the 
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serious size distortion appears in finite sample. In contrast, our screening statistic J0 uses 

“high criticism” sequence δN,T to make P (J0 = 0|H0) → 1, hence does not serve as a test 

statistic on its own. The asymptotic null distribution is determined by that of J1, which 

usually not hard to derive As we shall see in sections below, the required regularity 

condition is relatively mild, which makes the power enhancement test widely applicable to 

many econometric problems.

In the high-dimensional testing literature, there are mainly two types of statistics with good 

power under sparse alternatives: extreme value test and thresholding test respectively. The 

test based on extreme values studies the maximum deviation from the null hypothesis across 

the components of , and forms the statistic based on  for some δ 

> 0 and a weight wj (e.g., Cai et al. (2013), Chernozhukov et al. (2013)). Such a test statistic 

typically converges slowly to its asymptotic counterpart. An alternative test is based on 

thresholding: for some δ > 0 and pre-determined threshold level tN,

(2.5)

For example, when tT is taken slightly less than , R becomes the extreme 

statistic. When tT is small (e.g. 0), R becomes a traditional test, which is not powerful in 

detecting sparse alternatives, though it can have good size properties. The accumulation of 

estimation errors is prevented due to the threshold  for sufficiently large tN 

(see, e.g., Fan (1996) and Zhong et al. (2013)). In a low-dimensional setting, Hansen (2005) 

suggested using a threshold to enhance the power in a similar way.

Although (2.5) looks similar to J0, the ideas behind are very different. Both the extreme 

value test and the thresholding test require regularity conditions that may be restrictive in 

econometric applications. For instance, it can be difficult to employ the central limit theorem 

directly on (2.5), as it requires the covariance between  and  decay fast enough as k → 

∞ (Zhong et al., 2013). In cross-sectional testing problems, this essentially requires an 

explicit ordering among the cross-sectional units which is, however, often unavailable in 

panel data applications. In addition, as (2.5) involves effectively limited terms of 

summations due to thresholding, the asymptotic theory does not provide adequate 

approximations, resulting in size-distortion in applications. We demonstrate the size-

distortion in the simulation study.

3 Asymptotic properties

3.1 Main results

This section presents the regularity conditions and formally establishes the claimed power 

enhancement properties. Below we use P (·|θ) to denote the probability measure defined 

from the sampling distribution with parameter θ. Let Θ ⊂ ℝN be the parameter space of θ 

that covers the union of {0} and the alternative set Θa. When we write infθ∈Θ P (·|θ), the 

infimum is taken in the space that covers the union of both null and alternative space.
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We begin with a high-level assumption. In specific applications, they can be verified with 

primitive conditions.

Assumption 3.1—As T, N → ∞, the sequence δN,T → ∞, and the estimators 

are such that

i.
;

ii. .

The normalizing constant vj is often taken as the asymptotic variance of , with  being its 

consistent estimator. The constants 4/9 and 9/4 in condition (ii) are not optimally chosen, as 

this condition only requires  be not-too-bad estimators of their population 

counterparts.

In many high-dimensional problems with strictly stationary data that satisfy strong mixing 

conditions, following from the large-deviation theory, typically, 

. Therefore, we shall fix

(3.1)

which is a high criticism that slightly dominates the standardized noise level (it may be 

useful to recall that the maximum of N i.i.d. Gaussian noises with a bounded variance 

behaves as  asymptotically). We shall provide primitive conditions for this choice of 

δN,T in the subsequent sections, so that Assumption 3.1 holds.

Recall that  and S(θ) are defined by (2.2) and (2.4) respectively. In particular, 

, so under H0 : θ = 0, S(θ) = ∅. The following 

theorem characterizes the asymptotic behavior of  under both the null 

and alternative hypotheses.

Theorem 3.1—Let Assumption 3.1 hold. As T, N →∞, we have under H0 : θ = 0, 

. Hence

In addition,
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Besides the asymptotic behavior of J0, Theorem 3.1 also establishes a “sure screening” 

property of , which means it selects all the significant components whose indices are in 

S(θ). This result is achieved uniformly in θ under both the null and alternative hypotheses.

Remark 3.1—Under additional mild assumptions, it can be further shown that 

 uniformly in θ. Hence the selection is consistent. While the selection 

consistency is not a requirement of the power enhancement principle, we refer to our earlier 

manuscript Fan et al. (2014) for technical details.

We are now ready to formally show the power enhancement argument. The enhancement is 

achieved uniformly on the following set:

(3.2)

In particular, if  is -consistent, and  is the asymptotic standard deviation of  then 

 is bounded away from both zero and infinity. Using (3.1), we have

This is a relatively weak condition on the strength of the maximal signal in order to be 

detected by J0.

A test is said to have a high power uniformly on a set Θ* ⊂ ℝN \ {0} if

For a given distribution function F, let Fq denote its qth quantile.

Theorem 3.2—Let Assumptions 3.1 hold. Suppose there is a test J1 such that

i. it has an asymptotic non-degenerate null distribution F, and the critical region takes 

the form {D : J1 > Fq} for the significance level q ∈ (0, 1),

ii. it has a high power uniformly on some set Θ(J1) ⊂ Θ,

iii. there is c > 0 so that , as T, N → ∞.

Then the power enhancement test J = J0 + J1 has the asymptotic null distribution F, and has 

a high power uniformly on the set Θs ∪ Θ(J1): as T, N → ∞
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The three required conditions for J1 are easy to understand: Conditions (i) and (ii) 

respectively require the size and power conditions for J1. Condition (iii) requires J1 be 

dominated by J0 under Θs. This condition is not restrictive since J1 is typically standardized 

(e.g., Donald et al. (2003)).

Theorem 3.2 also shows that J1 and J have the critical regions {D : J1 > Fq} and {D : J > 

Fq} respectively, but the high power region is enhanced from Θ(J1) to Θs ∪ Θ(J1). In high-

dimensional testing problems, Θs ∪ Θ(J1) can be much larger than Θ(J1). As a result, the 

power of J1 can be substantially enhanced after J0 is added.

3.2 Power enhancement for quadratic tests

As an example of J1, we consider the widely used quadratic test statistic, which is 

asymptotically pivotal:

where μN,T and ξN,T are deterministic sequences that satisfy μN,T → 0 and ξN,T → ξ ∈ (0, 

∞). The weight matrix V is positive definite, whose eigenvalues are bounded away from 

both zero and infinity. Here TV is often taken to be the inverse of the asymptotic covariance 

matrix of . Other popular choices are  with  (Bai and 

Saranadasa, 1996; Chen and Qin, 2010; Pesaran and Yamagata, 2012) and V = IN, the N × N 

identity matrix. We set J1 = JQ, whose power enhancement version is J = J0 + JQ. For the 

moment, we shall assume V to be known, and just focus on the power enhancement 

properties. We will deal with unknown V for testing the factor pricing problem in the next 

section.

Assumption 3.2

i. There is a non-degenerate distribution F so that under H0, JQ →d F.

ii. The critical value Fq = O(1) and the critical region of JQ is {D : JQ > Fq},

iii. V is positive definite, and there exist two positive constants C1 and C2 such that C1 

≤ λmin(V) ≤ λmax(V) ≤ C2.

iv. C3 ≤ Tvj ≤ C4, j = 1, …, N for positive constants C3 and C4.

Analyzing the power properties of JQ and applying Theorem 3.2, we obtain the following 

theorem. Recall that δN,T and Θs are defined by (3.1) and (3.2).

Theorem 3.3—Under Assumptions 3.1–3.2, the power enhancement test J = J0 +JQ 

satisfies: as T, N → ∞,

i. under the null hypothesis H0 : θ = 0, J →d F,

ii. there is C > 0 so that J has high power uniformly on the set
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that is,  for any q ∈ (0,1).

3.3 Low power of quadratic statistics under sparse alternatives

When JQ is used on its own, it can suffer from a low power under sparse alternatives if N 

grows much faster than the sample size, even though it has been commonly used in the 

econometric literature. Mainly,  aggregates high-dimensional estimation errors under 

H0, which become large with a non-negligible probability and potentially override the sparse 

signals under the alternative. The following result gives this intuition a more precise 

description.

To simplify our discussion, we shall focus on the Wald-test with TV being the inverse of the 

asymptotic covariance matrix of , assumed to exist. Specifically, we assume the 

standardized  to be asymptotically normal under H0:

(3.3)

This is one of the most commonly seen cases in various testing problems. The diagonal 

entries of  are given by {vj}j≤N.

Theorem 3.4—Suppose that (3.3) holds with ‖V‖1 < C and ‖V−1‖1 < C for some C > 0. 

Under Assumptions 3.1–3.2,  and log N = o(T1−γ) for some 0 < γ < 1, the 

quadratic test JQ has low power at the sparse alternative Θc for any c > 0, given by

In other words, ∀c > 0, ∀θ ∈ Θc, for any significance level q,

where zq is the qth upper quantile of standard normal distribution.

In the above theorem, the alternative is a sparse vector. However, using the quadratic test 

itself, the asymptotic power of the test is as low as q. This is because the signals in the 

sparse alternative are dominated by the aggregated high-dimensional estimation errors: 

. In contrast, the non-vanishing components of θ (fixed constants) are actually 

detectable by using J0. The power enhancement test J0 + JQ takes this into account, and has 

a substantially improved power.
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4 Application: Testing Factor Pricing Models

4.1 The model

The multi-factor pricing model, motivated by the Arbitrage Pricing Theory (APT) by Ross 

(1976), is one of the most fundamental results in finance. It postulates how financial returns 

are related to market risks, and has many important practical applications. Let yit be the 

excess return of the i-th asset at time t and ft = (f1t, …, fKt)′ be the observable factors. Then, 

the excess return has the following decomposition:

where bi = (bi1, …, biK)′ is a vector of factor loadings and uit represents the idiosyncratic 

error. To make the notation consistent, we stick to use θ to represent the commonly used 

“alpha” in the finance literature.

While the APT does not necessarily deliver an observable factor model, the specification of 

an observable factor structure is of considerable interest and is often the case in empirical 

analyses. The key implication from the multi-factor pricing theory for tradable factors is that 

the intercept θi should be zero for any asset i. Such an exact feature of factor pricing can also 

be motivated from Connor (1984), who presented a competitive equilibrium version of the 

APT. An important question is then testing the null hypothesis

(4.1)

namely, whether the factor pricing model is consistent with empirical data, where θ = (θ1, 

…, θN)′ is the vector of intercepts for all N financial assets. One typically picks five-year 

monthly data, because the factor pricing model is technically a one-period model whose 

factor loadings can be time-varying; see Gagliardini et al. (2011) on how to model the time-

varying effects using firm characteristics and market variables. As the theory of the factor 

pricing model applies to all tradable assets, rather than a handful selected portfolios, the 

number of assets N should be much larger than T. This ameliorates the selection biases in the 

construction of testing portfolios. On the other hand, our empirical study on the S&P500 

index provides empirical evidence of sparse alternatives: there are only a few significantly 

nonzero components of θ, corresponding to a small portion of mis-priced stocks, instead of 

systematic mispricing of the whole market.

Most existing tests to the problem (4.1) are based on the quadratic statistic , 

where  is the OLS estimator for θ, and V is some positive definite matrix. Prominent 

examples are given by Gibbons et al. (1989), MacKinlay and Richardson (1991) and 

Beaulieu et al. (2007). When N is possibly much larger than T, Pesaran and Yamagata 

(2012) showed that, under regularity conditions (Assumption 4.1 below),
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where af,T > 0, given in the next subsection, is a constant that depends only on factors’ 

empirical moments, and Σu is the N×N covariance matrix of ut = (u1t, …, uNt)′, assumed to 

be time-invariant.

Recently, Gagliardini et al. (2011) proposed a novel approach to modeling and estimating 

time-varying risk premiums using two-pass least-squares method under asset pricing 

restrictions. Their problems and approaches differ substantially from ours, though both 

papers study similar problems in finance. As a part of their model validation, they develop 

test statistics against the asset pricing restrictions and weak risk factors. Their test statistics 

are based on a weighted sum of squared residuals of the cross-sectional regression, which, 

like all classical test statistics, have power only when there are many violations of the asset 

pricing restrictions. They do not consider the issue of enhancing the power under sparse 

alternatives, nor do they involve a Wald statistic that depends on a high-dimensional 

covariance matrix. In fact, their testing power can be enhanced by using our techniques.

4.2 Power enhancement component

We propose a new statistic that depends on (i) the power enhancement component J0, and 

(ii) a feasible Wald component based on a consistent covariance estimator for , which 

controls the size under the null even when N/T→∞.

Define  and . Also define

The OLS estimator of θ can be expressed as

(4.2)

When cov(ft) is positive definite, under mild regularity conditions (Assumption 4.1 below), 

af,T consistently estimates af, and af > 0. In addition, without serial correlations, the 

conditional variance of  (given {ft}) converges in probability to

which can be estimated by  based on the residuals of OLS estimator:
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We show in Proposition 4.1 below that . Therefore, 

 slightly dominates the maximum estimation noise. The screening 

set and the power enhancement component are defined as

and

4.3 Feasible Wald test in high dimensions

Assuming no serial correlations among  and conditional homoskedasticity 

(Assumption 4.1 below), given the observed factors, the conditional covariance of  is 

Σu/(Taf,T). If the covariance matrix Σu of ut were known, the standardized Wald test statistic 

is

(4.3)

Under H0 : θ = 0, it converges in distribution to .

Note that factor models are often only justified as being “approximate” (Chamberlain and 

Rothschild (1983)), where Σu is a non-diagonal covariance matrix of cross-sectionally 

correlated idiosyncratic errors (u1t, …, uNt). When N/T → ∞, it is difficult to consistently 

estimate , as there are O(N2) off-diagonal parameters. Without parametrizing the off-

diagonal elements, we assume Σu = cov(ut) a sparse matrix. This assumption is natural for 

large covariance estimations for factor models, and was previously considered by Fan et al. 

(2011). Since the common factors dictate preliminarily the co-movement across the whole 

panel, a particular asset’s idiosyncratic shock is usually correlated significantly only with a 

few of other assets. For example, some shocks only exert influences on a particular industry, 

but are not pervasive for the whole economy (Connor and Korajczyk, 1993). Recently, 

Gagliardini et al. (2011) also obtained a feasible test by using a similar thresholding 

technique as to be introduced below to estimate the asymptotic covariance matrix. They 

showed that the sparsity approach for estimating covariance matrices covers the block 

diagonal case, which is expected to be present in the factor modeling of stocks (as 

elaborated in Gagliardini et al. (2011), a typical example of the sparsity of Σu is due to the 

presence of remaining industry sector effects).

Following the approach of Bickel and Levina (2008), we can consistently estimate  via 

thresholding: let . Define the covariance estimator as
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where hij(·) is a generalized thresholding function (Antoniadis and Fan, 2001; Rothman et 

al., 2009), with threshold value  for some constant C > 0, designed 

to keep only the sample correlation whose magnitude exceeds . The hard-

thresholding function, for example, is hij(x) = x1{|x| > τij}, and many other thresholding 

functions such as soft-thresholding and SCAD (Fan and Li, 2001) are specific examples. In 

general, hij(·) should satisfy:

i. hij(z) = 0 if |z| < τij;

ii. |hij(z) − z| ≤ τij;

iii. there are constants a > 0 and b > 1 such that  if |z| > bτij.

The thresholded covariance matrix estimator sets most of the off-diagonal estimation noises 

in  to zero. As studied in Fan et al. (2013), the constant C in the 

threshold can be chosen in a data-driven manner so that  is strictly positive definite in 

finite sample even when N > T.

With , we are ready to define the feasible standardized Wald statistic:

whose power can be enhanced under sparse alternatives by:

Remark 4.1—The thresholding approach described here can be modified to take 

advantages of the block structure of Σu. The covariance matrix can first be divided into 

blocks according to the industries, and then estimated block-by-block. The estimation 

procedure and theoretical analysis will be similar to the block-thresholding of Cai and Yuan 

(2012).

4.4 Does the thresholded covariance estimator affect the size?

A natural but technical question to address is that when Σu indeed admits a sparse structure, 

is the thresholded estimator  accurate enough so that the feasible Jwald is still 
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asymptotically normal? The answer is affirmative if N(log N)4 = o(T2), and still we can 

allow N/T → ∞. However, such a simple question is far more technically involved than 

anticipated, as we now explain.

When Σu is a sparse matrix, under regularity conditions (Assumption 4.2 below), Fan et al. 

(2011) showed that

(4.4)

This convergence rate is minimax optimal for the sparse covariance estimation, by the lower 

bound derived by Cai et al. (2010). On the other hand, when replacing  in (4.3) by 

, one needs to show that the effect of such a replacement is asymptotically negligible, 

namely, under H0,

(4.5)

However, when θ = 0, it can be shown that . Using this and (4.4), by the 

Cauchy-Schwartz inequality, we have

Thus, it requires N log N = o(T) to converge, which is basically a low-dimensional scenario.

The above simple derivation uses, however, a Cauchy-Schwartz bound, which is too crude 

for a large N. In fact,  is a weighted estimation error of , 

where the weights  “average down” the accumulated estimation errors in estimating 

elements of , and result in an improved rate of convergence. The formalization of this 

argument requires further regularity conditions and novel technical arguments. These are 

formally presented in the following subsection.

4.5 Regularity conditions

We are now ready to present the regularity conditions. These conditions are imposed for 

three technical purposes: (i) Achieving the uniform convergence for  as required in 

Assumption 3.1, (ii) defining the sparsity of Σu so that  is consistent, and (iii) showing 

(4.5), so that the errors from estimating  do not affect the size of the test.

Let  and  denote the σ-algebras generated by {ft: −∞ ≤ t ≤ 0} and {ft: T ≤ t ≤ ∞} 

respectively. In addition, define the α-mixing coefficient
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Assumption 4.1

i.
{ut}t≤T is i.i.d. , where both ‖Σu‖1 and  are bounded;

ii. {ft}t≤T is strictly stationary, independent of {ut}t≤T, and there are r1, b1 > 0 so that

iii. There exists r2 > 0 such that  and C > 0, for all T ∈ ℤ+,

iv. cov(ft) is positive definite, and maxi≤N ‖bi‖ < c1 for some c1 > 0.

Some remarks are in order for the conditions in Assumption 4.1.

Remark 4.2—The above assumption, perhaps somewhat restrictive, substantially facilitates 

our technical analysis. Here ut is required to be serially uncorrelated across t. Under this 

condition, the conditional covariance of , given the factors, has a simple expression 

Σu/(Taf,T). On the other hand, if serial correlations are present in ut, there would be 

additional autocovariance terms in the covariance matrix, which need to be further estimated 

via regularizations. Moreover, given that Σu is a sparse matrix, the Gaussianity ensures that 

most of the idiosyncratic errors are cross-sectionally independent so that , l = 

1, 2, for most of the pairs in {(i, j): i ≠ j}.

Note that we do allow the factors {ft}t≤T to be weakly correlated across t, but satisfy the 

strong mixing condition Assumption 4.1 (iii).

Remark 4.3—The conditional homoskedasticity  is assumed, granted 

by condition (ii). We admit that handling conditional heteroskedasticity, while important in 

empirical applications, is very technically challenging in our context. Allowing the high-

dimensional covariance matrix  to be time-varying is possible with suitable 

continuum of sparse conditions on the time domain. In that case, one can require the sparsity 

condition to hold uniformly across t and continuously apply thresholding. However, unlike 

in the traditional case, technically, estimating the family of large inverse covariances 

 uniformly over t is highly challenging. As we shall see in the 

proof of Proposition 4.2, even in the homoskedastic case, proving the effect of estimating 

 to be first-order negligible when N/T → ∞ requires delicate technical analysis.

To characterize the sparsity of Σu in our context, define

Fan et al. Page 19

Econometrica. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here mN represents the maximum number of nonzeros in each row, and DN represents the 

total number of nonzero off-diagonal entries. Formally, we assume:

Assumption 4.2—Suppose N1/2(log N)γ = o(T) for some γ > 2, and

i.
;

ii. at least one of the following cases holds:

a.
DN = O(N1/2), and 

b. DN = O(N), and .

As regulated in Assumption 4.2, we consider two kinds of sparse matrices, and develop our 

results for both cases. In the first case (Assumption 4.2 (ii)(a)), Σu is required to have no 

more than O(N1/2) off-diagonal nonzero entries, but allows a diverging mN. One typical 

example of this case is that there are only a small portion (e.g., finitely many) of firms 

whose individual shocks (uit) are correlated with many other firms’. In the second case 

(Assumption 4.2(ii)(b)), mN should be bounded, but Σu can have O(N) off-diagonal nonzero 

entries. This allows block-diagonal matrices with finite size of blocks or banded matrices 

with finite number of bands. This case typically arises when firms’ individual shocks are 

correlated only within industries but not across industries.

Moreover, we require N1/2(log N)γ = o(T), which is the price to pay for estimating a large 

error covariance matrix. But still we allow N/T → ∞. It is also required that the minimal 

signal for the nonzero components be larger than the noise level (Assumption 4.2 (i)), so that 

nonzero components are not thresholded off when estimating Σu.

4.6 Asymptotic properties

The following result verifies the uniform convergence required in Assumption 3.1 over the 

entire parameter space that contains both the null and alternative hypotheses. Recall that the 

OLS estimator and its asymptotic standard error are defined in (4.2).

Proposition 4.1—Suppose the distribution of (ft, ut) is independent of θ. Under 

Assumption 4.1, for , as T, N → ∞,

Proposition 4.2—Under Assumptions 4.1, 4.2, and H0,
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As shown, the effect of replacing  by its thresholded estimator is asymptotically 

negligible and the size of the standard Wald statistic can be well controlled.

We are now ready to apply Theorem 3.3 to obtain the asymptotic properties of J = J0 + Jwald 

as follows. For , let

Theorem 4.1—Suppose the assumptions of Propositions 4.1 and 4.2 hold.

i. Under the null hypothesis H0: θ = 0, as T, N → ∞,

and hence

ii. There is C > 0 so that for any q ∈ (0, 1), as T, N → ∞,

and hence

where zq denotes the 1 − q quantile of the standard normal distribution.

We see that the power is substantially enhanced after J0 is added, as the region where the 

test has power is enlarged from Θ(Jwald) to Θs ∪ Θ(Jwald).

5 Application: Testing Cross-Sectional Independence

5.1 The model

Consider a mixed effect panel data model
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where the idiosyncratic error uit is assumed to be Gaussian. The regressor xit could be 

correlated with the individual random effect μi, but is uncorrelated with uit. Let ρij denote the 

correlation between uit and ujt, assumed to be time invariant. The goal is to test the 

following hypothesis:

that is, whether the cross-sectional dependence is present. It is commonly known that the 

cross-sectional dependence leads to efficiency loss for OLS, and sometimes it may even 

cause inconsistency (Andrews, 2005). Thus testing H0 is an important problem in applied 

panel data models. If we let N = n(n − 1)/2, and θ = (ρ12, …, ρ1n, ρ23, …, ρ2n, …, ρn−1,n)′ be 

an N × 1 vector stacking all the mutual correlations, then the problem is equivalent to testing 

about a high-dimensional vector H0: θ = 0. Note that often the cross-sectional dependences 

are weakly present. Hence the alternative hypothesis of interest is often a sparse vector θ, 

corresponding to a sparse covariance matrix Σu of uit.

Most of the existing tests are based on the quadratic statistic , where 

 is the sample correlation between uit and ujt, estimated by the within-OLS (Baltagi, 

2008), and . Pesaran et al. (2008) and Baltagi et al. (2012) studied the 

rescaled W, and showed that after a proper standardization, the rescaled W is asymptotically 

normal when both n, T → ∞. However, the quadratic test suffers from a low power if Σu is 

a sparse matrix. In particular, as is shown in Theorem 3.4, when n/T → ∞, the quadratic test 

cannot detect the sparse alternatives with Σi<j1{ρij ≠ 0} = o(n/T), which can be restrictive. 

Such a sparse structure is present, for instance, when Σu is a block-diagonal sparse matrix 

with finite block sizes.

5.2 Power enhancement test

Following the conventional notation of panel data models, let , 

, and . Then . The within-OLS 

estimator  is obtained by regressing  on  for all i and t, which leads to the estimated 

residual . Then ρij is estimated by

Fan et al. Page 22

Econometrica. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For the within-OLS, the asymptotic variance of  is given by , and is 

estimated by . Therefore the screening statistic for the power enhancement 

test is defined as

(5.1)

where  as before. The set  screens out most of the estimation 

errors.

To control the size, we employ Baltagi et al. (2012)’s bias-corrected quadratic statistic:

(5.2)

Under regularity conditions (Assumptions 5.1, 5.2 below),  under H0. Then the 

power enhancement test can be constructed as J = J0 + J1. The power is substantially 

enhanced to cover the region

(5.3)

in addition to the region detectable by J1 itself. As a byproduct, it also identifies pairs (i, j) 

for ρij ≠ 0 through . Empirically, this set helps us understand better the underlying pattern 

of cross-sectional correlations and subsequently the cause of the correlation.

5.3 Asymptotic properties

In order for the power to be uniformly enhanced, the parameter space of θ = (ρ12, …, ρ1n, 

ρ23, …, ρ2n, …, ρn−1,n)′ is required to be: θ is element-wise bounded away from ±1: there is 

ρmax ∈ (0, 1),

The following regularity conditions are imposed. They hold uniformly in θ ∈ Θ.

Assumption 5.1—There are C1, C2 > 0, so that

i.
,

ii. ,

Condition (i) is needed for the within-OLS to be -consistent (see, e.g., Baltagi (2008)). 

It is usually satisfied by weak cross-sectional correlations (sparse alternatives) among the 

error terms, or weak dependence among the regressors. We require the second moment of ujt 
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be bounded away from zero uniformly in j ≤ n and θ ∈ Θ, so that the cross-sectional 

correlations can be estimated stably.

The following conditions are assumed in Baltagi et al. (2012), which are needed for the 

asymptotic normality of J1 under H0.

Assumption 5.2

i.  are i.i.d. N(0, Σu),  almost surely.

ii.
With probability approaching one, all the eigenvalues of  are 

bounded away from both zero and infinity uniformly for j ≤ n.

Proposition 5.1—Under Assumptions 5.1 and 5.2, for , and N = 

n(n − 1)/2, as T, N → ∞,

Define

For J1 defined in (5.2), let

(5.4)

The main result is presented as follows.

Theorem 5.1—Suppose Assumptions 5.1, 5.2 hold. As T, N → ∞,

i. under the null hypothesis H0: θ = 0,

and hence

ii. there is C > 0 in the definition of Θ(J1) so that for any q ∈ (0, 1),
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and hence

Note that the high power region is enhanced from Θ(J1) to Θs ∪ Θ(J1) uniformly over sparse 

alternatives. In particular, the required signal strength of Θs in (5.3) is mild: the maximum 

cross-sectional correlation is only required to exceed a magnitude of .

6 Numerical studies

In this section, Monte Carlo simulations are employed to examine the finite sample 

performance of the power enhancement tests. We also present empirical evidence of sparse 

alternatives in the factor pricing model using real data.

6.1 Testing factor pricing models

To mimic the real data application, we consider the Fama and French (1992) three-factor 

model:

We simulate ,  and  independently from , , 

and  respectively. The parameters are set to be the same as those in the 

simulations of Fan et al. (2013), which are calibrated using daily returns of S&P 500’s top 

100 constituents, for the period from July 1st, 2008 to June 29th 2012. These parameters are 

listed in the following table.

Set Σu = diag{A1, …, AN/4} to be a block-diagonal correlation matrix. Each diagonal block 

Aj is a 4 × 4 positive definite matrix, whose correlation matrix has equi-off-diagonal entry 

ρj, generated from Uniform[0, 0.5].

We evaluate the powers of our tests under two specific alternatives (we set N > T):

Under , there are only a few nonzero θ’s with a relatively large magnitude. Under , 

there are many non-vanishing θ’s, but their magnitudes are all relatively small. In our 

simulation setup,  varies from 0.05 to 0.10. We therefore expect that under , 

 is close to zero, as most of the first N/T estimated θ’s should survive from the 

screening step. These survived ’s contribute importantly to the rejection of the null 
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hypothesis. In contrast,  should be much larger under  because the non-vanishing 

θ’s are too weak to be detected.

Four testing methods are conducted and compared: the standardized Wald test Jwald, the 

thresholding test Jthr as in Fan (1996), and their power enhancement versions J0 + Jwald and 

J0 + Jthr. In particular, the thresholding test Jthr is defined as, 

and ,

where , a = (log N)−2. Here the threshold value tN is chosen smaller than 

our δN,T, and it results in a non-degenerate null distribution of Jthr. When Σu is diagonal, its 

asymptotic null distribution is , but when Σu is non-diagonal, it can suffer from 

substantial size distortions (see Fan (1996) for detailed discussions). For each test, we 

calculate the relative frequency of rejection under H0,  and  based on 2000 

replications, with significance level q = 0.05. We also calculate the relative frequency of 

being empty, which approximates . We use the soft-thresholding to estimate the 

error covariance matrix.

Table II presents the empirical size and power of each testing method. Numerical findings 

are summarized as follows.

i. The sizes of both Jwald and J0 + Jwald are close to the significance level. In contrast, 

the thresholding tests (Jthr and Jthr + J0) have significant size distortions. 

Furthermore, adding J0 results in just 0.1–0.2% increase of the size.

ii. Under H0,  is close to one, indicating that the power enhancement 

component J0 screens off most of the estimation errors. Under ,  is less 

than 10% because the screening procedure manages to capture the big thetas. Under 

, as the non-vanishing thetas are very weak,  has a large chance of being 

empty.

iii. Under , the power of the thresholding test is much higher than that of the Wald 

test, as the Wald test accumulates too many estimation errors. Besides, the power is 

significantly enhanced after J0 is added.

iv. Finally, under , the power enhancement is not substantial as the nonzero thetas 

are very weak, and the thresholding test has higher power than J0+Jwald does. The 

power of the thresholding test can be further enhanced after J0 is added with little 

increase of false rejections. Note that in this case  still has more than 10% chance 

of being nonempty. Whenever it is non-empty, adding J0 potentially enhances the 

power of the test.
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6.2 Testing cross-sectional independence

We use the following data generating process in our experiments,

(6.1)

Note that we model {xi}’s as AR(1) processes, so that xit is possibly correlated with μi, but 

not with uit, as was the case in Im et al. (1999). For each i, initialize xit = 0.5 at t = 1. We 

specify the parameters as follows: μi is drawn from  for i = 1, …, n. The 

parameters α and β are set −1 and 2 respectively. In regression (6.1), ξ = 0.7 and 

.

We generate  from . Under the null hypothesis, Σu is set to be a diagonal 

matrix . Following Baltagi et al. (2012), consider the 

heteroscedastic errors

(6.2)

with κ = 0.5, where  is the average of xit across t. Here σ2 is scaled to fix the average of 

’s at one.

For alternative specifications, we use a spatial model for the errors uit. Baltagi et al. (2012) 

considered a tri-diagonal error covariance matrix in this case. We extend it by allowing for 

higher order spatial autocorrelations, but require that not all the errors be spatially correlated 

with their immediate neighbors. Specifically, we start with Σu,1 = diag{Σ1, …, Σn/4} as a 

block-diagonal matrix with 4 × 4 blocks located along the main diagonal. Each Σi is 

assumed to be I4 initially. We then randomly choose ⌊n0.3⌋ blocks among them and make 

them non-diagonal by setting Σi(m, n) = ρ|m−n|(m, n ≤ 4), with ρ = 0.2. To allow for error 

cross-sectional heteroscedasticity, we set , where 

 as specified in (6.2).

The Monte Carlo experiments are conducted for different pairs of (n, T) with significance 

level q = 0.05 based on 2000 replications. The empirical size, power and the frequency of 

 as in (5.1) are recorded.

Table III gives the size and power of the bias-corrected quadratic test J1 in (5.2) and those of 

the power enhanced test J0 + J1. The sizes of both tests are close to 5%. In particular, the 

power enhancement test has little distortion of the original size.

The bottom panel shows the power of the two tests under the alternative specification. The 

power enhancement test demonstrates almost full power under all combinations of (n, T). In 

contrast, the quadratic test J1 only gains power when T gets large. As n increases, the 

proportion of nonzero off-diagonal elements in Σu gradually decreases. It becomes harder 
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for J1 to effectively detect those deviations from the null hypothesis. This explains the low 

power exhibited by the quadratic test when facing a high sparsity level.

6.3 Empirical evidence of sparse alternatives

We present empirical evidence of sparse alternatives based on a real data example. Consider 

Carhart (1997)’s four-factor model on the S&P 500 index. We collect monthly excess 

returns on all the S&P 500 constituents from the CRSP database for the period January 1980 

to December 2012, and construct the screening set  on a rolling window basis: for each 

month, we evaluate  using the preceding 60 months’ returns (T = 60). The panel at each 

month consists of stocks without missing observations in the past five years, which yields a 

balanced panel with the cross-sectional dimension larger than the time-series dimension (N 

> T). In this manner we not only capture the up-to-date information in the market, but also 

mitigate the impact of time-varying factor loadings and sampling biases. In particular, for 

testing months τ = 1984.12, …, 2012.12, we run the regressions

(6.3)

for i = 1, …, Nτ and t = τ − 59, …, τ, where rit represents the return for stock i at month t, rft 

the risk free rate, and MKT, SMB, HML and MOM constitute market, size, value and 

momentum factors. The time series of factors are downloaded from Kenneth French’s 

website. To make the notation consistent, we use  to represent the “alpha” of stock i.

Table IV summarizes descriptive statistics for different components and estimates in the 

model. On average, 618 stocks (which is more than 500 because we are recording stocks that 

have ever become the constituents of the index) enter the panel of the regression during each 

five-year estimation window. Of those, merely an average of 5.2 stocks are selected by the 

screening set  which directly implies the presence of sparse alternatives. The threshold 

 varies as the panel size N changes at the end of each month, and 

is about 3.5 on average. The selected stocks have much larger alphas (θ) than other stocks 

do. Therefore empirically we find that there are only a few significant nonzero “alpha” 

components, corresponding to a small portion of mis-priced stocks instead of systematic 

mis-pricing of the whole market.

The power enhancement procedure is particularly suited for the empirical setting where 

sparse alternatives are present. Note that finding only a few stocks with nonzero alphas is 

probably explained by the focus on a balanced panel of highly traded stocks with large 

capitalizations (cf. constituents of the S&P500). On the other hand, as in Gagliardini et al. 

(2011), the empirical finding would probably be different if we consider a much larger 

universe of stocks with possibly many more mis-pricing.

7 Discussions

We consider testing a high-dimensional vector H: θ = 0 against sparse alternatives where the 

null hypothesis is violated only by a few components. We introduce a “power enhancement 

component” J0 based on a screening technique, which is zero under the null, but diverges 
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quickly under sparse alternatives. We suggest constructing J0 as described in the paper since 

the screening set  can reveal the sparse structure of θ, and a negative outcome of the test 

suggests a specific set of alternatives.

In the factor pricing model, the issue of missing a small number of factors is also important 

to consider. One one hand, when the unspecified factors are not “pervasive”, only assets that 

are influenced by the missing factors are affected, which may lead to a sparse alternative. On 

the other hand, the unspecified pervasive factors may substantially affect the sparse structure 

of either θ or Σu, or both. In this case, we can extend the current model to allow for 

unobservable factors, which can be statistically inferred using principal components (PC) 

method as in Stock and Watson (2002) and Fan et al. (2013). Since the PC method is robust 

to over-specifying factors, the screening set  should be stable if the “working number of 

factors”  is no smaller than the true number of factors K. As a result, one can estimate θ 

and construct  using either a consistent estimator of K or a slightly overestimated . Once 

 is reasonably robust to the choice of , it indicates that no pervasive factors are omitted. 

We can then proceed to use the proposed J0 to conduct the test.

In addition, this paper considers unconditional population moments of asset returns and 

focuses on the factor pricing model. Unconditional moments of financial returns, under a 

broad class of data generation processes, are time invariant and can thus be estimated from 

time series data. Though theoretical models often imply a conditional linear model with 

respect to investors’ information sets, it is much more convenient to deduce testable 

implication that does not depend on this conditioning information (see Hansen and Richard 

(1987)). On the other hand, the use of conditioning information is also appealing and has 

been addressed by several authors (see,e.g., Gagliardini et al. (2011) and Ang and 

Kristensen (2012)). It will be an interesting direction to accommodate such conditioning 

information in deriving power enhancement tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A Proofs for Section 3

Throughout the proofs, let C be a generic constant, which may differ at different places.
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A.1 Proof of Theorem 3.1

Proof

Define events

For any j ∈ S (θ), by the definition of S(θ), . Under A1 ∩ A2,

This implies that , hence . In fact, we have proved this statement on the event 

A1 ∩ A2 uniformly for θ ∈ Θ:

Moreover, it is readily seen that, under H0: θ = 0, by Assumption 3.1,

In addition, by ,

Note that the last convergence holds uniformly in θ ∈ Θ because δN,T → ∞. Therefore, 

. This completes the proof.

A.2 Proof of Theorem 3.2

Proof

It follows immediately from P (J0 = 0|H0) → 1 that J →d F, and hence the critical region 

{D: J > Fq} has size q. Moreover, by the power condition of J1 and J0 ≥ 0,

Fan et al. Page 30

Econometrica. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This together with the fact

establish the theorem, if we show .

By the definition of Ŝ and J0, we have . Since infθ∈Θ P(S(θ) ⊂Ŝ|θ) 

→ 1 and Θs= {θ ∈ Θ: S(θ) ≠Ø}, we have

which converges to zero, since the first term is zero. This implies 

. Then by condition (ii), as δN,T → ∞,

This completes the proof.

A.3 Proof of Theorem 3.3

Proof

It suffices to verify conditions (i)–(iii) in Theorem 3.2 for J1 = JQ. Condition (i) follows 

from Assumption 3.2. Condition (iii) is fulfilled for c > 2/ξ, since

by using Fq = O(1), ξN,T → ξ, and μN,T → 0. We now verify condition (ii) for the Θ(JQ) 

defined in the theorem. Let D = diag(v1, …, vN). Then ‖D‖2 < C3/T by Assumption 3.2(iv).

On the event , we have

For  with C = 4C3‖V‖2/λmin(V), we can bound further that
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Hence, . Therefore,

which converges to zero since . This implies  and 

finishes the proof.

A.4 Proof of Theorem 3.4

Proof

Through this proof, C is a generic constant, which can vary from one line to another. 

Without loss of generality, under the alternative, write

where dim(θ1) = N − rN and dim(θ2) = rN. Corresponding to , we partition V−1 and 

V into:

where M1 and A are (N − rN) × (N − rN); β and G are rN × (N − rN); M2 and C are rN × rN.

By the matrix inversion formula,

Let  Note that
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We first look at  Let  and . Note 

that the diagonal entries of  are given by . Therefore D1 is a 

diagonal matrix with entries , and .

Since β is rN × (N − rN), using the expression of A, we have

where we used θ1 = 0 in the second inequality and the fact that 

. Note that . Hence,

Thus, there is C > 0, with probability approaching one,

Note that the uniform convergence in Assumption 3.1 and boundness of  imply that 

 for a sufficient large constant C. For G = (gij), note that 

 Hence, by using θ1 = 0 again, with probability tending to one,

Moreover, . Combining all the results above, it yields 

that for any θ ∈ Θb,

We denote , ,  to be the asymptotic covariance matrix of  and . 

Then and . It then follows from (3.3) that
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For any 0 < ε < Fq, define the event . Hence, suppressing the 

dependence of θ,

which is further bounded by 1−Φ(Fq−ε)+P(Ac)+o(1). Since 1−Φ(Fq) = q, for small enough, 

ε, 1−Φ(Fq−ε) = q+O(ε). By letting ɛ → 0 slower than , we have P (Ac) = o(1), 

and lim supN→∞,T→∞ P (JQ > Fq) ≤ q. On the other hand, P (JQ > Fq) ≥ P (J1 > Fq), which 

converges to q. This proves the result.

B Proofs for Section 4

Lemma B.1

When cov(ft) is positive definite, .

Proof

If Eft= 0, then . If Eft ≠ 0, because cov(ft) is positive definite, let 

, then . Hence  implies 

. This implies .

B.1 Proof of Proposition 4.1

Recall that , and . Write 

, and .

Simple calculations yield
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We first prove the second statement. Note that there is σmin > 0 (independent of θ) so that 

minj σj > σmin. By Lemma ??, there is C > 0, . 

On the event ,

This proves the second statement. We can now use this to prove the first statement.

Note that vj is independent of θ, so there is C1 (independent of θ) so that 

 On the event 

,

The constants C, C1 appeared are independent of θ, and Lemma ?? holds uniformly in θ. 

Hence the desired result also holds uniformly in θ.

B.2 Proof of Proposition 4.2

By Theorem 1 of Pesaran and Yamagata (2012) (Theorem 1),

Therefore, we only need to show

The left hand side is equal to
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It was shown by Fan et al. (2011) that 

 In addition, under H0, 

. Hence .

The challenging part is to prove a = oP (1) when N > T. As is described in the main text, 

simple inequalities like Cauchy-Schwarz accumulate estimation errors, and hence do not 

work. Define , which is an N-dimensional vector with mean zero 

and covariance , whose entries are stochastically bounded. Let . A key 

step of proving this proposition is to establish the following two convergences:

(B.1)

(B.

2)

where

The sparsity condition assumes that most of the off-diagonal entries of Σu are outside of SU. 

The above two convergences are weighted cross-sectional and serial double sums, where the 

weights satisfy  for each i. The proofs of (B.1) and (B.2) are 

given in the supplementary material in Appendix D.

We consider the hard-thresholding covariance estimator. The proof for the generalized 

sparsity case as in Rothman et al. (2009) is very similar. Let  and 

σij=(Σu)ij. Under hard-thresholding,

Write  to denote the ith element of , and . For 

, and  we have
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We first examine a3. Note that

Obviously,

Because sii is uniformly (across i) bounded away from zero with probability approaching 

one, and . Hence for any ε > 0, when C in the threshold is 

large enough, P (a3 > T −1) < ε, this implies a3 = oP (1).

The proof is finished once we establish ai = oP (1) for i = 1, 2, which are given in 

Lemmas ?? and ?? respectively in the supplementary material.

Proof of Theorem 4.1

Part (i) follows from Proposition 4.2 and that P (J0 = 0|H0) → 1. Part (ii) follows 

immediately from Theorem 3.3.

C Proofs for Section 5

C.1 Proof of Proposition 5.1

Lemma C.1

Under Assumption 5.1, uniformly in θ ∈ Θ, .

Proof—Note that

Uniformly for θ ∈ Θ, due to serial independence, and ,
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Hence the result follows from the Chebyshev inequality and that 

 is bounded away from zero with probability approaching one, 

uniformly in θ.

Lemma C.2

Suppose  with probability approaching one and . 

There is C > 0, so that uniformly in θ ∈ Θ,

i.

ii.

iii.

iv.

Proof

i.
By the Bernstein inequality, for , we have

Hence (i) is proved as .

ii.
For , we have, uniformly in θ ∈ Θ,
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iii.
Note that , and 

 with probability approaching one. The result then 

follows from part (i) and Lemma C.1.

iv. Observe that

The first two terms and  in the third term are bounded by results in 

(ii) and (iii). Therefore, it suffices to show that there is a constant M > 0 so that

Note that . In addition, by (ii), 

there is C > 0 so that

Hence we can pick up M so that , and

This proves the desired result.
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Lemma C.3

Under Assumption 5.1, there is C > 0, uniformly in θ ∈ Θ, 

Proof—By the definition  By the 

triangular inequality,

By part (iv) of Lemma C.2, . 

Hence for sufficiently large M > 0 such that ,

By a similar argument, there is M′ > 0 so that  The result 

then follows as, uniformly in θ ∈ Θ,

Proof of Proposition 5.1

As  uniformly for (i, j) and θ, the second convergence follows from Lemma C.

3. Also, with probability approaching one,
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C.2 Proof of Theorem 5.1

Lemma C.4

J1 has power uniformly on  for some C. Proof. By 

Lemma C.3, there is C > 0, . Let

Then . On the event A, we have, uniformly in θ = {ρij},

Therefore, when ,

This entails that when , we have

Proof of Theorem 5.1

It suffices to verify conditions (i)–(iii) of Theorem 3.2. Condition (i) follows from Theorem 

1 of Baltagi et al. (2012). As for condition (ii), note that 

almost surely. Hence as n, T → ∞,

Finally, condition (iii) follows from Lemma C.4.
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Table III

Size and power (%) of tests for cross-sectional independence

T
n = 200 n = 400 n = 600 n = 800

H0

100 4.7/5.5 /99.1 4.9/5.3 /99.6 5.5/5.7 /99.7 4.9/5.2 /99.7

200 5.3/5.3 /100.0 5.5/5.9 /99.6 4.7/5.1 /99.4 4.9/5.1 /99.8

300 5.2/5.2 /100.0 5.2/5.2 /100.0 4.6/4.6 /100.0 4.9/4.9 /100.0

500 4.7/4.7 /100.0 5.5/5.5 /100.0 5.0/5.0 /100.0 5.1/5.1 /100.0

Ha

100 26.4/95.5 /5.0 19.8/98.0 /2.3 13.5/98.2 /2.0 12.2/99.2 /0.9

200 54.6/98.8 /1.6 40.3/99.6 /0.5 24.8/99.6 /0.4 21/99.7 /0.3

300 78.9/99.2 /1.1 65.3/100.0 /0.1 41.7/99.9 /0.2 37.2/100.0 /0.1

500 93.5/99.8 /0.2 89.0/100.0 /0.0 69.1/100.0 /0.0 61.8/100.0 /0.0

Note: This table reports the frequencies of rejection by J1 in (5.2) and PE = J0 + J1 in (5.4) under the null and alternative hypotheses, based on 

2000 replications. The frequency of  being empty is also recorded. These tests are conducted at 5% significance level.
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