
Rapid Sampling for Visualizations with Ordering Guarantees

Albert Kim,
MIT

Eric Blais,
MIT and University of Waterloo

Aditya Parameswaran,
MIT and Illinois (UIUC)

Piotr Indyk,
MIT

Sam Madden, and
MIT

Ronitt Rubinfeld
MIT and Tel Aviv University

Albert Kim: alkim@csail.mit.edu; Eric Blais: eblais@uwaterloo.ca; Aditya Parameswaran: adityagp@illinois.edu; Piotr
Indyk: indyk@mit.edu; Sam Madden: madden@csail.mit.edu; Ronitt Rubinfeld: ronitt@csail.mit.edu

Abstract

Visualizations are frequently used as a means to understand trends and gather insights from

datasets, but often take a long time to generate. In this paper, we focus on the problem of rapidly

generating approximate visualizations while preserving crucial visual properties of interest to

analysts. Our primary focus will be on sampling algorithms that preserve the visual property of

ordering; our techniques will also apply to some other visual properties. For instance, our

algorithms can be used to generate an approximate visualization of a bar chart very rapidly, where

the comparisons between any two bars are correct. We formally show that our sampling

algorithms are generally applicable and provably optimal in theory, in that they do not take more

samples than necessary to generate the visualizations with ordering guarantees. They also work

well in practice, correctly ordering output groups while taking orders of magnitude fewer samples

and much less time than conventional sampling schemes.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.Obtain permission prior to any use beyond those covered by the
license. Contact copyright holder by info@vldb.org.
†We are free to set κ to any number greater than 1; in our experiments, we set κ = 1. Since this would render logκ infinite, for that
term, we use loge. We found that setting κ equal to a small value close to 1 (e.g., 1.01) gives very similar results on both accuracy and
latency since the term that dominates the sum in the numerator is not the log logκ m.

Articles from this volume were invited to present their results at the 41st International Conference on Very Large Data Bases, August
31st - September 4th 2015, Kohala Coast, Hawaii.

HHS Public Access
Author manuscript
Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

Published in final edited form as:
Proceedings VLDB Endowment. 2015 January ; 8(5): 521–532.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/3.0/

1. Introduction

To understand their data, analysts commonly explore their datasets using visualizations,

often with visual analytics tools such as Tableau [24] or Spotfire [45]. Visual exploration

involves generating a sequence of visualizations, one after the other, quickly skimming each

one to get a better understanding of the underlying trends in the datasets. However, when the

datasets are large, these visualizations often take very long to produce, creating a significant

barrier to interactive analysis.

Our thesis is that on large datasets, we may be able to quickly produce approximate

visualizations of large datasets preserving visual properties crucial for data analysis. Our

visualization schemes will also come with tuning parameters, whereby users can select the

accuracy they desire, choosing less accuracy for more interactivity and more accuracy for

more precise visualizations.

We show what we mean by “preserving visual properties” via an example. Consider the

following query on a database of all flights in the US for the entire year:

Q : SELECT NAME, AVG(DELAY) FROM FLT GROUP BY NAME

The query asks for the average delays of flights, grouped by airline names. Figure 1 shows a

bar chart illustrating an example query result. In our example, the average delay for AA

(American Airlines) is 30 minutes, while that for JB (Jet Blue) is just 15 minutes. If the FLT

table is large, the query above (and therefore the resulting visualization) is going to take a

very long time to be displayed.

In this work, we specifically design sampling algorithms that generate visualizations of

queries such as Q, while sampling only a small fraction of records in the database. We focus

on algorithms that preserve visual properties, i.e., those that ensure that the visualization

appears similar to the same visualization computed on the entire database. The primary

visual property we consider in this paper is the correct ordering property: ensuring that the

groups or bars in a visualization or result set are ordered correctly, even if the actual value of

the group differs from the value that would result if the entire database were sampled. For

example, if the delay of JB is smaller than the delay of AA, then we would like the bar

corresponding to JB to be smaller than the bar corresponding to AA in the output

visualization. As long as the displayed visualizations obey visual properties (such as correct

ordering), analysts will be able to view trends, gain insights, and make decisions—in our

example, the analyst can decide which airline should receive the prize for airline with least

delay, or if the analyst sees that the delay of AL is greater than the delay of SW, they can dig

deeper into AL flights to figure out the cause for higher delay. Beyond correct ordering, our

techniques can be applied to other visual properties, including:

• Accurate Trends: when generating line charts, comparisons between neighboring

x-axis values must be correctly presented.

• Accurate Values: the values for each group in a bar chart must be within a certain

bound of the values displayed to the analyst.

Kim et al. Page 2

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We illustrate the challenges of generating accurate visualizations using our flight example.

Here, we assume we have a sampling engine that allows us to retrieve samples from any

airline group at a uniform cost per sample (we describe one such sampling engine we have

built in Section 4.) Then, the amount of work done by any visualization generation

algorithm is proportional to the number of samples taken in total across all groups. After

performing some work (that is, after doing some sampling), let the current state of

processing be depicted as in Figure 2, where the aggregate for each group is depicted using

confidence intervals. Starting at this point, suppose we wanted to generate a visualization

where the ordering is correct (like in Figure 1). One option is to use a conventional round-

robin stratified sampling strategy [8], which is the most widely used technique in online

approximate query processing [25, 27, 28, 37], to take one sample per group in each round,

to generate estimates with shrinking confidence interval bounds. This will ensure that the

eventual aggregate value of each group is roughly correct, and therefore that the ordering is

roughly correct. We can in fact modify these conventional sampling schemes to stop once

they are confident that the ordering is guaranteed to be correct. However, since conventional

sampling is not optimized for ensuring that visual properties hold, such schemes will end up

doing a lot more work than necessary (as we will see in the following).

A better strategy would be to focus our attention on the groups whose confidence intervals

continue to overlap with others. For instance, for the data depicted in Figure 2, we may want

to sample more from AA because its confidence interval overlaps with JB, AL, and SW

while sampling more from UA (even though its confidence interval is large) is not useful

because it gives us no additional information — UA is already clearly the airline with the

largest delay, even if the exact value is slightly off. On the other hand, it is not clear if we

should sample more from AA or DL, AA has a smaller confidence interval but overlaps with

more groups, while DL has a larger confidence interval but overlaps with fewer groups.

Overall, it is not clear how we may be able to meet our visual ordering properties while

minimizing the samples acquired.

In this paper, we develop a family of sampling algorithms, based on sound probabilistic

principles, that:

1. are correct, i.e., they return visualizations where the estimated averages are

correctly ordered with a probability greater than a user-specified threshold,

independent of the data distribution,

2. are theoretically optimal, i.e., no other sampling algorithms can take much fewer

samples, and

3. are practically efficient, i.e., they require much fewer samples than the size of the

datasets to ensure correct visual properties, especially on very large datasets. In our

experiments, our algorithms give us reductions in sampling of up to 50× over

conventional sampling schemes.

Our focus in this paper is on visualization types that directly correspond to a SQL

aggregation query, e.g., a bar chart, or a histogram; these are the most commonly used

visualization types in information visualization applications. While we also support

generalizations to other visualization types (see Section 2.5), our techniques are not

Kim et al. Page 3

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

currently applicable to some visualizations, e.g., scatter-plots, stacked charts, timelines, or

treemaps.

In addition, our algorithms are general enough to retain correctness and optimality when

configured in the following ways:

1. Partial Results: Our algorithms can return partial results (that analysts can

immediately peruse) improving gradually over time.

2. Early Termination: Our algorithms can take advantage of the finite resolution of

visual display interfaces to terminate processing early. Our algorithms can also

terminate early if allowed to make mistakes on estimating a few groups.

3. Generalized Settings: Our algorithms can be applied to other aggregation functions,

beyond AVG, as well as other, more complex queries, and also under more general

settings.

4. Visualization Types: Our algorithms can be applied to the generation of other

visualization types, such as trend-lines or chloropleth maps [47] instead of bar

graphs.

2. Formal Problem Description

We begin by describing the type of queries and visualizations that we focus on for the paper.

Then, we describe the formal problem we address.

2.1 Visualization Setting

Query—We begin by considering queries such as our example query in Section 1. We

reproduce the query (more abstractly) here:

Q : SELECT X, AVG(Y) FROM R(X, Y) GROUP BY X

This query can be translated to a bar chart visualization such as the one in Figure 1, where

AVG(Y) is depicted along the y–axis, while X is depicted along the x–axis. While we restrict

ourselves to queries with a single GROUP BY and a AVG aggregate, our query processing

algorithms do apply to a much more general class of queries and visualizations, including

those with other aggregates, multiple group-bys, and selection or having predicates, as

described in Section 2.5 (these generalizations still require us to have at least one GROUP

BY, which restricts us to aggregate-based visualizations, e.g., histograms, bar-charts, and

trend-lines.

Setting—We assume we have an engine that allows us to efficiently retrieve random

samples from R corresponding to different values of X. Such an engine is easy to implement,

if the relation R is stored in main memory, and we have a traditional (B-tree, hash-based, or

otherwise) index on X. We present an approach to implement this engine on disk in Section

4. Our techniques will also apply to the scenario when there is no index on X — we describe

this in the extended technical report [34].

Kim et al. Page 4

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Notation—We denote the values that the group-by attribute X can take as x1 … xk. We let

ni be the number of tuples in R with X = xi. For instance, ni for X = UA will denote the

number of flights operated by UA that year.

Let the ith group, denoted Si, be the multiset of the ni values of Y across all tuples in R where

X = xi. In Figure 1, the group corresponding to UA contains the set of delays of all the flights

flown by UA that year.

We denote the true averages of elements in a group i as μi: Thus . The goal for

any algorithm processing the query Q above is to compute and display μi, ∀i ∈ 1 … k, such

that the estimates for μi are correctly ordered (defined formally subsequently).

Furthermore, we assume that each value in Si is bounded between [0, c]. For instance, for

flights delays, we know that the values in Si are within [0, 24 hours], i.e., typical flights are

not delayed beyond 24 hours. Note however, that our algorithms can still be used when no

bound on c is known, but may not have the desirable properties listed in Section 3.3.

2.2 Query Processing

Approach—Since we have an index on X, we can use the index to retrieve a tuple at

random with any value of X = xi. Thus, we can use the index to get an additional sample of Y

at random from any group Si. Note that if the data is on disk, random access through a

conventional index can be slow: however, we are building a system, called NEEDLETAIL (also

described in Section 4) that will address the problem of retrieving samples satisfying

arbitrary conditions.

The query processing algorithms that we consider take repeated samples from groups Si, and

then eventually output estimates ν1,…, νk for true averages μ1,…, μk.

Correct Ordering Property—After retrieving a number of samples, our algorithm will

have some estimate νj for the value of the actual average μj for each j. When the algorithm

terminates and returns the eventual estimates ν1,… νk, we want the following property to

hold:

for all i, j such that μi > μj, we have νi > νj

We desire that the query processing algorithm always respect the correct ordering property,

but since we are making decisions probabilistically, there may be a (typically very small)

chance that the output will violate the guarantee. Thus, we allow the analyst to specify a

failure probability δ (which we expect to be very close to 0). The query processing scheme

will then guarantee that with probability 1 – δ, the eventual ordering is correct. We will

consider other kinds of guarantees in Section 2.5.

2.3 Characterizing Performance

We consider three measures for evaluating the performance of query processing algorithms:

Kim et al. Page 5

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sample Complexity—The cost for any additional sample taken by an algorithm from any

of the groups is the same1. We denote the total number of samples taken by an algorithm

from group i as mi. Thus, the total sampling complexity of a query processing strategy

(denoted) is the number of samples taken across groups:

Computational Complexity—While the total time will be typically dominated by the

sampling time, we will also analyze the computation time of the query processing algorithm,

which we denote .

Total Wall-Clock Time—In addition to the two complexity measures, we also

experimentally evaluate the total wall-clock time of our query processing algorithms.

2.4 Formal Problem

Our goal is to design query processing strategies that preserve the right ordering (within the

user-specified accuracy bounds) while minimizing sample complexity:

Problem 1 (AVG-Order)—Given a query Q, and parameter values c, δ, and an index on

X, design a query processing algorithm returning estimates ν1,…, νk for μi,…, μk which is as

efficient as possible in terms of sample complexity , such that with probability greater than

1 – δ, the ordering of ν1,…, νk with respect to μi,…, μk is correct.

Note that in the problem statement we ignore computational complexity , however, we do

want the computational complexity of our algorithms to also be relatively small, and we will

demonstrate that for all algorithms we design, that indeed is the case.

One particularly important extension we cover right away is the following: visualization

rendering algorithms are constrained by the number of pixels on the display screen, and

therefore, two groups whose true average values μi are very close to each other cannot be

distinguished on a visual display screen. Can we, by relaxing the correct ordering property

for groups which are very close to each other, get significant improvements in terms of

sample and total complexity? We therefore pose the following problem:

Problem 2 (AVG-Order-Resolution)—Given a query Q, and values c, δ, a minimum

resolution r, and an index on X, design a query processing algorithm returning estimates ν1,

…, νk for μ1,…, μk which is as efficient as possible in terms of sample complexity , such

that with probability greater than 1 – δ, the ordering of ν1,…, νk with respect to μ1,…, μk is

correct, where correctness is now defined as the following:

for all i, j, i ≠ j, if |μi–μj| ≤ r, then ordering νi before or after νj are both correct, while if |μi –

μj| > r, then νi < νj if μi < μj and vice versa.

1This is certainly true in the case when R is in memory, but we will describe why this is true even when R in on disk in Section 4.

Kim et al. Page 6

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The problem statement says that if two true averages, μi, μj satisfy |μi – μj| ≤ r, then we are

no longer required to order them correctly with respect to each other.

2.5 Extensions

In the technical report [34] we discuss other problem variants:

• Ensuring that weaker properties hold:

– Trends and Chloropleths: When drawing trend-lines and heat maps (i.e.,

chloropleths [47]), it is more important to ensure order is preserved between

adjacent groups than between all groups.

– Top-t Results: When the number of groups to be depicted in the visualization

is very large, say greater than 20, it is impossible for users to visually

examine all groups simultaneously. Here, the analyst would prefer to view

the top-t or bottom-t groups in terms of actual averages.

– Allowing Mistakes: If the analyst is fine with a few mistakes being made on

a select number of groups (so that that the results can be produced faster),

this can be taken into account in our algorithms.

• Ensuring that stronger properties hold:

– Values: We can modify our algorithms to ensure that the averages νi for

each group are close to the actual averages μi, in addition to making sure that

the ordering is correct.

– Partial Results: We can modify our algorithms to return partial results as an

when they are computed. This is especially important when the visualization

takes a long time to be computed, so that the analyst to start perusing the

visualization as soon as possible.

• Tackling other queries or settings:

– Other Aggregations: We can generalize our techniques for aggregation

functions beyond AVG, including SUM and COUNT.

– Selection Predicates: Our techniques apply equally well when we have

WHERE or HAVING predicates in our query.

– Multiple Group Bys or Aggregations: We can generalize our techniques to

handle the case where we are visualizing multiple aggregates

simultaneously, and when we are grouping by multiple attributes at the same

time (in a three dimensional visualization or a two dimensional visualization

with a cross-product on the x-axis).

– No indexes: Our techniques also apply to the scenario when we have no

indexes.

Kim et al. Page 7

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 1
IFOCUS

3. The Algorithm and Its Analysis

In this section, we describe our solution to Problem 1. We start by introducing the new IFOCUS

algorithm in Section 3.1. We will analyze its sample complexity and demonstrate its

correctness in Section 3.3. We will then analyze its computational complexity in Section 3.4.

Finally, we will demonstrate that the IFOCUS algorithm is essentially optimal, i.e., no other

algorithm can give us a sample complexity much smaller than IFOCUS, in Section 3.5.

3.1 The Basic IFOCUS Algorithm

The IFOCUS algorithm is shown in Algorithm 1. We describe the pseudocode and illustrate the

execution on an example below.

At a high level, the algorithm works as follows. For each group, it maintains a confidence

interval (described in more detail below) within which the algorithm believes the true

average of each group lies. The algorithm then proceeds in rounds. The algorithm starts off

with one sample per group to generate initial confidence intervals for the true averages µ1,

…, µk. We refer to the groups whose confidence intervals overlap with other groups as

active groups. Then, in each round, for all the groups whose confidence intervals still

overlap with confidence intervals of other groups, i.e., all the active groups, a single

additional sample is taken. We terminate when there are no remaining active groups and

then return the estimated averages ν1,…, νk We now describe an illustration of the algorithm

on an example.

Kim et al. Page 8

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Example 3.1. An example of how the algorithm works is given in Table 1. Here, there are

four groups, i.e., k = 4. Each row in the table corresponds to one phase of sampling. The first

column refers to the total number of samples that have been taken so far for each of the

active groups (we call this the number of the round). The algorithm starts by taking one

sample per group to generate initial confidence intervals: these are displayed in the first row.

At the end of the first round, all four groups are active since for every confidence interval,

there is some other confidence interval with which it overlaps. For instance, for group 1,

whose confidence interval is [60, 90], this confidence interval overlaps with the confidence

interval of group 4; therefore group 1 is active.

We “fast-forward” to round 20, where once again all groups are still active. Then, on round

21, after an additional sample, the confidence interval of group 1 shrinks to [66, 84], which

no longer overlaps with any other confidence interval. Therefore, group 1 is no longer

active, and we stop sampling from group 1. We fast-forward again to round 58, where after

taking a sample, group 3's confidence interval no longer overlaps with any other group's

confidence interval, so we can stop sampling it too. Finally, at round 71, none of the four

confidence intervals overlaps with any other. Thus, the total cost of the algorithm (i.e., the

number of samples) is

The expression 21 × 4 comes from the 21 rounds when all four groups are active, (58 − 21)

× 3 comes from the rounds from 22 to 58, when only three groups are active, and so on.

The pseudocode for the algorithm is shown in Algorithm 1; m refers to the round. We start

at the first round (i.e., m = 1) drawing one sample from each of S1,…, Sk to get initial

estimates of ν1,…, νk . Initially, the set of active groups, A, contains all groups from 1 to k.

As long as there are active groups, in each round, we take an additional sample for all the

groups in A, and update the corresponding νi. Based on the number of samples drawn per

active group, we update ε, i.e., the half-width of the confidence interval. Here, the

confidence interval [νi−ε,νi+ε] refers to the 1−δ confidence interval on taking m samples,

i.e., having taken m samples, the probability that the true average µi is within [νi−ε, νi + ε]

is greater than 1 − δ. As we show below, the confidence intervals are derived using a

variation of Hoeffding's inequality.

Discussion—We note several features of the algorithm:

• As we will see, the sampling complexity of IFOCUS does not depend on the number

of elements in each group, and simply depends on where the true averages of each

group are located relative to each other. We will show this formally in Section 3.3.

• There is a corner case that needs to be treated carefully: there is a small chance that

a group that was not active suddenly becomes active because the average νi of

some other group moves excessively due to the addition of a very large (or very

small) element. We have two alternatives at this point

Kim et al. Page 9

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

– a) ignore the newly activated group; i.e., groups can never be added back to

the set of active groups

– b) allow inactive groups to become active.

It turns out the properties we prove for the algorithm in terms of optimality of sample

complexity (see Section 3.3) hold if we do a). If we do b), the properties of optimality no

longer hold.

3.2 Proof of Correctness

We now prove that IFOCUS obeys the ordering property with probability greater than 1 − δ.

Our proof involves three steps:

• Step 1: The algorithm IFOCUS obeys the correct ordering property, as long as the

confidence intervals of each active group contain the actual average, during every

round.

• Step 2: The confidence intervals of any given active group contains the actual

average of that group with probability greater than (1 − δ/k) at every round, as long

as ε is set according to Line 6 in Algorithm 1.

• Step 3: The confidence intervals of all active groups contains actual averages for

the groups with probability greater than (1 − δ) at every round, when ε is set as per

Line 6 in Algorithm 1.

Combining the three steps together give us the desired result.

Step 1: To complete this step, we need a bit more notation. For every m > 1, let Am, εm, and

ν1,m,…, νk,m denote the values of A, ε, ν1,…, νk at step 10 in the algorithm for the iteration

of the loop corresponding to m. Also, for i = 1,…, k, recall that mi is the number of samples

required to estimate νi; equivalently, it will denote the value of m when i is removed from A.

We define mmax to be the largest mi.

Lemma 1. If for every m ∈ 1… mmax and every j ∈ Am, we have |νj,m − µj| ≤ εm, then the

estimates ν1,…, νk returned by the algorithm have the same order as µ1,…, µk, i.e., the

algorithm satisfies the correct ordering property.

That is, as long as all the estimates for the active groups are close enough to their true

average, that is sufficient to ensure overall correct ordering.

Proof. Fix any i ≠ j ∈ {1,…, k}. We will show that νi > νj iff µi > µj. Applying this to all i, j

gives us the desired result.

Assume without loss of generality (by relabeling i and j, if needed) that mi ≤ mj. Since mi ≤

mj, j is removed from the active groups at a later stage than i. At mi, we have that the

confidence interval for group i no longer overlaps with other confidence intervals (otherwise

i would not be removed from the set of active groups). Thus, the intervals [νi,mi − εmi, νi,mi +

εmi] and [νj,mi − εmi, νj,mi + εmi] are disjoint. Consider the case when µi < µj. Then, we have:

Kim et al. Page 10

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(1)

(2)

The first and last inequality holds because µi and µj are within the confidence interval around

νi and νj respectively at round mi. The second inequality holds because the intervals are

disjoint. (To see this, notice that if the inequality was reversed, the intervals would no longer

be disjoint.) Then, we have:

(3)

The first equality holds because group j exits the set of active groups at mj; the second

inequality holds because the confidence interval at j contains µj; the third inequality holds

because εj ≤ εi (since confidence intervals shrink as the rounds proceed); the next inequality

holds because of Equation 2; while the last equality holds because group i exits the set of

active groups at mi. Therefore, we have νi < νj, as desired. The case where µi > µj is

essentially identical: in this case Equation 1 is of the form:

and Equation 3 is of the form:

so that we now have νi > νj, once again as desired.

Step 2: In this step, our goal is to prove that the confidence interval of any group contains

the actual average with probability greater than (1 − δ/k) on following Algorithm 1.

For this proof, we use a specialized concentration inequality that is derived from Hoeffding's

classical inequality [48]. Hoeffding [26] showed that his inequality can be applied to this

setting to bound the deviation of the average of random numbers sampled from a set from

the true average of the set. Serfling [44] refined the previous result to give tighter bounds as

the number of random numbers sampled approaches the size of the set.

Lemma 2 (Hoeffding–Serfling inequality [44]). Let = y1,…, yN be a set of N values in [0,

1] with average value . Let Y1,…, YN be a sequence of random variables

drawn from without replacement. For every 1 ≤ k < N and ε > 0,

Kim et al. Page 11

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We use the above inequality to get tight bounds for the value of for all 1 ≤ m ≤

N, with probability δ. We discuss next how to apply the theorem to complete Step 2 of our

proof.

Theorem 3.2. Let = y1,…, yN be a set of N values in [0, 1] with average value

. Let Y1,…, YN be a sequence of random variables drawn from without

replacement. Fix any δ > 0 and κ > 1. For 1 ≤ m ≤ N − 1, define

Proof. We have:

The first inequality holds by the union bound [48]. The second inequality holds because εm

only decreases as m increases. The third inequality holds because the condition that any of

the sums on the left-hand side is greater than εκr occurs when the maximum is greater than

εκr.

By the Hoeffding–Serfling inequality (i.e., Lemma 2),

The theorem the follows from the identity .

Kim et al. Page 12

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Now, when we apply Theorem 3.2 to any group i in Algorithm 1, with εm set as described in

Line 6 in the algorithm, N set to ni, Yi being equal to the ith sample from the group (taken

without replacement), and δ set to δ/k, we have the following corollary.

Corollary 3.3. For any group i, across all rounds of Algorithm 1, we have: Pr [∃m, 1 ≤ m ≤

mi : |νi,m − µ| > εm] ≤ δ/k.

Step 3: On applying the union bound [48] to Corollary 3.3, we get the following result:

Corollary 3.4. Across all groups and rounds of Algorithm 1: Pr [∃i, m, 1 ≤ i ≤ k, 1 ≤ m ≤ mi :

|νi,m − µ| > εm] ≤ δ.

This result, when combined with Lemma 1, allows us to infer the following theorem:

Theorem 3.5 (Correct Ordering). The eventual estimates ν1,…, νk returned by Algorithm 1

have the same order as µ1,…, µk with probability greater than 1 − δ.

3.3 Sample Complexity of IFOCUS

To state and prove the theorem about the sample complexity of IFOCUS, we introduce some

additional notation which allows us to describe the “hardness” of a particular input instance.

(Table 2 describes all the symbols used in the paper.) We define ηi to be the minimum

distance between µi and the next closest average, i.e., ηi = minj≠i |µi − µj|. The smaller ηi is,

the more effort we need to put in to ensure that the confidence interval estimates for µi are

are small enough compared to ηi.

In this section, we prove the following theorem:

Theorem 3.6 (Sample Complexity). With probability at least 1 − δ, IFOCUS outputs estimates

ν1,…, νk that satisfy the correct ordering property and, furthermore, draws

(4)

The theorem states that IFOCUS obeys the correct ordering property while drawing a number

of samples from groups proportional to the sum of the inverse of the squares of the ηi: that

is, the smaller the ηi, the larger the amount of sampling we need to do (with quadratic

scaling).

The next lemma gives us an upper bound on how large mi can be in terms of the ηi, for each

i: this allows us to establish an upper bound on the sample complexity of the algorithm.

Lemma 3. Fix i ∈ 1…k. Define to be the minimal value of m ≥ 1 for which εm < ηi/4. In

the running of the algorithm, if for every , we have , then

.

Kim et al. Page 13

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Intuitively, the lemma allows us to establish that , the latter of which (as we show

subsequently) is dependent on ηi.

Proof. If , then the conclusion of the lemma trivially holds, because .

Consider now the case where . We now prove that . Note that if and

only if the interval is disjoint from the union of intervals

.

We focus first on all j where µj < µi. By the definition of ηi, every for which µj < µi

satisfies the stronger inequality µj ≤ µi − ηi. By the conditions of the lemma (i.e., that

confidence intervals always contain the true average), we have that and

that . So we have:

• The first and last inequalities follow the fact that the confidence interval for νj

always contains µj, i.e., ;

• the second and fourth follow from the fact that ;

• and the third follows from the fact that µj ≤ µi−ηi.

Thus, the intervals and are disjoint.

Similarly, for all that satisfies µj > µi, we observe that the interval

 is also disjoint from .

We are now ready to complete the analysis of the algorithm.

Proof of Theorem 3.6. First, we note that for i = 1,…, k, the value is bounded above by

(To verify this fact, note that when , then the

corresponding value of ε satisfies .)

By Corollary 3.4, with probability at least 1 − δ, for every i ∈ 1,…, k, every m ≥ 1, and every

j ∈ Am, we have |νj,m−µj| ≤ εm. Therefore, by Lemma 1 the estimates ν1,…, νk returned by

the algorithm satisfy the correct ordering property. Furthermore, by Lemma 3, the total

Kim et al. Page 14

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

number of samples drawn from the ith group by the algorithm is bounded above by and

the total number of samples requested by the algorithm is bounded above by

We have the desired result.

3.4 Computational Complexity

The computational complexity of the algorithm is dominated by the check used to determine

if a group is still active. This check can be done in O(log |A|) time per round if we maintain a

binary search tree — leading to O(k log k) time per round across all active groups. However,

in practice, k will be small (typically less than 100); and therefore, taking an additional

sample from a group will dominate the cost of checking if groups are still active.

Then, the number of rounds is the largest value that m will take in Algorithm 1. This is in

fact:

where η = mini ηi. Therefore, we have the following theorem:

Theorem 3.7. The computational complexity of the IFOCUS algorithm is:

.

3.5 Lower bounds on Sample Complexity

We now show that the sample complexity of IFOCUS is optimal as compared to any algorithm

for Problem 1, up to a small additive factor, and constant multiplicative factors.

Theorem 3.8 (LOWER BOUND). Any algorithm that satisfies the correct ordering condition with

probability at least 1 − δ must make at least queries.

Comparing the expression above to Equation 4, the only difference is a small additive term:

, which we expect to be much smaller than . Note that even when is

109 (a highly unrealistic scenario), we have that , whereas is greater than 5

for most practical cases (e.g., when k = 10, δ = 0.05).

Kim et al. Page 15

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The starting point for our proof of this theorem is a lower bound for sampling due to Canetti,

Even, and Goldreich [7].

Theorem 3.9 (CANETTI–EVEN–GOLDREICH [7]). Let and . Any algorithm that estimates

μi within error ±ε with confidence 1−δ must sample at least elements from

Si in expectation.

In fact, the proof of this theorem yields a slightly stronger result: even if we are promised

that , the same number of samples is required to distinguish between the

two cases.

The proof of Theorem 3.8 is omitted due to lack of space, and can be found in the extended

technical report [34].

3.6 Discussion

We now describe a few variations of our algorithms.

Visual Resolution Extension—Recall that in Section 2, we discussed Problem 2,

wherein our goal is to only ensure that groups whose true averages are sufficiently far

enough to be correctly ordered. If the true averages of the groups are too close to each other,

then they cannot be distinguished on a visual display, so expending resources resolving them

is useless.

If we only require the correct ordering condition to hold for groups whose true averages

differ by more than some threshold r, we can simply modify the algorithm to terminate once

we reach a value of m for which εm < r/4. The sample complexity for this variant is

essentially the same as in Theorem 3.6 (apart from constant factors) except that we replace

each ηi with .

Alternate Algorithm—The original algorithm we considered relies on the standard and

well-known Chernoff-Hoeffding inequality [48]. In essence, the algorithm—which we refer

to as IREFINE, like IFOCUS, once again maintains confidence intervals for groups, and stops

sampling from inactive groups. However, instead of taking one sample per iteration, IREFINE

takes as many samples as necessary to divide the confidence interval in two. Thus, IREFINE is

more aggressive than IFOCUS. We provide the algorithm, the analysis, and the pseudocode in

our technical report [34]. Needless to say, IREFINE, since it is so aggressive, ends up with a

less desirable sample complexity than IFOCUS, and unlike IFOCUS, IREFINE is not optimal. We will

consider IREFINE in our experiments.

4. System Description

We evaluated our algorithms on top of a new database system we are building, called

NEEDLETAIL, that is designed to produce a random sample of records matching a set of ad-hoc

conditions. To quickly retrieve satisfying tuples, NEEDLETAIL uses in-memory bitmap-based

Kim et al. Page 16

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

indexes. We refer the reader to the demonstration paper for the full description of NEEDLETAIL's

bitmap index optimizations [35]. Traditional in-memory bitmap indexes allow rapid retrieval

of records matching ad-hoc user-specified predicates. In short, for every value of every

attribute in the relation that is indexed, the bitmap index records a 1 at location i when the

ith tuple matches the value for that attribute, or a 0 when the tuple does not match that value

for that attribute. While recording this much information for every value of every attribute

could be quite costly, in practice, bitmap indexes can be compressed significantly, enabling

us to store them very compactly in memory [36,49,50]. NEEDLETAIL employs several other

optimizations to store and operate on these bitmap indexes very efficiently. Overall,

NEEDLETAIL's in-memory bitmap indexes allow it to retrieve and return a tuple from disk

matching certain conditions in constant time. Note that even if the bitmap is dense or sparse,

the guarantee of constant time continues to hold because the bitmaps are organized in a

hierarchical manner (hence the time taken is logarithmic in the total number of records or

equivalently the depth of the tree). NEEDLETAIL can be used in two modes: either a column-

store or a row-store mode. For the purpose of this paper, we use the row-store configuration,

enabling us to eliminate any gains originating from the column-store. NEEDLETAIL is written in

C++ and uses the Boost library for its bitmap and hash map implementations.

5. Experiments

In this section, we experimentally evaluate our algorithms versus traditional sampling

techniques on a variety of synthetic and real-world datasets. We evaluate the algorithms on

three different metrics: the number of samples required (sample complexity), the accuracy of

the produced results, and the wall-clock runtime performance on our prototype sampling

system, NEEDLETAIL.

5.1 Experimental Setup

Algorithms—Each of the algorithms we evaluate takes as a parameter δ, a bound on the

probability that the algorithm returns results that do not obey the ordering property. That is,

all the algorithms are guaranteed to return results ordered correctly with probability 1 − δ, no

matter what the data distribution is.

The algorithms are as follows:

• IFOCUS (δ): In each round, this algorithm takes an additional sample from all active

groups, ensuring that the eventual output has accuracy greater than 1 − δ, as

described in Section 3.1. This algorithm is our solution for Problem 1.

• IFOCUSR (δ,r): In each round, this algorithm takes an additional sample from all

active groups, ensuring that the eventual output has accuracy greater than 1 − δ, for

a relaxed condition of accuracy based on resolution. Thus, this algorithm is the

same as the previous, except that we stop at the granularity of the resolution value.

This algorithm is our solution for Problem 2.

• IREFINE (δ): In each round, this algorithm divides all confidence intervals by half for

all active groups, ensuring that the eventual output has accuracy greater than 1 − δ,

as described in Section 3.6. Since the algorithm is aggressive in taking samples to

Kim et al. Page 17

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

divide the confidence interval by half each time, we expect it to do worse than

IFOCUS.

• IREFINER (δ, r): This is the IREFINE algorithm except we relax accuracy based on

resolution as we did in IFOCUSR.

We compare our algorithms against the following baseline:

• ROUNDROBIN (δ): In each round, this algorithm takes an additional sample from all

groups, ensuring that the eventual output respects the order with probability than 1

− δ. This algorithm is similar to conventional stratified sampling schemes [8],

except that the algorithm has the guarantee that the ordering property is met with

probability greater than 1 − δ. We adapted this from existing techniques to ensure

that the ordering property is met with probability greater than 1 − δ. We cannot

leverage any pre-existing techniques since they do not provide the desired

guarantee.

• ROUNDROBINR (δ, r): This is the ROUNDROBIN algorithm except we relax accuracy based

on resolution as we did in IFOCUSR.

System—We evaluate the runtime performance of all our algorithms on our early-stage

NEEDLETAIL prototype. We measure both the CPU times and the I/O times in our experiments

to definitively show that our improvements are fundamentally due to the algorithms rather

than skilled engineering. In addition to our algorithms, we implement a SCAN operation in

NEEDLETAIL, which performs a sequential scan of the dataset to find the true means for the

groups in the visualization. The SCAN operation represents an approach that a more traditional

system, such as PostgreSQL, would take to solve the visualization problem. Since we have

both our sampling algorithms and SCAN implemented in NEEDLETAIL, we may directly compare

these two approaches. We ran all experiments on a 64-core Intel Xeon E7-4830 server

running Ubuntu 12.04 LTS; however, all our experiments were single-threaded. We use

1MB blocks to read from disk, and all I/O is done using Direct I/O to avoid any speedups we

would get from the file buffer cache. Note that our NEEDLETAIL system is still in its early stages

and under-optimized — we expect our performance numbers to only get better as the system

improves.

Key Takeaways—Here are our key results from experiments in Sections 5.2 and 5.3:

1. Our IFOCUS and IFOCUSR (r=l%) algorithms yield

• up to 80% and 98% reduction in sampling and 79% and 92% in runtime

(respectively) as compared to ROUNDROBIN, on average, across a range of very

large synthetic datasets, and

• up to 70% and 85% reduction in runtime (respectively) as compared to

ROUNDROBIN, for multiple attributes in a realistic, large flight records dataset

[18].

2. The results of our algorithms (in all of the experiments we have conducted) always

respect the correct ordering property.

Kim et al. Page 18

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.2 Synthetic Experiments

We begin by considering experiments on synthetic data. The datasets we ran our

experiments on are as follows:

• Mixture of Truncated Normals (mixture): For each group, we select a collection

of normal distributions, in the following way: we select a number sampled at

random from {1, 2, 3, 4, 5}, indicating the number of truncated normal

distributions that comprise each group. For each of these truncated normal

distributions, we select a mean σ sampled at random from [0, 100], and a variance

Δ sampled at random from [1, 10]. We repeat this for each group.

• Hard Bernoulli (hard): Given a parameter γ < 2, we fix the mean for group i to be

40 + γ × i, and then construct each group by sampling between two values {0, 100}

with bias equal to the mean. Note that in this case, η, the smallest distance between

two means, is equal to γ. Recall that c2/η2 is a proxy for how difficult the input

instance is (and therefore, how many samples need to be taken). We study this

scenario so that we can control the difficulty of the input instance.

Our default setup consists of k = 10 groups, with 10M records in total, equally distributed

across all the groups, with δ = 0.05 (the failure probability) and r = 1. Each data-point is

generated by repeating the experiment 100 times. That is, we construct 100 different datasets

with each parameter value, and measure the number of samples taken when the algorithms

terminate, whether the output respects the correct ordering property, and the CPU and I/O

times taken by the algorithms. For the algorithms ending in R, i.e., those designed for a more

relaxed property leveraging resolution, we check if the output respects the relaxed property

rather than the more stringent property. We focus on the mixture distribution for most of the

experimental results, since we expect it to be the most representative of real world

situations, using the hard Bernoulli in a few cases. We have conducted extensive

experiments with other distributions as well, and the results are similar. The complete

experimental results can be found in our technical report [34].

Variation of Sampling and Runtime with Data Size—We begin by measuring the

sample complexity and wall-clock times of our algorithms as the data set size varies.

Summary: Across a variety of dataset sizes, our algorithm IFOCUSR (respectively IFOCUS)

performs better on sample complexity and runtime than IREFINER (resp. IREFINE) which

performs significantly better than ROUNDROBINR (resp. ROUNDROBIN). Further, the resolution

improvement versions take many fewer samples than the ones without the improvement. In

fact, for any dataset size greater than 108, the resolution improvement versions take a

constant number of samples and still produce correct visualizations.

Figure 3(a) shows the percentage of the dataset sampled on average as a function of dataset

size (i.e., total number of tuples in the dataset across all groups) for the six algorithms

above. The data size ranges from 107 records to 1010 records (hundreds of GB). Note that

the figure is in log scale.

Kim et al. Page 19

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Consider the case when dataset size = 107 in Figure 3(a). Here ROUNDROBIN samples ≈50% of

the data, while ROUNDROBINR samples around 35% of the dataset. On the other hand, our IREFINE

and IREFINER algorithms both sample around 25% of the dataset, while IFOCUS samples around

15% and IFOCUSR around 10% of the dataset. Thus, compared to the vanilla ROUNDROBIN

scheme, all our algorithms reduce the number of samples required to reach the order

guarantee, by up to 3×. This is because our algorithms focus on the groups that are actually

contentious, rather than sampling from all groups uniformly.

As we increase the dataset size, we see that the sample percentage decreases almost linearly

for our algorithms, suggesting that there is some fundamental upper bound to the number of

samples required, confirming Theorem 3.6. With resolution improvement, this upper bound

becomes even more apparent. In fact, we find that the raw number of records sampled for

IFOCUSR, IREFINER, and ROUNDROBINR all remained constant for dataset sizes greater or equal to

108. In addition, as expected, IFOCUSR (and IFOCUS) continue to outperform all other algorithms

at all dataset sizes.

The wall-clock total, I/O, and CPU times for our algorithms running on NEEDLETAIL can be found

in Figures 4(a), 4(b), and 4(c), respectively, also in log scale. Figure 4(a) shows that for a

dataset of size of 109 records (8GB), IFOCUS/IFOCUSR take 3.9/0.37 seconds to complete,

IREFINE/IREFINER take 6.5/0.58 seconds to complete, ROUNDROBIN/ROUNDROBINR take 18/1.2 seconds

to complete, and SCAN takes 89 seconds to complete. This means that IFOCUS/IFOCUSR has a 23×

speedup and 241× speedup relative to SCAN in producing accurate visualizations.

As the dataset size grows, the runtimes for the sampling algorithms also grow, but

sublinearly, in accordance to the sample complexities. In fact, as alluded earlier, we see that

the run times for IFOCUSR, IREFINER, and ROUNDROBINR are nearly constant for all dataset sizes

greater than 108 records. There is some variation, e.g., in I/O times for IFOCUSR at 1010

records, which we believe is due to random noise. In contrast, SCAN yields linear scaling,

leading to unusably long wall-clock (i.e., 898 seconds at 1010 records.)

We note that not only does IFOCUS beat out ROUNDROBIN, and ROUNDROBIN beat out SCAN for every

dataset size in total time, but this remains true for both I/O and CPU time as well. Sample

complexities explain why IFOCUS should beat ROUNDROBIN. It is more surprising that IFOCUS,

which uses random I/O, outperforms SCAN, which only uses sequential I/O. The answer is

that so few samples are required the cost of additional random I/O is exceeded by the

additional scan time; this becomes more true as the dataset size increases. As for CPU time,

it highly correlated with the number of samples, so algorithms that operate on a smaller

number of records outperform algorithms that need more samples.

The reason that CPU time for SCAN is actually greater than the I/O time is that for every

record read, it must update the mean and the count in a hash map keyed on the group. While

Boost's unordered_map implementation is very efficient, our disk subsystem is able to

read about 800 MB/sec, and a single thread on our machine can only perform about 10 M

hash probes and updates / sec. However, even if we discount the CPU overhead of SCAN, we

find that total wall-clock time for IFOCUS and IFOCUSR is at least an order of magnitude better

than just the I/O time for SCAN. For 1010 records, compared to SCAN's 114 seconds of

Kim et al. Page 20

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

sequential I/O time, IFOCUS has a total runtime of 13 seconds, and IFOCUSR has a total runtime

in 0.78 seconds, giving a speedup of at least 146× for a minimal resolution of 1%.

Finally, we relate the runtimes of our algorithms to the sample complexities with the scatter

plot presented in Figure 3(b). The points on this plot represent the number of samples versus

the total execution times of our sampling algorithms (excluding SCAN) for varying dataset

sizes. As is evident, the runtime is directly proportional to the number of samples. With this

in mind, for the rest of the synthetic datasets, we focus on sample complexity because we

believe it provides a more insightful view into the behavior of our algorithms as parameters

are varied. We return to runtime performance when we consider real datasets in Section 5.3.

Variation of Sampling and Accuracy with δ—We now measure how δ (the user-

specified probability of error) affects the number of samples and accuracy.

Summary: For all algorithms, the percentage sampled decreases as δ increases, but not by

much. The accuracy, on the other hand, stays constant at 100%, independent of δ. Sampling

any less to estimate the same confidence intervals leads to significant errors.

Figure 3(c) shows the effect of varying δ on the sample complexity for the six algorithms.

As can be seen in the figure, the percentage of data sampled reduces but does not go to 0 as

δ increases. This is because the amount of sampling (as in Equation 4) is the sum of three

quantities, one that depends on log k, the other on log δ, and another on log log(1/ηi). The

first and last quantities are independent of δ, and thus the number of samples required is

non-zero even as δ gets close to 1. The fact that sampling is nonzero when δ is large is

somewhat disconcerting; to explore whether this level of sampling is necessary, and whether

we are being too conservative, we examine the impact of sampling less on accuracy (i.e.,

whether the algorithm obeys the desired visual property).

We focus on IFOCUSR and consider the impact of shrinking confidence intervals at a rate

faster than prescribed by IFOCUS in Line 6 of Algorithm 1. We call this rate the heuristic

factor: a heuristic factor of 4 means that we divide the confidence interval as estimated by

Line 6 by 4, thereby ensuring that the confidence interval overlaps are fewer in number,

allowing the algorithms to terminate faster. We plot the average accuracy (i.e., the fraction

of times the algorithm violates the visual ordering property) as a function of the heuristic

factor in Figure 5(a) for δ = 0.05 (other δs give identical figures, as we will see below).

First, consider heuristic factor 1, which directly corresponds to IFOCUSR. As can be seen in

the figure, IFOCUSR has 100% accuracy: the reason is that IFOCUSR ends up sampling a constant

amount to ensure that the confidence intervals do not overlap, independent of δ, enabling it

to have perfect accuracy for this δ. In fact, we find that all our 6 algorithms have accuracy

100%, independent of δ and the data distributions; thus, our algorithms not only provide

much lower sample complexity, but also respect the visual ordering property on all datasets.

Next, we see that as we increase the heuristic factor, the accuracy immediately decreases

(roughly monotonically) below 100%, Surprisingly, even with a heuristic factor of 2, we

start making mistakes at a rate greater than 2 – 3% independent of δ. Thus, even though our

sampling is conservative, we cannot do much better, and are likely to make errors by

Kim et al. Page 21

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

shrinking confidence intervals faster than prescribed by Algorithm 1. To study this further,

we plotted the same graph for the hard case with γ = 0.1 (recall that γ = η for this case), in

Figure 5(b). Here, once again, for heuristic factor 1, i.e., IFOCUSR, the accuracy is 100%. On

the other hand, even with a heuristic factor of 1.01, where we sample just 1% less to

estimate the same confidence interval, the accuracy is already less than 95%. With a

heuristic factor of 1.2, the accuracy is less than 70%! This result indicates that we cannot

shrink our confidence intervals any faster than IFOCUSR does, since we may end up making up

making far more mistakes than is desirable—even sampling just 1% less can lead to critical

errors.

Overall, the results in Figures 5(a) and 5(b) are in line with our theoretical lower bound for

sampling complexity, which holds no matter what the underlying data distribution is.

Furthermore, we find that algorithms backed by theoretical guarantees are necessary to

ensure correctness across all data distributions (and heuristics may fail at a rate higher than

δ).

Rate of Convergence—In this experiment, we measure the rate of convergence of the

IFOCUS algorithms in terms of the number ofgroups that still need to be sampled as the

algorithms run.

Summary: Our algorithms converge very quickly to a handful of active groups. Even when

there are still active groups, the number of incorrectly ordered groups is very small.

Figure 5(c) shows the average number of active groups as a function of the amount of

sampling performed for IFOCUS, over a set of 100 datasets of size 10M. It shows two

scenarios: 0, when the number of samples is averaged across all 100 datasets and 3M, when

we average across all datasets where at least three million samples were taken. For 0, on

average, the number of active groups after the first 1M samples (i.e., 10% of the 10M

dataset), is just 2 out of 10, and then this number goes down slowly after that. The reason for

this is that, with high probability, there will be two groups whose μi values are very close to

each other. So, to verify if one is greater than the other, we need to do more sampling for

those two groups, as compared to other groups whose ηi (the distance to the closest mean) is

large—those groups are not active beyond 1M samples. For the 3M plot, we find that the

number of samples necessary to reach 2 active groups is larger, close to 3.5M for the 3M

case.

Next, we investigate if the current estimates vi, …, vk respect the correct ordering property,

even though some groups are still active. To study this, we depict the number of incorrectly

ordered pairs as a function of the number of samples taken, once again for the two scenarios

described above. As can be seen in Figure 6(a), even though the number of active groups is

close to two or four at 1M samples, the number of incorrect pairs is very close to 0, but often

has small jumps — indicating that the algorithm is correct in being conservative and

estimating that the we haven't yet identified the actual ordering. In fact, the number of

incorrect pairs is nonzero up to as many as 3M samples, indicating that we cannot be sure

about the correct ordering without taking that many samples. At the same time, since the

Kim et al. Page 22

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

number of incorrect pairs is small, if we are fine with displaying somewhat incorrect results,

we can show the current results to to the user.

Variation of Sampling with Number of Groups—We now look at how the sample

complexity varies with the number of groups.

Summary: As the number of groups increases, the amount of sampling increases for all

algorithms as an artifact of our data generation process.

To study the impact of the number of groups on sample complexity, we generate 100

synthetic datasets of type mixture where the number of groups varies from 5 to 50, and plot

the percentage of the dataset sampled as a function of the dataset size. Each group has 1M

items. We plot the results in Figure 6(b). As can be seen in the figure, our algorithms

continue to give significant gains even when the number of groups increases from 5 to 50.

However, we notice that the amount of sampling increases for IFOCUSR as the number of

groups is increased, from less than 10% for 5 groups to close to 40% for 50 groups.

The higher sample complexity can be attributed to the dataset generation process. As a

proxy for the “difficulty” of a dataset, Figure 6(c) shows the average c2/η2 as a function of

the number of groups (recall that η is the minimum distance between two means, c is the

range of all possible values, and that the sample complexity depends on c2/η2) The figure is

a a box-and-whiskers plot with the y-axis on a log scale. Note that the average difficulty

increases from 10 for 5 to 108 for 50–a 4 orders of magnitude increase! Since we are

generating means for each group at random, it is not surprising that the more groups, the

higher the likelihood that two randomly generated means will be close to each other.

Additional Experiments—In the extended technical report [34], we present additional

experiments, including:

• Dataset Skew: Our algorithms continue to provide significant gains in the presence

of skew in the underlying dataset.

• Variance: Sample complexities of our algorithms vary slightly with variance;

sampling increases by 1-2% as variance increases.

5.3 Real Dataset Experiments

We next study the impact of our techniques on a real dataset.

Summary: IFOCUS and IFOCUSR take 50% fewer samples than ROUNDROBIN irrespective of the

attribute visualized.

For our experiments on real data, we used a flight records data set [18]. The data set contains

the details of all flights within the USA from 1987–2008, with nearly 120 million records,

taking up 12 GB uncompressed. From this flight data, we generated datasets of sizes 120

million records (2.4GB) and scaled-up 1.2 billion (24GB) and 12 billion records (240GB)

for our experiments using probability density estimation. We focused on comparing our best

algorithms—IFOCUS and IFOCUSR (r=1%)—versus the conventional sampling—ROUNDROBIN We

evaluate the runtime performance for visualizing the averages for three attributes: Elapsed

Kim et al. Page 23

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Time, Arrival Delay, and Departure Delay, grouped by Airline. For all algorithms and

attributes, the orderings returned were correct.

The results are presented in Table 3. The first four rows correspond to the attribute Elapsed

Time. Here, ROUNDROBIN takes 32.6 seconds to return a visualization, whereas IFOCUS takes only

9.70 seconds (3× speedup) and IFOCUSR takes only 5.04 seconds (6× speedup). We see

similar speedups for Arrival Delay and Departure Delay as well. As we move from the 108

dataset to 1010 dataset, we see the run times roughly double for a 100× scale-up in the

dataset. The reason for any increase at all in the runtime comes from the highly conflicting

groups with means very close to one another. Our sampling algorithms may read all records

in the group for these groups with with ηi values. When the dataset size is increased to allow

for more records to sample from, our sampling algorithms take advantage of this and sample

more from the conflicting groups, leading to larger run times.

Regardless, we show that even on a real dataset, our sampling algorithms are able to achieve

up to a 6× speedup in runtime compared to round-robin. We could achieve even higher

speedups if we were willing to tolerate a higher minimum resolution.

6. Related Work

The work related to our paper can be placed in a few categories:

Approximate Query Processing

There are two categories of related work in approximate query processing: online, and

offline. We focus on online first since it is more closely related to our work.

Online aggregation [25] is perhaps the most related online approximate query processing

work. It uses conventional round-robin stratified sampling [8] (like ROUNDROBIN) to construct

confidence intervals for estimates of averages of groups. In addition, online aggregation

provides an interactive tool that allows users to stop processing of certain groups when their

confidence is “good enough”. Thus, the onus is on the user to decide when to stop

processing groups (if not, stratified sampling is employed for all groups). Here, since our

target is a visualization with correct properties, IFOCUS automatically decides when to stop

processing groups. Hence, we remove the burden on the user, and prevent the user from

stopping a group too early (making a mistake), or too late (doing extra work).

There are other papers that also use round-robin stratified sampling for various purposes,

primarily for COUNT estimation respecting real-time constraints [28], respecting accuracy

constraints (e.g., ensuring that confidence intervals shrink to a pre-specified size) without

indexes [27], and with indexes [23, 37].

Since visual guarantees in the form of relative ordering is very different from the kind of

objectives prior work in online approximate query processing considered, our techniques are

quite different. Most papers on online sampling for query processing, including [25, 27, 28,

37], either use uniform random sampling or round-robin stratified sampling. Uniform

random sampling is strictly worse than round-robin stratified sampling (e.g., if the dataset is

skewed) and in the best case is going to be only as good, which is why we chose not to

Kim et al. Page 24

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

compare it in the paper. On the other hand, we demonstrate that conventional sampling

schemes like round-robin stratified sampling sample a lot more than our techniques.

Next, we consider offline approximate query processing. Over the past decade, there has

been a lot of work on this topic; as examples, see [9, 20, 30]. Garofalakis et al. [19] provides

a good survey of the area; systems that support offline approximate query processing include

BlinkDB [3] and Aqua [2]. Typically, offline schemes achieve a user-specified level of

accuracy by running the query on a sample of a database. These samples are chosen a-priori,

typically tailored to a workload or a small set of queries [1, 4, 5, 10, 29]. In our case, we do

not assume the presence of a precomputed sample, since we are targeting ad-hoc

visualizations. Even when pre-computing samples, a common strategy is to use Neyman

Allocation [12], like in [11, 31], by picking the number of samples per strata to be such that

the variance of the estimate from each strata is the same. In our case, since we do not know

the variance up front from each strata (or group), this defaults once again to round-robin

stratified sampling. Thus, we believe that round-robin stratified sampling is an appropriate

and competitive baseline, even here.

Statistical Tests

There are a number of statistical tests [8,48] used to tell if two distributions are significantly

different, or whether one hypothesis is better than a set of hypotheses (i.e., statistical

hypothesis testing). Hypothesis testing allows us to determine, given the data collected so

far, whether we can reject the null hypothesis. The t-test [8] specifically allows us to

determine if two normal distributions are different from each other, while the Whitney-

Mann-U-test [41] allows us to determine if two arbitrary distributions are different from

each other, None of these tests can be directly applied to decide where to sample from a

collection of sets to ensure that the visual ordering property is preserved.

Visualization Tools

Over the past few years, the visualization community has introduced a number of interactive

visualization tools such as ShowMe, Polaris, Tableau, and Profiler [24, 32, 46]. Similar

visualization tools have also been introduced by the database community, including Fusion

Tables [21], VizDeck [33], and Devise [40]. A recent vision paper [42] has proposed a tool

for recommending interesting visualizations of query results to users. All these tools could

benefit from the algorithms outlined in this paper to improve performance while preserving

visual properties.

Scalable Visualization

There has been some recent work on scalable visualizations from the information

visualization community as well. Immens [39] and Profiler [32] maintain a data cube in

memory and use it to support rapid user interactions. While this approach is possible when

the dimensionality and cardinality is small (e.g., for simple map visualizations of a single

attribute), it cannot be used when ad-hoc queries are posed. A related approach uses

precomputed image tiles for geographic visualization [15].

Kim et al. Page 25

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Other recent work has addressed other aspects of visualization scalability, including

prefetching and caching [13], data reduction [6] leveraging time series data mining [14],

clustering and sorting [22, 43], and dimension reduction [51]. These techniques are

orthogonal to our work, which focuses on speeding up the computation of a single

visualization online.

Recent work from the visualization community has also demonstrated via user studies on

simulations that users are satisfied with uncertain visualizations generated for algorithms

like online aggregation, as long as the visualization shows error bars [16, 17]. This work

supports our core premise, that analysts are willing to use inaccurate visualizations as long

as the trends and comparisons of the output visualizations are accurate.

Learning to Rank

The goal of learning to rank [38] is the following: given training examples that are ranked

pairs of entities (with their features), learn a function that correctly orders these entities.

While the goal of ordering is similar, in our scenario we assume no relationships between

the groups, nor the presence of features that would allow us to leverage learning to rank

techniques.

7. Conclusions

Our experience speaking with data analysts is indeed that they prefer quick visualizations

that look similar to visualizations that are computed on the entire database. Overall,

increasing interactivity (by speeding up the processing of each visualization, even if it is

approximate) can be a major productivity boost. As we demonstrated in this paper, we are

able to generate visualizations with correct visual properties on querying less than 0.02% of

the data on very large datasets (with 1010 tuples), giving us a speed-up of over 60× over

other schemes (such as ROUNDROBIN) that provide similar guarantees, and 1000× over the

scheme that simply generates the visualization on the entire database.

References

1. Acharya S, Gibbons PB, Poosala V. Congressional samples for approximate answering of group-by
queries. SIGMOD. 2000:487–498.

2. Acharya S, Gibbons PB, Poosala V, Ramaswamy S. The aqua approximate query answering system.
SIGMOD. 1999:574–576.

3. Agarwal S, et al. Blinkdb: queries with bounded errors and bounded response times on very large
data. EuroSys. 2013:29–42.

4. Alon N, Matias Y, Szegedy M. The space complexity of approximating the frequency moments.
STOC. 1996:20–29.

5. Babcock B, Chaudhuri S, Das G. Dynamic sample selection for approximate query processing.
SIGMOD. 2003:539–550.

6. Burtini, G., et al. CCECE 2013. IEEE; 2013. Time series compression for adaptive chart generation;
p. 1-6.

7. Canetti R, Even G, Goldreich O. Lower bounds for sampling algorithms for estimating the average.
Inf Process Lett. 1995; 53(1):17–25.

8. Casella, G.; Berger, R. Statistical Inference. Duxbury: Jun. 2001

9. Chakrabarti K, Garofalakis MN, Rastogi R, Shim K. Approximate query processing using wavelets.
VLDB. 2000:111–122.

Kim et al. Page 26

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

10. Chaudhuri S, Das G, Datar M, Motwani R, Narasayya V. Overcoming limitations of sampling for
aggregation queries. ICDE. 2001:534–542.

11. Chaudhuri S, Das G, Narasayya V. Optimized stratified sampling for approximate query
processing. ACM Trans Database Syst. Jun.2007 32(2)

12. Cochran, WG. Sampling techniques. John Wiley & Sons; 1977.

13. Doshi, PR.; Rundensteiner, EA.; Ward, MO. DASFAA 2003. IEEE; 2003. Prefetching for visual
data exploration; p. 195-202.

14. Esling P, Agon C. Time-series data mining. ACM Computing Surveys (CSUR). 2012; 45(1):12.

15. Fisher, D. Hotmap: Looking at geographic attention. IEEE Computer Society; Nov. 2007 Demo at
http://hotmap.msresearch.us

16. Fisher D. Incremental, approximate database queries and uncertainty for exploratory visualization.
LDAV' 11. 2011:73–80.

17. Fisher D, Popov IO, Drucker SM, Schraefel MC. Trust me, I'm partially right: incremental
visualization lets analysts explore large datasets faster. CHI' 12. 2012:1673–1682.

18. Flight Records. 2009. http://stat-computing.org/dataexpo/2009/the-data.html

19. Garofalakis MN, Gibbons PB. Approximate query processing: Taming the terabytes. VLDB.
2001:725.

20. Gibbons PB. Distinct sampling for highly-accurate answers to distinct values queries and event
reports. VLDB. 2001:541–550.

21. Gonzalez H, et al. Google fusion tables: web-centered data management and collaboration.
SIGMOD Conference. 2010:1061–1066.

22. Guo D. Coordinating computational and visual approaches for interactive feature selection and
multivariate clustering. Information Visualization. 2003; 2(4):232–246.

23. Haas PJ, et al. Selectivity and cost estimation for joins based on random sampling. J Comput Syst
Sci. 1996; 52(3):550–569.

24. Hanrahan P. Analytic database technologies for a new kind of user: the data enthusiast. SIGMOD
Conference. 2012:577–578.

25. Hellerstein JM, Haas PJ, Wang HJ. Online aggregation. SIGMOD Conference. 1997

26. Hoeffding W. Probability inequalities for sums of bounded random variables. Journal of the
American statistical association. 1963; 58(301):13–30.

27. Hou WC, Özsoyoglu G, Taneja BK. Statistical estimators for relational algebra expressions.
PODS. 1988:276–287.

28. Hou, WC.; Özsoyoglu, G.; Taneja, BK. Processing aggregate relational queries with hard time
constraints; SIGMOD Conference; 1989. p. 68-77.

29. Ioannidis YE, Poosala V. Histogram-based approximation of set-valued query-answers. VLDB '99.
1999:174–185.

30. Jermaine C, Arumugam S, Pol A, Dobra A. Scalable approximate query processing with the dbo
engine. ACM Trans Database Syst. 2008; 33(4)

31. Joshi, S.; Jermaine, C. ICDE 2008. IEEE; 2008. Robust stratified sampling plans for low
selectivity queries; p. 199-208.

32. Kandel S, et al. Profiler: integrated statistical analysis and visualization for data quality assessment.
AVI. 2012:547–554.

33. Key A, Howe B, Perry D, Aragon C. Vizdeck: Self-organizing dashboards for visual analytics.
SIGMOD '12. 2012:681–684.

34. Kim A, Blais E, Parameswaran A, Indyk P, Madden S, Rubinfeld R. Rapid sampling for
visualizations with ordering guarantees. Technical Report. Dec.2014 ArXiv, Added.

35. Kim, A.; Madden, S.; Parameswaran, A. Needletail: A system for browsing queries (demo).
Technical Report. 2014. Available at: i.stanford.edu/∼adityagp/ntail-demo.pdf

36. Koudas N. Space efficient bitmap indexing. CIKM. 2000:194–201.

37. Lipton RJ, et al. Efficient sampling strategies for relational database operations. Theor Comput Sci.
1993; 116(1&2):195–226.

Kim et al. Page 27

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://hotmap.msresearch.us
http://stat-computing.org/dataexpo/2009/the-data.html
http://i.stanford.edu/~adityagp/ntail-demo.pdf

38. Liu TY. Learning to rank for information retrieval. Foundations and Trends in Information
Retrieval. 2009; 3(3):225–331.

39. Liu Z, Jiang B, Heer J. immens: Real-time visual querying of big data. Computer Graphics Forum
(Proc EuroVis). 2013; 32

40. Livny, M., et al. Devise: Integrated querying and visualization of large datasets; SIGMOD
Conference; 1997. p. 301-312.

41. Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger
than the other. The annals of mathematical statistics. 1947:50–60.

42. Parameswaran A, Polyzotis N, Garcia-Molina H. SeeDB: Visualizing Database Queries
Efficiently. VLDB. 2014

43. Seo J, et al. A rank-by-feature framework for interactive exploration of multidimensional data.
Information Visualization. 2005:96–113.

44. Serfling RJ, et al. Probability inequalities for the sum in sampling without replacement. The
Annals of Statistics. 1974; 2(1):39–48.

45. Spotfire Inc. spotfire.com (retrieved March 24, 2014).

46. Stolte C, Tang D, Hanrahan P. Polaris: a system for query, analysis, and visualization of
multidimensional databases. Commun ACM. 2008; 51(11)

47. Tufte, ER.; Graves-Morris, P. The visual display of quantitative information. Vol. 2. Graphics
press; Cheshire, CT: 1983.

48. Wasserman, L. All of Statistics. Springer; 2003.

49. Wu K, et al. Analyses of multi-level and multi-component compressed bitmap indexes. ACM
Trans Database Syst. 2010; 35(1)

50. Wu K, Otoo EJ, Shoshani A. Optimizing bitmap indices with efficient compression. ACM Trans
Database Syst. 2006; 31(1):1–38.

51. Yang J, et al. Visual hierarchical dimension reduction for exploration of high dimensional datasets.
VISSYM '03. 2003:19–28.

Kim et al. Page 28

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://spotfire.com

Figure 1. Flight Delays

Kim et al. Page 29

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2. Flight Delays: Intermediate Processing

Kim et al. Page 30

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3. (a) Impact of data size (b) Scatter plot of samples vs runtime (c) Impact of δ

Kim et al. Page 31

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4. (a) Total time vs dataset size (b) I/O time vs dataset size (c) CPU time vs dataset size

Kim et al. Page 32

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5. (a) Impact of heuristic shrinking factor on accuracy (b) Impact of heuristic shrinking
factor for a harder case (c) Studying the number of active intervals as computation proceeds

Kim et al. Page 33

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6. (a) Studying the number of incorrectly ordered pairs as computation proceeds (b)
Impact of number of groups on sampling (c) Evaluating the difficulty as a function of number of
groups

Kim et al. Page 34

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim et al. Page 35

T
ab

le
 1

E
xa

m
pl

e
ex

ec
ut

io
n

tr
ac

e:
 a

ct
iv

e
gr

ou
ps

 a
re

 d
en

ot
ed

 u
si

ng
 t

he
 le

tt
er

 A
, w

hi
le

 in
ac

ti
ve

 g
ro

up
s

ar
e

de
no

te
d

as
 I

G
ro

up
 1

G
ro

up
 2

G
ro

up
 3

G
ro

up
 4

1
[6

0,
 9

0]
A

[2
0,

 5
0]

A
[1

0,
 4

0]
A

[4
0,

 7
0]

A

…

20
[6

4,
 8

4]
A

[2
8,

 4
8]

A
[1

5,
 3

5]
A

[4
5,

 6
5]

A

21
[6

6,
 8

4]
I

[3
0,

 4
8]

A
[1

7,
 3

5]
A

[4
6,

 6
4]

A

…

57
[6

6,
 8

4]
I

[3
2,

 4
8]

A
[1

7,
 3

3]
A

[4
6,

 6
2]

A

58
[6

6,
 8

4]
I

[3
2,

 4
7]

A
[1

7,
 3

2]
I

[4
6,

 6
1]

A

…

70
[6

6,
 8

4]
I

[4
0,

 4
7]

A
[1

7,
 3

2]
I

[4
6,

 5
3]

A

71
[6

6,
 8

4]
I

[4
0,

 4
6]

I
[1

7,
 3

2]
I

[4
7,

 5
3]

I

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim et al. Page 36

Table 2
Table of Notation

k Number of groups.

n1, …, nk Number of elements in each group.

S1, …, Sk The groups themselves. Si is a set of ni elements from [0, 1].

μ1, …, μk Averages of the elements in each group. μi = Ex∈Si[x].

τi,j Distance between averages μi and μj. τi,j = |μi − μj|.

ηi Minimal distance between μi and the other averages. ηi = minj≠i τi,j.

r Minimal resolution, 0 ≤ r ≤ 1.

Thresholded minimal distance; .

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim et al. Page 37

Table 3
Real Data Experiments

Attribute Algorithm 108 (s) 109 (s) 1010 (s)

Elapsed Time

ROUNDROBIN 32.6 56.5 58.6

IFOCUS 9.70 10.8 23.5

IFOCUSR (1%) 5.04 6.64 8.46

Arrival Delay

ROUNDROBIN 47.1 74.1 77.5

IFOCUS 29.2 48.7 67.5

IFOCUSR (1%) 9.81 15.3 16.1

Departure Delay

ROUNDROBIN 41.1 72.7 76.6

IFOCUS 14.3 27.5 44.3

IFOCUSR (1%) 9.19 15.7 16.0

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

