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Abstract

Coalescent genealogy samplers attempt to estimate past qualities of a population, such as its size, 

growth rate, patterns of gene flow or time of divergence from another population, based on 

samples of molecular data. Genealogy samplers are increasingly popular because of their potential 

to disentangle complex population histories. In the last decade they have been widely applied to 

systems ranging from humans to viruses. Findings include detection of unexpected reproductive 

inequality in fish, new estimates of historical whale abundance, exoneration of humans for the 

prehistoric decline of bison and inference of a selective sweep on the human Y chromosome. This 

review summarizes available genealogy-sampler software, including data requirements and 

limitations on the use of each program.

Introduction

The larger a population is, the more distantly, on average, its members are related to one 

another. Coalescent theory quantifies this intuitive idea by relating the patterns of common 

ancestry within a sample to the size and structure of the overall population. Figure 1 shows a 

population of 20 gene copies, 3 of which have been sampled, and the points of common 

ancestry (called coalescences) among those samples. The distribution of common-ancestry 

times was originally called the n-coalescent [1,2], now usually shortened to coalescent. 

Today it is widely used to study historical size and other attributes of populations for which 

molecular sequence data are available.

It is generally impossible to consider all possible ancestral relationships among sampled 

sequences. Instead, researchers have developed approaches that explore many relatively 

probable ancestral patterns, or genealogies. These methods can be collectively termed 

coalescent genealogy samplers, and have been implemented in a variety of software 

packages. These packages differ in how they explore genealogies, and in the population 

attributes and biological systems they can model.

The original formulation of the coalescent could only be applied to a single, constant-size 

population. Researchers have since extended the coalescent to account for factors including 

population growth [3], population subdivision [4], genetic recombination [5] and natural 
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selection [6]. It has also been used to infer approximate dates of mutations [7] and 

population divergences [8]. Figure 2 contrasts genealogies from constant-size, shrinking and 

growing populations, showing how the relative timing of coalescences varies with growth 

rate.

Coalescent genealogy samplers have been used to study diverse populations of organisms, 

including HIV-1 isolates from a clinical outbreak [9], rabbits in a European hybrid zone 

[10], Beringian bison in the Pleistocene and Holocene epochs [11] and Japanese conifers 

[12]. When used properly, these samplers are powerful tools for gaining insight into 

population histories. In this review, I will discuss the advantages of genealogy samplers over 

competing approaches; describe suitable data for a sampler-based study; compare the 

features and limitations of a variety of available samplers; and describe approaches to 

validating data-sampler analysis.

Why use genealogy samplers?

For many real biological systems, coalescent genealogy samplers provide more realistic 

estimates of historical size, expansion rate and other population parameters than summary 

statistics such as FST can. Summary statistics, although generally easier to compute and 

understand, are vulnerable to the presence of multiple evolutionary forces. For example, 

variable diversity among loci impairs the ability of FST to detect gene flow [13], and the 

presence of recombination compromises the use of Tajima’s D to detect natural selection 

[14]. If the researcher attempts to accommodate these complications within summary 

statistics, statistical power can suffer, as was seen in an attempt to infer population 

divergence using FST [15].

An alternative is to estimate the genealogy underlying a population sample and use this as 

the basis for parameter estimation [16–18]. However, except in a few cases of artificially 

manipulated populations, this genealogy cannot be known with certainty. Inferring 

population parameters from a single genealogy estimate, as with summary statistics, can 

suffer from bias and fail to provide realistic confidence intervals around estimates, 

especially when recombination is present [19].

By contrast, all of the genealogy samplers discussed in this review rely on making a large 

collection of possible genealogies and deriving parameter estimates from the collection as a 

whole, not from any single genealogy. Use of genealogies promises increased statistical 

power and robustness in complex situations; use of multiple genealogies allows accurate 

assessment of the potential error of the estimates. This is similar to the rationale behind 

Bayesian phylogenetic methods such as MRBAYES [20]. The population-genetic programs 

discussed here [21–28] share history, evolutionary models and, in some cases, computer 

code with well-developed phylogenetic methods and software which came before them.

Data requirements for genealogy samplers

All existing genealogy samplers rely on random samples from the population or populations 

of interest, except that the number of samples from each subpopulation can be chosen 

arbitrarily as it is not part of the coalescent model. Selecting particularly interesting or 
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relevant individuals introduces a severe bias: removing all identical individuals from a 

sample will generally result in a huge inferred population size and confidence intervals 

excluding the truth. Thus, data such as a collection of type specimens for the HIV-1 

serotypes will not give valid results in any current genealogy sampler.

High-quality molecular data are required: genotyping errors or incorrect sequence 

alignments can significantly affect parameter estimation. Table 1 shows the types of data 

accepted by current samplers.

When designing studies, researchers must choose how much effort to put into collecting 

more individuals, genotyping more loci or sequencing longer stretches of DNA. For the 

study of a single population, in the absence of recombination, the statistical power of 

genealogy sampling is optimized by sampling a modest number of haplotypes (as few as 8) 

at as many unlinked loci as possible [29]. Sequences can be fairly short, although they 

should be long enough to contain multiple polymorphic sites. Data requirements for 

multiple-population cases have not been determined, but the general principle of preferring 

multiple loci should still hold. With recombination, however, long sequences from a single 

locus can substitute for multiple loci. For summary statistics, small numbers (3–10) of very 

long sequences are optimal for recombination rate inference [30]; this likely holds for 

genealogy samplers as well. Detection of recombinations is easiest when there are 

distinctive sequences on both sides of the breakpoint; long sequences thus allow more 

recombinations to be detected.

Approaches to genealogy sampling

The quality of a genealogy is determined by the probability that the given data would have 

evolved on that genealogy under a specified mutational model. Genealogy inference is 

challenging because the ‘search space’ is very large, and no efficient algorithm is known 

that can guarantee finding the best genealogy. Samplers are confronted with the need to find 

a small number of needles (high-quality genealogies) in an enormous haystack of low-

quality genealogies.

Two approaches have been used to find high-quality genealogies. The first has been called 

IS for ‘importance sampling,’ although ‘independent sampling’ would be a more descriptive 

name. This approach assumes a mutational model under which no site has mutated more 

than once. The simplifying effect of this infinite-sites model allows genealogies which fit 

the data to be rapidly and independently discovered. Unfortunately, less restrictive 

mutational models are difficult to incorporate into an IS sampler. Thus, IS algorithms are 

most applicable to low-polymorphism data such as human nuclear single-nucleotide 

polymorphisms (SNP).

The second approach begins with an arbitrary genealogy and makes small modifications, 

attempting to find high-quality genealogies ‘nearby.’ As a result, successive genealogies are 

correlated. This is a Markov chain Monte Carlo (MCMC) algorithm, and these methods 

have therefore been referred to as MCMC methods. However, IS also uses MCMC (in a 

substantially different way), so a clearer term is CS for ‘correlated sampling.’ CS methods 

permit a wider variety of mutational models, but have more difficulty producing a thorough 
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sample of high-quality genealogies, because the correlated search can fail to find distant 

‘islands’ of good genealogies. They are well suited to highly polymorphic data such as viral 

DNA sequences or human microsatellites.

Within the CS methods there is a further distinction between likelihood-based and Bayesian 

approaches. In a likelihood-based approach, genealogy sampling is guided by the fit of the 

genealogy to the data, and by assumed values, called ‘driving values,’ of the parameters to 

be estimated. A collection of genealogies is accumulated, and these are used to construct a 

likelihood surface, whose peak will generate new driving values. This process is repeated 

until the driving values stabilize. Sampling is most effective when the driving values are 

similar to the true underlying values, so only the final collection of genealogies, which 

presumably had the best driving values, is used to construct the final likelihood surface and 

maximum-likelihood estimate. Confidence intervals around the estimate are constructed 

based on the expected shape of the likelihood surface. These confidence intervals are 

somewhat controversial, as they involve assumptions about the shape of the likelihood 

surface which are fully correct only for implausibly large data sets.

In a Bayesian approach, the driving values are continually changed by sampling potential 

new driving values from a prior distribution and evaluating how well they fit the current 

genealogy. Rather than basing the final estimate on collected genealogies, a Bayesian 

sampler tabulates the driving values which it has visited and constructs a smoothed 

histogram representing the posterior distribution. The maximum of this distribution is the 

most probable estimate, and the area under the curve is used to construct support intervals. 

Bayesian estimation is also controversial, because it depends on a prior distribution which 

must often be chosen arbitrarily.

Two studies have compared likelihood and Bayesian analysis of the same data by the same 

sampler. In data-rich situations, the methods performed equally well [31]; with sparse data, 

Bayesian sampling performed better, apparently because the prior distribution helped 

constrain the search [32]. Poorly chosen priors can cause Bayesian methods to fail, whereas 

poorly chosen driving values can impair likelihood searches. Only two software packages 

offer both sampling schemes; in other cases, the choice is made implicitly when the software 

is chosen.

Available software

Several programs are available to perform coalescent analysis. Their authors have generally 

avoided duplication of effort, so that each program has clear areas of applicability. Tables 1–

3 show program capabilities. Below are brief comments on each program’s particular 

strengths, presented in alphabetical order.

BEAST

BEAST [21] estimates effective population size, mutation rate and growth patterns for a 

single population. It has three unique features: a flexible model of growth based on the 

Bayesian skyline plot, allowing for arbitrary patterns of historical population growth; a 

‘relaxed clock’ mutational model which allows the mutation rate to vary among lineages; 
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and accommodation of samples taken at multiple time points. BEAST is particularly useful 

when data from multiple time points (distant enough in time to allow measurable evolution 

between them) are available, as with viruses or ancient DNA. Multiple time points allow the 

mutation rate to be estimated separately from the population size, whereas other programs 

are only able to estimate the composite parameter Θ, the product of effective population size 

and mutation rate. Multiple time points also allow greatly improved precision and detail in 

estimation of the population growth rate. BEAST has been used to trace cougar population 

demographics via molecular data from a fast-evolving feline virus [33], to infer that 

Beringian bison had already begun to decline before humans arrived in North America [11] 

and to date the origin of an HIV-1 outbreak in a Libyan hospital [9].

GENETREE

GENETREE [22] estimates Θ, migration rates and exponential growth rates for multiple 

stable populations. Unlike the other methods discussed here, it is an IS sampler: it constructs 

independent genealogies rather than repeatedly modifying a starting genealogy. This 

requires it to assume an infinite-sites mutational model, but renders it nearly immune to 

problems in which the search fails to move well among genealogies. GENETREE can 

provide estimates of the time back to the most recent common ancestor of a population; 

uniquely, it also estimates dates of specific mutations. It has been used to show that the 

common ancestor of human Y chromosomes was unexpectedly recent, perhaps due to a 

selective sweep [34].

IM and IMa

IM and IMa [23–25] consider cases in which two populations have recently diverged from a 

common ancestor. They estimate Θ for each population and for the common ancestor, as 

well as the divergence time, bidirectional migration rates among the daughter populations 

and (in IM only) growth rates for the daughters. They are particularly well suited for 

analysis of young populations and for distinguishing gene flow from retention of ancestral 

polymorphism. IMa, the more recent program, uses an improved search algorithm, offers 

likelihood ratio tests to decide among different demographic models and provides more 

information about the joint distribution of parameters than IM; however, it does not yet 

duplicate all of the features of IM. IM has been used to show that loci near the centromere 

show reduced gene flow compared to telomeric loci in a rabbit hybrid zone [10].

LAMARC

LAMARC [26] considers cases in which multiple populations have had stable population 

sizes and migration rates for a long time, and allows each population to have a separate rate 

of exponential growth or shrinkage. There is no theoretical limit on the number of 

populations, but in practice, cases with more than three or four populations take large 

amounts of computer time and demand extensive data for success. LAMARC allows genetic 

recombination within sequences and estimates an overall recombination rate. This allows 

use of long sequences from recombining areas of the genome, both for estimation of 

recombination rate and for nonconfounded estimation of other parameters. LAMARC can 

also perform fine-scale linkage disequilibrium mapping, relating phenotypic data to genetic 

Kuhner Page 5

Trends Ecol Evol. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variation. LAMARC has been used to show that the long-term effective population size of 

gray whales was substantially larger than estimated from historical whaling records, based 

on a mixed sample of nuclear and mitochondrial loci [35].

MIGRATE-N

MIGRATE-N [27,28] considers multiple populations using a stable-population model 

similar to that in LAMARC. It estimates Θ for each population and migration rates in each 

direction between each pair of populations. As with LAMARC, there is no set limit on the 

number of populations. MIGRATE-N offers detailed tests based on likelihood ratios and the 

Akaike information criterion (AIC) for deciding among models, such as a model of 

symmetrical versus unconstrained migration rates. It can also be run in parallel on multiple 

computers for faster analysis. MIGRATE-N has been used to show that the effective 

population size of red drum, a long-lived ocean fish, is three orders of magnitude smaller 

than its census size, suggesting highly unequal reproductive success [36].

These programs do not yet cover the full range of situations encountered by biologists. In 

particular, combinations such as multiple-time point sampling with recombination or 

population subdivision, or population divergence with recombination, are not yet possible, 

and none of the programs can estimate the strength of natural selection.

Frustratingly, some methods mentioned in the literature are rendered nearly unusable by lack 

of publicly available software, for example certain coalescent-based estimators of natural 

selection [6], population subdivision with multiple-time point data [37] and migration using 

isolation by distance (described in Ref. [38]).

Guidance and caveats on the use of genealogy samplers

Each genealogy-sampler program uses specific population models, and the biologist must 

carefully consider the assumptions of each model when deciding which, if any, program is 

appropriate. For example, LAMARC and MIGRATE-N assume the dynamics of each 

population have been stable for ~4N generations; when recent population divergence is 

likely, IM or IMa are more appropriate. Table 3 summarizes major assumptions of the 

programs. If these assumptions are violated, the results can be misleading. Before using any 

genealogy sampler, the researcher should carefully examine its documentation to understand 

the models it uses.

The complexity of the chosen population model considered must be weighed against the 

amount of data available. Attempts to estimate the 20 possible pairwise migration rates 

among five populations using data from a single locus will probably fail. Restricting the 

hypothesis–perhaps by assuming that migration is symmetrical or that certain migration 

routes need not be considered – will improve statistical power, but if those assumptions are 

incorrect, the results of the analysis will be as well. Pre-analysis of the data can help prevent 

the use of inappropriate population models. For example, STRUCTURE [39] can be used to 

determine whether there is sufficient evidence for geographic structuring to support a 

sampler-based subpopulation analysis. MODELTEST [40] can be used to determine the 

most appropriate mutation model.
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Use of alternative methods can strengthen the results of a coalescent analysis. For example, 

a study [36] concluded that the effective population size of an ocean fish is orders of 

magnitude less than its census size by pairing a MIGRATE-N analysis, measuring long-term 

Ne, with a short-term analysis based upon allele frequency fluctuation over several years of 

sampling. The agreement between these unrelated methods greatly strengthened the 

conclusions. By contrast, agreement between multiple genealogy samplers does not strongly 

corroborate their results, because the underlying approaches and assumptions of the 

samplers are too similar.

Genealogy-sampling algorithms, when used properly, vary from slow to excruciatingly 

slow. It is wise to budget several months for the statistical analysis phase of a study after 

data collection is complete. Rushed analysis will lead to weak results. A small pilot analysis 

can allow the researcher to find suitable run conditions for a complete analysis without using 

excessive computer time. Such a pilot typically examines a single locus and a small subset 

of samples (8–10 randomly chosen haplotypes). A short run will then give valuable hints 

about how well the program performs and how long a full analysis will take.

How should sampler results be validated?

All of the genealogy samplers described in this review rely on collecting large samples of 

genealogies which collectively represent the genealogical information present in the data. 

All, therefore, are vulnerable to too-short runs or poor choices of run conditions. These can 

lead to too-small or unrepresentative samples of genealogies, which in turn can lead to 

actively misleading results and especially to overly narrow inferred confidence intervals. To 

get reliable results, the program user must be prepared to learn about the options and 

functionality of the program, and must make multiple runs to fine-tune the options.

Four basic approaches to validation are known. For all samplers, repeating the run with a 

different random number seed will reveal whether the results are stable. It is important to 

note that for some data sets, the point estimates of parameters such as growth rate can vary 

substantially from run to run simply because there is little information present. However, 

such results should be accompanied by wide, overlapping confidence intervals among the 

multiple runs. If the confidence intervals for multiple runs exclude one another, the runs are 

too short. This approach can be extended by varying the starting parameter values and 

starting genealogy (where possible). Small variations in the prior of a Bayesian analysis can 

also be tested to see whether they lead to large differences in the result; a well-behaved 

Bayesian run should not be highly sensitive to small variations in its prior.

For Bayesian CS samplers in particular, two useful validation capabilities are provided by 

the TRACER program [41], which can be used in conjunction with BEAST, LAMARC and 

MIGRATE-N. IM and IMa provide TRACER-like capabilities internally.

TRACER calculates the effective sample size (ESS) statistic, which gives a thumbnail 

diagnosis of too-short runs by revealing how much independent information is present in the 

sampled parameter values. High ESS values unfortunately do not prove that a program run 

was adequately long, but values below 200 are clear evidence that it was too short.
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TRACER can also plot the changes in parameter values during the length of a run. Visual 

inspection of these ‘traces’ can provide important clues about run adequacy. After an initial 

burn-in period, traces should vary stochastically around a stable value. Long-range trends, 

wild oscillation or values which do not move from their starting points are clear indications 

of a too-short or otherwise flawed analysis.

A final approach to validation is to assess whether the whole genealogy structure has been 

thoroughly reconsidered, or whether there are groups of samples whose relationships have 

remained stuck in their initial configuration. For cases without recombination, this can be 

done by the AWTY program [42]. BEAST, LAMARC and MIGRATE-N produce output 

suitable for AWTY. Unfortunately, no equivalent tool exists for genealogies with 

recombination.

When a sampler run shows signs of inadequacy, it can be run longer. Alternatively, a 

technique called Metropolis-coupled Markov chain Monte Carlo, informally referred to as 

‘heating,’ will often improve the search performance of CS genealogy samplers. It is offered 

by all of the CS samplers described here, and should be tried whenever multiple runs 

produce contradictory results, or ESS values or TRACER graphs are persistently 

unsatisfactory. Heating can be thought of as sending ‘scouts’ to explore distant regions of 

the space of possible genealogies. A search with three scouts will triple the run time, but is 

usually more effective than simply running the program three times as long. Heating is not 

applicable to IS samplers, as they are not limited to searching in the vicinity of their current 

genealogy. A poorly performing IS sampler should simply be run longer.

Persistent failure of a sampler to give stable results should trigger reconsideration of the 

study design. Are the data really suitable for this type of analysis? Are the assumptions of 

the program met? Is the amount of data adequate for the complexity of the model in use?

In addition to giving usage instructions, the documentation for each program generally 

provides guidance on how to interpret the results of the program. Internet discussion groups 

can be another source of useful information. Program authors and maintainers usually 

welcome questions about their software, and are the ultimate direct source for guidance on 

its use.

Conclusions

Correctly used, genealogy samplers can provide powerful and detailed insights into 

population history. They can help disentangle multiple evolutionary forces acting on a 

population, including gene flow, population growth and population divergence. Importantly, 

they also offer information about the degree of statistical support for their inferences.

However, genealogy samplers cannot be treated as ‘black boxes.’ A researcher planning a 

genealogy-sampler analysis will need a good understanding of the software and its 

underlying model, and also a good understanding of the study organism and its life history. 

Knowledge of the software is essential in choosing appropriate data, monitoring adequacy of 

the runs and interpreting the results. Knowledge of the biological system is essential in 

choosing an appropriate population model and understanding how differences between the 
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real population and its simplified representation can affect the results of the analysis. For 

example, knowing the generation time of the study organism and the geological history of its 

habitat can suggest whether it likely has long-term stable population structure (suitable for 

LAMARC or MIGRATE-N) or would better be analyzed under a recent-divergence model 

with IM or IMa.

Steadily improving technology is allowing biologists to collect and compare more data from 

more complex systems than ever before. Computing resources, likewise, continue to 

improve in speed and availability. As coalescent genealogy samplers become easier and 

faster to use, the research community at large will increasingly expect these tools to be used 

to supplement or supersede summary-statistic calculations. These developments are spurring 

program authors to refine and extend their programs. As experimental biological questions 

continue to gain in complexity and sophistication, so too, by necessity, will the 

computational tools to answer them.
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Glossary

AIC Akaike information criterion, a heuristic used to determine whether the 

improvement in fit of a more complex model justifies the additional 

parameters it introduces.

Bayesian 
skyline plot

a graph showing the curve of inferred population size over time (and its 

support intervals) based on multiple sampled genealogies.

Coalescence two lineages tracing back to a common ancestral haplotype at a 

particular time.

Coalescent 
theory

mathematics governing the expected distribution of times back to a 

common ancestor in a population sample.

Driving values assumed values of the parameters to be estimated (such as Θ or 

migration rate) which are used to guide a likelihood-based search. 

Driving values too far from the unknown true values of the parameters 

will lead to biased estimates.

Effective 
population size

the size of an idealized (Wright-Fisher) population with the same rate 

of genetic drift as the given population. Effective population size is 

usually smaller than census size as a result of factors such as unequal 

reproductive success.

ESS effective sample size. When data points (such as sampled genealogies) 

are autocorrelated, their information content is reduced. ESS estimates 

the size of a fully independent data set having the same information 
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content as the given autocorrelated data. An ESS of 200 or more is 

recommended for genealogy sampling.

FST summary statistic based on comparison of within-group and between-

group genetic diversity, used to estimate population sizes and migration 

rates.

Genealogy the ancestral relationship, for a particular segment of the genome, 

among sampled chromosomes. This takes the form of a branching tree 

for non-recombining data, but becomes a tangled graph (the “ancestral 

recombination graph”) with recombination.

Infinite-sites 
model

a mutational model in which no site mutates more than once in the 

history of the sample, thus suitable only for data in which mutations are 

rare.

K-allele model a mutational model in which there are κ distinct alleles with equal 

chance of mutation from any allele to any other.

Migration as used in this paper, gene flow between subpopulations.

Ne effective population size, the size of an idealized theoretical population 

with the same amount of genetic drift as the given real population. In 

most organisms, effective size is less than census size because of 

factors such as overlapping generations, reproductive inequality and sex 

bias.

Tajima’s D a summary statistic which detects forces such as natural selection by 

their effects on two different estimators of the population size.

Theta (Θ) 4Neμ in diploids or 2Neμ in haploids, the product of the effective 

population size Ne and mutation rate μ. This parameter measures the 

capacity of a population to maintain genetic variability. Among 

organisms of similar mutation rate, it functions as a measure of relative 

effective population size. Care should be taken when reporting or 

interpreting Θ because some studies use units of mutations per site, and 

others of mutation per locus.
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Figure 1. 
Coalescent embedded in population. A population of 20 gene copies showing the coalescent 

genealogy of 3 sampled copies. The expected time to go from k copies to k – 1 copies is 

exponentially distributed with a mean of Θ/[k(k – 1)], where Θ is the product of effective 

population size and mutation rate.
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Figure 2. 
Growth signature in genealogies. Genealogies sampled from (a) constant-size, (b) 
exponentially shrinking and (c) exponentially growing populations.
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Table 3

Assumptions of genealogy samplers

Assumption Samplers not requiring this assumption

Random sampling

No directional or balancing selection

Random mating within subpopulations

Constant mutation rate over time BEAST

No recombination within loci; free recombination between loci LAMARC

Stable subpopulation structure over time IM, IMa

Same copy number for all loci IM, IMa, LAMARC

All samples contemporaneous BEAST

Constant population size BEAST, IM, LAMARC

Population growth or shrinkage is exponential BEAST

Infinite-sites mutational model BEAST, IM, IMa, LAMARC, MIGRATE-N
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