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Abstract

This paper introduces a Projected Principal Component Analysis (Projected-PCA), which 

employees principal component analysis to the projected (smoothed) data matrix onto a given 

linear space spanned by covariates. When it applies to high-dimensional factor analysis, the 

projection removes noise components. We show that the unobserved latent factors can be more 

accurately estimated than the conventional PCA if the projection is genuine, or more precisely, 

when the factor loading matrices are related to the projected linear space. When the dimensionality 

is large, the factors can be estimated accurately even when the sample size is finite. We propose a 

flexible semi-parametric factor model, which decomposes the factor loading matrix into the 

component that can be explained by subject-specific covariates and the orthogonal residual 

component. The covariates’ effects on the factor loadings are further modeled by the additive 

model via sieve approximations. By using the newly proposed Projected-PCA, the rates of 

convergence of the smooth factor loading matrices are obtained, which are much faster than those 

of the conventional factor analysis. The convergence is achieved even when the sample size is 

finite and is particularly appealing in the high-dimension-low-sample-size situation. This leads us 

to developing nonparametric tests on whether observed covariates have explaining powers on the 

loadings and whether they fully explain the loadings. The proposed method is illustrated by both 

simulated data and the returns of the components of the S&P 500 index.
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1. Introduction

Factor analysis is one of the most useful tools for modeling common dependence among 

multivariate outputs. Suppose that we observe data {yit}i≤p,t≤T that can be decomposed as

(1.1)

where {ft1, ···, ftK} are unobservable common factors; {λi1, ···, λiK} are corresponding factor 

loadings for variable i, and uit denotes the idiosyncratic component that can not be explained 

by the static common component. Here p and T respectively denote the dimension and 

sample size of the data.

Model (1.1) has broad applications in the statistics literature. For instance, yt = (y1t, ···, ypt)′ 

can be expression profiles or blood oxygenation level dependent (BOLD) measurements for 

the tth microarray, proteomic or fMRI-image, whereas i represents a gene or protein or a 

voxel. See, for example, Desai and Storey (2012); Efron (2010); Fan et al. (2012); Friguet et 

al. (2009); Leek and Storey (2008). The separations between the common factors and 

idiosyncratic components are carried out by the low-rank plus sparsity decomposition. See, 

for example, Cai et al. (2013); Candès and Recht (2009); Fan et al. (2013); Koltchinskii et 

al. (2011); Ma (2013); Negahban and Wainwright (2011).

The factor model (1.1) has also been extensively studied in the econometric literature, in 

which yt is the vector of economic outputs at time t or excessive returns for individual assets 

on day t. The unknown factors and loadings are typically estimated by the principal 

component analysis (PCA) and the separations between the common factors and 

idiosyncratic components are characterized via static pervasiveness assumptions. See, for 

instance, Bai (2003); Bai and Ng (2002); Breitung and Tenhofen (2011); Lam and Yao 

(2012); Stock and Watson (2002) among others. In this paper, we consider static factor 

model, which differs from the dynamic factor model (Forni et al., 2000, 2015; Forni and 

Lippi, 2001). The dynamic model allows more general infinite dimensional representations. 

For this type of model, the frequency domain PCA (Brillinger, 1981) was applied on the 

spectral density. The so-called dynamic pervasiveness condition also plays a crucial role in 

achieving consistent estimation of the spectral density.

Accurately estimating the loadings and unobserved factors are very important in statistical 

applications. In calculating the false-discovery proportion for large-scale hypothesis testing, 

one needs to adjust accurately the common dependence via subtracting it from the data in 

(1.1) (Desai and Storey, 2012; Efron, 2010; Fan et al., 2012; Friguet et al., 2009; Leek and 

Storey, 2008). In financial applications, we would like to understand accurately how each 

individual stock depends on unobserved common factors in order to appreciate its relative 

performance and risks. In the aforementioned applications, dimensionality is much higher 

than sample-size. However, the existing asymptotic analysis shows that the consistent 

estimation of the parameters in model (1.1) requires a relatively large T. In particular, the 

individual loadings can be estimated no faster than OP (T−1/2). But large sample sizes are not 

Fan et al. Page 2

Ann Stat. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



always available. Even with the availability of “Big Data”, heterogeneity and other issues 

make direct applications of (1.1) with large T infeasible. For instance, in financial 

applications, to pertain the stationarity in model (1.1) with time-invariant loading 

coefficients, a relatively short time series is often used. To make observed data less serially 

correlated, monthly returns are frequently used to reduce the serial correlations, yet a 

monthly data over three consecutive years contain merely 36 observations.

1.1. This paper

To overcome the aforementioned problems, and when relevant covariates are available, it 

may be helpful to incorporate them into the model. Let Xi = (Xi1, ···, Xid)′ be a vector of d-

dimensional covariates associated with the ith variables. In the seminal papers by Connor 

and Linton (2007) and Connor et al. (2012), the authors studied the following semi-

parametric factor model:

(1.2)

where loading coefficients in (1.1) are modeled as λik = gk(Xi) for some functions gk(·). For 

instance, in health studies, Xi can be individual characteristics (e.g. age, weight, clinical and 

genetic information); in financial applications Xi can be a vector of firm-specific 

characteristics (market capitalization, price-earning ratio, etc).

The semiparametric model (1.2), however, can be restrictive in many cases, as it requires 

that the loading matrix be fully explained by the covariates. A natural relaxation is the 

following semiparametric model

(1.3)

where γik is the component of loading coefficient that can not be explained by the covariates 

Xi. Let γi = (γi1, ···, γiK)′. We assume that {γi}i≤p have mean zero, and are independent of 

{Xi}i≤p and {uit}i≤p,t≤T. In other words, we impose the following factor structure

(1.4)

which reduces to model (1.2) when γik = 0 and model (1.1) when gk(·) = 0. When Xi 

genuinely explains a part of loading coefficients λik, the variability of γik is smaller than that 

of λik. Hence, the coefficient γik can be more accurately estimated by using regression model 

(1.3), as long as the functions gk(·) can be accurately estimated.

Let Y be the p×T matrix of yit, F be the T × K matrix of ftk, G(X) be the p × K matrix of 

gk(Xi), Γ be the p × K matrix of γik, and U be p × T matrix of uit. Then model (1.4) can be 

written in a more compact matrix form:
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(1.5)

We treat the loadings G(X) and Γ as realizations of random matrices throughout the paper. 

This model is also closely related to the supervised singular value decomposition model, 

recently studied by Li et al. (2015). The authors showed that the model is useful in studying 

the gene expression and single-nucleotide polymorphism (SNP) data, and proposed an EM 

algorithm for parameter estimation.

We propose a projected-PCA estimator for both the loading functions and factors. Our 

estimator is constructed by first projecting Y onto the sieve space spanned by {Xi}i≤p, then 

applying PCA to the projected data or fitted values. Due to the approximate orthogonality 

condition of X, U and Γ, the projection of Y is approximately G(X)F′, as the smoothing 

projection suppresses the noise terms Γ and U substantially. Therefore, applying PCA to the 

projected data allows us to work directly on the sample covariance of G(X)F′, which is 

G(X)G(X)′ under normalization conditions. This substantially improves the estimation 

accuracy, and also facilitates the theoretical analysis. In contrast, the traditional PC method 

for factor analysis (e.g., Stock and Watson (2002), Bai and Ng (2002)) is no longer suitable 

in the current context. Moreover, the idea of projected-PCA is also potentially applicable to 

dynamic factor models of Forni et al. (2000), by first projecting the data onto the covariate 

space.

The asymptotic properties of the proposed estimators are carefully studied. We demonstrate 

that as long as the projection is genuine, the consistency of the proposed estimator for latent 

factors and loading matrices requires only p → ∞, and T does not need to grow, which is 

attractive in the typical high-dimension-low-sample-size (HDLSS) situations (e.g., Jung and 

Marron (2009); Shen et al. (2013a,b)). In addition, if both p and T grow simultaneously, then 

with sufficiently smooth gk(·), using the sieve approximation, the rate of convergence for the 

estimators is much faster than those of the existing results for model (1.1). Typically, the 

loading functions can be estimated at a convergence rate OP ((pT)−1/2), and the factor can be 

estimated at OP(p−1). Throughout the paper, K = dim(ft) and d = dim(Xi) are assumed to be 

constant and do not grow.

Let Λ be a p×K matrix of (λik)T×K. Model (1.3) implies a decomposition of the loading 

matrix:

where G(X) and Γ are orthogonal loading components in the sense that EG(X)Γ′ = 0. We 

conduct two specification tests for the hypotheses:

The first problem is about testing whether the observed covariates have explaining power on 

the loadings. If the null hypothesis is rejected, it gives us the theoretical basis to employ the 
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projected PCA, as the projection is now genuine. Our empirical study on the asset returns 

shows that firm market characteristics do have explanatory power on the factor loadings, 

which lends further support to our projected-PCA method. The second tests whether 

covariates fully explain the loadings. Our aforementioned empirical study also shows that 

model (1.2) used in the financial econometrics literature is inadequate and more generalized 

model (1.5) is necessary. As claimed earlier, even if  does not hold, as long as G(X) ≠ 0, 

the Projected-PCA can still consistently estimate the factors as p → ∞, and T may or may 

not grow. Our simulated experiments confirm that the estimation accuracy is gained more 

significantly for small T’s. This shows one of the benefits of using our projected-PCA 

method over the traditional methods in the literature.

In addition, as a further illustration of the benefits of using projected data, we apply the 

projected-PCA to consistently estimate the number of factors, which is similar to those in 

Ahn and Horenstein (2013) and Lam and Yao (2012). Different from these authors, our 

method applies to the projected data, and we demonstrate numerically that this can 

significantly improve the estimation accuracy.

We focus on the case when the observed covariates are time-invariant. When T is small, 

these covariates are approximately locally constant, so this assumption is reasonable in 

practice. On the other hand, there may exist individual characteristics that are time-variant 

(e.g., see Park et al. (2009)). We expect the conclusions in the current paper to still hold if 

some smoothness assumptions are added for the time varying components of the covariates. 

Due to the space limit, we provide heuristic discussions on this case in the supplementary 

material of this paper Fan et al. (2015b). In addition, note that in the usual factor model, Λ 

was assumed to be deterministic. In this paper, however, Λ is mainly treated to be stochastic, 

and potentially depend on a set of covariates. But we would like to emphasize that the 

results presented in Section 3 under the framework of more general factor models hold 

regardless of whether Λ is stochastic or deterministic. Finally, while some financial 

applications are presented in this paper, the projected-PCA is expected to be useful in broad 

areas of statistical applications (e.g., see Li et al. (2015) for applications in gene expression 

data analysis).

1.2. Notation and organization

Throughout this paper, for a matrix A, let ||A||F = tr1/2(A′A) and , ||A||max 

= maxij |Aij| denote its Frobenius, spectral and max-norms. Let λmin(·) and λmax(·) denote the 

minimum and maximum eigenvalues of a square matrix. For a vector v, let ||v|| denote its 

Euclidean norm.

The rest of the paper is organized as follows. Section 2 introduces the new projected-PCA 

method and defines the corresponding estimators for the loadings and factors. Sections 3 and 

4 provide asymptotic analysis of the introduced estimators. Section 5 introduces new 

specification tests for the orthogonal decomposition of the semi-parametric loadings. Section 

6 concerns about estimating the number of factors. Section 7 presents numerical results. 

Finally, Section 8 concludes. All the proofs are given in the appendix and the supplementary 

material.
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2. Projected Principal Component Analysis

2.1. Overview

In the high-dimensional factor model, let Λ be the p×K matrix of loadings. Then the general 

model (1.1) can be written as

(2.1)

Suppose we additionally observe a set of covariates {Xi}i≤p. The basic idea of the projected 

PCA is to smooth the observations {Yit}i≤p for each given day t against its associated 

covariates. More specifically, let {Ŷit}i≤p be the fitted value after regressing {Yit}i≤p on 

{Xi}i≤p for each given t. This results in a smooth or projected observation matrix Ŷ, which 

will also be denoted by PY. The projected PCA then estimates the factors and loadings by 

running the PCA based on the projected data Ŷ.

Here we heuristically describe the idea of projected PCA; rigorous analysis will be carried 

out afterwards. Let  be a space spanned by X = {Xi}i≤p, which is orthogonal to the error 

matrix U. Let P denote the projection matrix onto  (whose formal definition will be given 

in (2.6) below. At the population level, P approximates the conditional expectation operator 

E(·|X), which satisfies E(U|X) = 0), then P2 = P and PU ≈ 0. Hence, the projected data Ŷ is 

an approximately noiseless problem and its sample covariance has the following 

approximation:

(2.2)

Hence, F and PΛ can be recovered from the projected data Ŷ under some suitable 

normalization condition.

The normalization conditions we imposed are

(2.3)

Under this normalization, using (2.2), we conclude that the columns of F are approximately 

 times the first K eigenvectors of the T × T matrix . Therefore, the Projected-

PCA naturally defines a factor estimator F̂ using the first K principal components of 

.

The projected loading matrix PΛ can also be recovered from the projected data PY in two 

(equivalent) ways. Given F, from , we see . 

Alternatively, consider the p × p projected sample covariance:
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where Δ̃ is a remaining term depending on PU. Right multiplying PΛ and ignoring terms 

depending on PU, we obtain . Hence the (normalized) 

columns of PΛ approximate the first K eigenvectors of , the p×p sample 

covariance matrix based on the projected data. Therefore, we can either estimate PΛ by 

 given F̂, or by the leading eigenvectors of . In fact, we shall see later that 

these two estimators are equivalent. If in addition, Λ = PΛ, that is, the loading matrix 

belongs to the space , then Λ can also be recovered from the projected data.

The above arguments are the fundament of the projected-PCA, and provide the rationale of 

our estimators to be defined in Section 2.3. We shall make the above arguments rigorous by 

showing that the projected error PU is asymptotically negligible, and therefore the 

idiosyncratic error term U can be completely removed by the projection step.

2.2. Semiparametric Factor Model

As one of the useful examples of forming the space  and the projection operator, this paper 

considers model (1.4), where Xi’s and yit’s are the only observable data, and {gk(·)}k≤K are 

unknown nonparametric functions. The specific case (1.2) (with γik = 0) was used 

extensively in the financial studies by Connor and Linton (2007), Connor et al. (2012) and 

Park et al. (2009), with Xi’s being the observed “market characteristic variables”. We 

assume K to be known for now. In Section 6, we will propose a projected-eigenvalue-ratio 

method to consistently estimate K when it is unknown.

We assume that gk(Xi) does not depend on t, which means the loadings represent the cross-

sectional heterogeneity only. Such a model specification is reasonable since in many 

applications using factor models: to pertain the stationarity of the time series, the analysis 

can be conducted within each fixed time window with either a fixed or slowly-growing T. 

Through localization in time, it is not stringent to require the loadings be time-invariant. 

This also shows one of the attractive features of our asymptotic results: under mild 

conditions, our factor estimates are consistent even if T is finite.

To non-parametrically estimate gk(Xi) without the curse of dimensionality when Xi is 

multivariate, we assume gk(·) to be additive: for each k ≤ K, i ≤ p, there are (gk1, ···, gkd) 

nonparametric functions such that

(2.4)

Each additive component of gk is estimated by the sieve method. Define {ϕ1(x), ϕ2(x), ···} to 

be a set of basis functions (e.g., B-spline, Fourier series, wavelets, polynomial series), which 

spans a dense linear space of the functional space for {gkl}. Then for each l ≤ d,
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(2.5)

Here {bj,kl}j≤J are the sieve coefficients of the lth additive component of gk(Xi), 

corresponding to the kth factor loading; Rkl is a “remaining function” representing the 

approximation error; J denotes the number of sieve terms which grows slowly as p → ∞. 

The basic assumption for sieve approximation is that supx |Rkl(x)| → 0 as J → ∞. We take 

the same basis functions in (2.5) purely for simplicity of notation.

Define, for each k ≤ K and for each i ≤ p,

Then, we can write

Let B = (b1, ···, bK) be a (Jd) × K matrix of sieve coefficients, Φ(X) = (ϕ(X1), ···, ϕ(Xp))′ be 

a p × (Jd) matrix of basis functions, and R(X) be p×K matrix with the (i, k)th element 

. Then the matrix form of (2.4) and (2.5) is

Substituting this into (1.5), we write

We see that the residual term consists of two parts: the sieve approximation error R(X)F′ 

and the idiosyncratic U. Furthermore, the random effect assumption on the coefficients Γ 

makes it also behave like noise and hence negligible when the projection operator P is 

applied.

2.3. The estimator

Based on the idea described in Section 2.1, we propose a Projected-PCA method, where 

is the sieve space spanned by the basis functions of X, and P is chosen as the projection 

matrix onto , defined by the p × p projection matrix
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(2.6)

The estimators of the model parameters in (1.5) are defined as follows. The columns of 

 are defined as the eigenvectors corresponding to the first K largest eigenvalues of the 

T × T matrix Y′PY, and

(2.7)

is the estimator of G(X).

The intuition can be readily seen from the discussions in Section 2.1, which also provides an 

alternative formulation of Ĝ(X) as follows: let D̂ be a K×K diagonal matrix consisting of the 

largest K eigenvalues of the p×p matrix . Let Ξ̂= (ξ̂
1, …, ξ̂

K) be a p×K matrix 

whose columns are the corresponding eigenvectors. According to the relation 

 described in Section 2.1, we can also estimate G(X) or PΛ 

by

We shall show in Lemma A.1 that this is equivalent to (2.7). The weight matrix P projects 

the original data matrix onto the sieve space spanned by X. Therefore, unlike the traditional 

PC method for usual factor models (e.g., Bai (2003), Stock and Watson (2002)), the 

projected-PCA takes the principal components of the projected data PY. The estimator is 

thus invariant to the rotation-transformations of the sieve bases.

The estimation of the loading component Γ that can not be explained by the covariates can 

be estimated as follows. With the estimated factors F̂, the least-squares estimator of loading 

matrix is Λ̂ = YF̂/T, by using (2.1) and (2.3). Therefore, by (1.5), a natural estimator of Γ is

(2.8)

2.4. Connection with panel data models with time-varying coefficients

Consider a panel data model with time-varying coefficients as follows:

(2.9)

where Xi is a d-dimensional vector of time-invariant regressors for individual i; μt denotes 

the unobservable random time effect; uit is the regression error term. The regression 

coefficient βt is also assumed to be random and time-varying, but is common across the 

cross-sectional individuals.
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The semi-parametric factor model admits (2.9) as a special case. Note that (2.9) can be 

rewritten as yit = g(Xi)′ft + uit with K = d + 1 unobservable “factors”  and 

“loading” . The model (1.4) being considered, on the other hand, allows 

more general nonparametric loading functions.

3. Projected-PCA in Conventional Factor Models

Let us first consider the asymptotic performance of the projected-PCA in the conventional 

factor model:

(3.1)

In the usual statistical applications for factor analysis, the latent factors are assumed to be 

serially independent, while in financial applications, the factors are often treated to be 

weakly dependent time series satisfying strong mixing conditions.

We now demonstrate by a simple example that latent factors F can be estimated at a faster 

rate of convergence by Projected-PCA than the conventional PCA and that they can be 

consistently estimated even when sample size T is finite.

Example 3.1—To appreciate the intuition, let us consider a specific case in which K = 1 so 

that model (1.4) reduces to

Assume that g(·) is so smooth that it is in fact a constant β (otherwise, we can use a local 

constant approximation), where β > 0. Then, the model reduces to

The projection in this case is averaging over i, which yields

where ȳ·t, γ̄
· and ū·t denote the averages of their corresponding quantities over i. For the 

identification purpose, suppose Eγi = Euit = 0, and . Ignoring the last two terms, 

we obtain estimators
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(3.2)

These estimators are special cases of the projected-PCA estimators. To see this, define ȳ = 

(ȳ·1, …, ȳ·T)′, and let 1p be a p-dimensional column vector of ones. Take a naive basis Φ(X) 

= 1p; then the projected data matrix is in fact PY = 1pȳ′. Consider the T × T matrix Y′PY = 

(1pȳ′)′1pȳ′ = pȳȳ′, whose largest eigenvalue is p||ȳ||2. From

we have the first eigenvector of Y′PY equals ȳ/||ȳ||. Hence the projected-PCA estimator of 

factors is . In addition, the projected PCA estimator of the loading vector β1p 

is

Hence the projected PCA-estimator of β equals . These estimators match with (3.2). 

Moreover, since the ignored two terms γ̄
· and ū·t are of order Op(p−1/2), β̂ and f̂t converge 

whether or not T is large. Note that this simple example satisfies all the assumptions to be 

stated below, and β̂ and f̂t achieve the same rate of convergence as that of Theorem 4.1. We 

shall present more details about this example in Appendix G in the supplementary material.

3.1. Asymptotic Properties of Projected-PCA

We now state the conditions and results formally in the more general factor model (3.1). 

Recall that the projection matrix is defined as

The following assumption is the key condition of the projected-PCA.

Assumption 3.1 (Genuine projection)—There are positive constants cmin and cmax 

such that, with probability approaching one (as p → ∞),
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Since the dimensions of Φ(X) and Λ are respectively p × Jd and p × K, Assumption 3.1 

requires Jd ≥ K, which is reasonable since we assume K, the number of factors, to be fixed 

throughout the paper.

Assumption 3.1 is similar to the pervasive condition on the factor loadings (Stock and 

Watson (2002)). In our context, this condition requires the covariates X have non-vanishing 

explaining power on the loading matrix, so that the projection matrix Λ′PΛ has spiked 

eigenvalues. Note that it rules out the case when X is completely unassociated with the 

loading matrix Λ (e.g., when X is pure noise). One of the typical examples that satisfies this 

assumption is the semi-parametric factor model (model (1.4)). We shall study this specific 

type of factor model in Section 4, and prove Assumption 3.1 in the supplementary material 

Fan et al. (2015b).

Note that F and Λ are not separately identified, because for any nonsingular H, ΛF′ = 

ΛH−1HF′. Therefore, we assume:

Assumption 3.2 (Identification)—Almost surely, T−1F′F = IK and Λ′PΛ is a K × K 

diagonal matrix with distinct entries.

This condition corresponds to the PC1 condition of Bai and Ng (2013), which separately 

identifies the factors and loadings from their product ΛF′. It is often used in factor analysis 

for identification, and means that the columns of factors and loadings can be orthogonalized 

(also see Bai and Li (2012)).

Assumption 3.3 (Basis functions)

i. (i) There are dmin and dmax > 0 so that with probability approaching one (as p → 

∞),

ii. maxj≤J,i≤p,l≤d Eϕj(Xil)2 < ∞.

Note that  and ϕ(Xi) is a vector of dimensionality 

Jd ≪ p. Thus, condition (i) can follow from the strong law of large numbers. For instance, 

{Xi}i≤p are weakly correlated and in the population level Eϕ(Xi)′ϕ(Xi) is well-conditioned. 

In addition, this condition can be satisfied through proper normalizations of commonly used 

basis functions such as B-splines, wavelets, Fourier basis, etc. In the general setup of this 

paper, we allow {Xi}i≤p’s to be cross-sectionally dependent and non-stationary. Regularity 

conditions about weak dependence and stationarity are imposed only on {(ft, ut)} as follows.

We impose the strong mixing condition. Let  and  denote the σ-algebras generated 

by {(ft, ut) : t ≤ 0} and {(ft, ut) : t ≥ T} respectively. Define the mixing coefficient
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Assumption 3.4 (Data generating process)

i. {ut, ft}t≤T is strictly stationary. In addition, Euit = 0 for all i ≤ p, j ≤ K; {ut}t≤T is 

independent of {Xi, ft}i≤p,t≤T.

ii. Strong mixing: There exist r1, C1 > 0 such that for all T > 0,

iii. Weak dependence: there is C2 > 0 so that

iv. Exponential tail: there exist r2 ≥ 0, r3 > 0 satisfying and b1, b2 > 

0, such that for any s > 0, i ≤ p and j ≤ K,

Assumption 3.4 is standard, especially condition (iii) is commonly imposed for high-

dimensional factor analysis (e.g., Bai (2003); Stock and Watson (2002)), which requires 

{uit}i≤p,t≤T be weakly dependent both serially and cross-sectionally. It is often satisfied when 

the covariance matrix  is sufficiently sparse under the strong mixing condition. We 

provide primitive conditions of condition (iii) in the supplementary material Fan et al. 

(2015b).

Formally, we have the following theorem:

Theorem 3.1—Consider the conventional factor model (3.1) with Assumptions 3.1–3.4. 

The projected-PCA estimators F̂ and Ĝ(X) defined in Section 2.3 satisfy, as p → ∞ (J, T 

may either grow simultaneously with p satisfying  or stay constant with Jd ≥ K),

To compare with the regular PC method, the convergence rate for the estimated factors is 

improved for small T. In particular, the projected-PCA does not require T → ∞, and also 

has a good rate of convergence for the loading matrix up to a projection transformation. 

Hence we have achieved a finite-T consistency, which is particularly interesting in the 

“high-dimensional-low-sample-size” (HDLSS) context, considered by Jung and Marron 

(2009). In contrast, the conventional PC method achieves a rate of convergence of OP (1/p + 

1/T2) for estimating factors, and OP (1/T + 1/p) for estimating loadings. See Remarks 4.1, 

4.2 below for additional details.
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3.2. Projected-PCA consistency in the HDLSS context

In recent years, substantial work has been done on the PCA consistency on the spiked 

covariance model (e.g., Johnstone (2001) and Paul (2007)), and is extended to the HDLSS 

context by Ahn et al. (2007), Jung and Marron (2009) and Shen et al. (2013a). In a high-

dimensional factor model yt = Λft + ut, let Σ = cov(yt) be the p × p covariance matrix of yt. 

Let Ξ = (ξ1, …, ξK) be the leading eigenvectors of Σ. Under the pervasiveness condition, the 

first K eigenvalues of the p × p covariance matrix Σ = cov(yt) grow at rate O(p). Due to the 

presence of these very spiked eigenvalues, Fan et al. (2013) showed that the leading 

eigenvectors of Σ can be consistently estimated by those of the p × p sample covariance 

matrix  as both p, T → ∞. However, either the consistency fails to hold with a finite T 

or the rate of convergence is slow when T grows slowly as in the HDLSS context.

With a genuine projection P that satisfies Assumption 3.1, the projected-PCA estimates Ξ 

using the leading eigenvectors of the sample covariance matrix based on the projected data 

PY. Specifically, recall that Ξ̂ is a p×K matrix whose columns are the eigenvectors 

corresponding to the first largest K eigenvalues of , and D̂ is a diagonal matrix 

consisting of the largest K eigenvalues of . The consistency of projected-PCA can 

be achieved up to a projection error  even if T is finite, and the rate of 

convergence is faster when T also grows.

Let Ṽ be an orthogonal matrix whose columns are the eigenvectors of Λ′Λ, corresponding to 

the eigenvalues in a decreasing order. Let Σu be the p×p covariance matrix of ut. We have 

the following result on the convergence of eigenspace spanned by the spiked eigenvalues.

Theorem 3.2—Under the conditions of Theorem 3.1, we have, as p → ∞ (J, T may either 

grow simultaneously with p satisfying  or stay constant with Jd ≥ K), for V = Ṽ′(Λ

′Λ)1/2D̂−1/2,

Q: Not clear. What is the order of V? How does it related to Theorem 3.1? Why readers 

need to know all details below?

Briefly speaking, Ξ̂ approximates the space spanned by the columns of Ξ, which consists of 

leading eigenvectors of Σ. In addition, in the high-dimensional factor model, we shall prove 

in the appendix that, for Λ̄ = ΛṼ,

(3.3)

As a result, Theorem 3.2 follows from (3.3). There are three sources of estimation errors: (i) 

the error from (3.3), (ii) the error from approximating PΛ by Ξ̂D̂1/2, which depends on the 
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projected noise PU, and (iii) the projection error . Note that the errors from (i) 

and (ii) are both asymptotically negligible as p → ∞, and does not require a diverging T. 

The error of the third type depends on the nature of the loading matrix. In the special case 

when Λ belongs to the space spanned by X, corresponding to G(X) = Λ, this term is also 

asymptotically negligible as p → ∞.

4. Projected-PCA in Semi-parametric Factor Models

4.1. Sieve approximations

In the semi-parametric factor model, it is assumed that λik = gk(Xi) + γik, where gk(Xi) is a 

nonparametric smooth function for the observed covariates, and γik is the unobserved 

random loading component that is independent of Xi. Hence the model is written as

In the matrix form,

and G(X) does not vanish (pervasive condition, see Assumption 4.2 below).

The estimators F̂ and Ĝ (X) are the projected-PCA estimators as defined in Section 2.3. We 

now define the estimator of the nonparametric function gk(·), k = 1, …, K. In the matrix 

form, the projected data has the following sieve approximated representation:

(4.1)

where Ẽ = PΓF′+PR(X)F′+PU is “small” because Γ and U are orthogonal to the function 

space spanned by X, and R(X) is the sieve approximation error. The sieve coefficient matrix 

B = (b1, …, bK) can be estimated by least squares from the projected model (4.1): Ignore Ẽ, 

replace F with F̂, and solve (4.1) to obtain

We then estimate gk(·) by

where  denotes the support of Xi.
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4.2. Asymptotic analysis

When Λ = G(X) + Γ, G(X) can be understood as the projection of Λ onto the sieve space 

spanned by X. Hence the following assumption is a specific version of Assumptions 3.1 and 

3.2 in the current context.

Assumption 4.1

i. Almost surly, T−1F′F = IK and G(X)′G(X) is a K × K diagonal matrix with distinct 

entries.

ii. There are two positive constants cmin and cmax so that with probability 

approaching one (as p → ∞),

In this section, we do not need to assume {γi}i≤p to be i.i.d. for the estimation purpose. 

Cross-sectional weak dependence as in Condition (ii) would be sufficient. The i.i.d. 

assumption will be only needed when we consider specification tests in Section 5. Define γi 

= (γi1, …, γiK)′, and

Assumption 4.2

i. Eγik = 0 and {Xi}i≤p is independent of {γik}i≤p.

ii. maxk≤K,i≤p Egk(Xi)2 < ∞, νp < ∞ and

The following set of conditions is concerned about the accuracy of the sieve approximation.

Assumption 4.3 (Accuracy of sieve approximation)—∀l ≤ d, k ≤ K,

i. the loading component gkl(·) belongs to a Hölder class  defined by

for some L > 0;

ii. The sieve coefficients {bk,jl}j≤J satisfy for κ = 2(r + α) ≥ 4, as J → ∞,
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where l is the support of the lth element of Xi, and J is the sieve dimension.

iii. .

Condition (ii) is satisfied by common basis. For example, when {ϕj} is polynomial basis or 

B-splines, condition (ii) is implied by condition (i) (see e.g., Lorentz (1986) and Chen 

(2007)).

Theorem 4.1—Suppose . Under Assumptions 3.3, 3.4, 4.1–4.3, as p, J → ∞, T 

can be either divergent or bounded, we have that

In addition, if T → ∞ simultaneously with p and J, then

The optimal  simultaneously minimizes the convergence rates of 

the factors and nonparametric loading function gk(·). It also satisfies the constraint 

 as κ ≥ 4. With J = J*, we have

and Γ̂ = (γ̂
1, …, γ̂

p)′ satisfies:

Some remarks about these rates of convergence compared with those of the conventional 

factor analysis are in order.

*One can first conduct the analysis conditioning on the event {K̂ = K}, then argue that the results still hold unconditionally as P(K̂ = 
K) → 1
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Remark 4.1—The rates of convergence for factors and nonparametric functions do not 

require T → ∞. When T = O(1),

The rates still converge fast when p is large, demonstrating the blessing of dimensionality. 

This is an attractive feature of the projected-PCA in the HDLSS context, as in many 

applications, the stationarity of a time series and the time-invariance assumption on the 

loadings hold only for a short period of time. In contrast, in the usual factor analysis, 

consistency is granted only when T → ∞. For example, according to Fan et al. (2015a) 

(Lemma C.1), the regular PCA method has the following convergence rate

which is inconsistent when T is bounded.

Remark 4.2—When both p and T are large, the projected-PCA estimates factors as well as 

the regular PCA does, and achieves a faster rate of convergence for the estimated loadings 

when γik vanishes. In this case, λik = gk(Xi), the loading matrix is estimated by Λ̂ = Ĝ(X), 

and

In contrast, the regular PCA method as in Stock and Watson (2002) yields

Comparing these rates, we see that when gk(·)’s are sufficiently smooth (larger κ), the rate of 

convergence for the estimated loadings is also improved.

5. Semiparametric Specification Test

The loading matrix always has the following orthogonal decomposition:
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where Γ is interpreted as the loading component that cannot be explained by X. We consider 

two types of specification tests: testing , and . The former tests 

whether the observed covariates have explaining powers on the loadings, while the latter 

tests whether the covariates fully explain the loadings. The former provides a diagnostic tool 

as to whether or not to employ the projected PCA; the latter tests the adequacy of the 

semiparametric factor models in the literature.

5.1. Testing G(X) = 0

Testing whether the observed covariates have explaining powers on the factor loadings can 

be formulated as the following null hypothesis:

Due to the approximate orthogonality of X and Γ, we have PΛ ≈ G(X). Hence, the null 

hypothesis is approximately equivalent to

This motivates a statistic  for a consistent loading estimator Λ̃. 

Normalizing the test statistic by its asymptotic variance leads to the test statistic

where the K × K matrix W1 is the weight matrix. The null hypothesis is rejected when SG is 

large.

The projected PCA estimator is inappropriate under the null hypothesis as the projection is 

not genuine. We therefore use the least squares estimator Λ̃ = YF̃/T, leading to the test 

statistic

Here, we take F̃ as the regular PC estimator: the columns of  are the first K 

eigenvectors of the T × T data matrix Y′Y.

5.2. Testing Γ = 0

Connor et al. (2012) applied the semi-parametric factor model to analyzing financial returns, 

who assumed that Γ = 0, that is, the loading matrix can be fully explained by the observed 

covariates. It is therefore natural to test the following null hypothesis of specification:
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Recall that G(X) ≈ PΛ so that Λ ≈ PΛ + Γ. Therefore essentially the specification testing 

problem is equivalent to testing:

That is, we are testing whether the loading matrix in the factor model belongs to the space 

spanned by the observed covariates.

A natural test statistic is thus based on the weighted quadratic form

for some p × p positive definite weight matrixW2, where F̂ is the projected-PCA estimator 

for factors and Λ̂ = YF̂/T. To control the size of the test, we take , where Σu is a 

diagonal covariance matrix of ut under H0, assuming that (u1t, ···, upt) are uncorrelated.

We replace  with its consistent estimator: let Û = Y − Λ̂F̂′. Define

Then the operational test statistic is defined to be

The null hypothesis is rejected for large values of SΓ.

5.3. Asymptotic null distributions

For the testing purpose we assume {Xi, γi} to be i.i.d., and let T, p, J → ∞ simultaneously. 

The following assumption regulates the relation between T and p.

Assumption 5.1—Suppose

i. {Xi, γi}i≤p are independent and identically distributed;

ii. T2/3 = o(p), and p(log p)4 = o(T2).

iii. J and κ satisfy: , and .
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Condition (ii) requires a balance of the dimensionality and the sample size. On one hand, a 

relatively large sample size is desired (p(log p)4 = o(T2)) so that the effect of estimating 

 is negligible asymptotically. On the other hand, as is common in high-dimensional 

factor analysis, a lower bound of the dimensionality is also required (condition T2/3 = o(p)) 

to ensure that the factors are estimated accurately enough. Such a required balance is 

common for high-dimensional factor analysis (e.g., Bai (2003), Stock and Watson (2002)) 

and in the recent literature for PCA (e.g., Jung and Marron (2009), Shen et al. (2013b)). The 

iid assumption of covariates Xi in Condition (i) can be relaxed with further distributional 

assumptions on γi (e.g., assuming γi to be Gaussian). The conditions on J in Condition (iii) is 

consistent with those of the previous sections.

We focus on the case when ut is Gaussian, and show that under ,

and under 

whose conditional distributions (given F) under the null are χ2 with degree of freedom 

respectively JdK and pK. We can derive their standardized limiting distribution as J, T, p → 

∞. This is given in the following result.

Theorem 5.1—Suppose Assumptions 3.3, 3.4, 4.2, 5.1 hold. Then under ,

where K = dim(ft) and d = dim(Xi). In addition, suppose Assumptions 4.1 and 4.3 further 

hold, {ut}t≤T is i.i.d. N(0, Σu) with a diagonal covariance matrix Σu whose elements are 

bounded away from zero and infinity. Then under ,

In practice, when a relatively small sieve dimension J is used, one can instead use the upper 

α-quantile of the  distribution for pSG.
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Remark 5.1—We require uit be independent across t, which ensures that the covariance 

matrix of the leading term  to have a simple form . This assumption 

can be relaxed to allow for weakly dependent {ut}t≤T, but many autocovariance terms will 

be involved in the covariance matrix. One may regularize standard autocovariance matrix 

estimators such as Newey and West (1987) and Andrews (1991) to account for the high 

dimensionality. Moreover, we assume Σu be diagonal to facilitate estimating , which 

can also be weakened to allow for a non-diagonal but sparse Σu. Regularization methods 

such as thresholding (Bickel and Levina (2008)) can then be employed, though they are 

expected to be more technically involved.

6. Estimating the Number of Factors from Projected Data

We now address the problem of estimating K = dim(ft) when it is unknown. Once consistent 

estimation of K is obtained, all the results achieved carry over to the unknown K case using 

a conditioning argument*. In principle, many consistent estimators of K can be employed, 

e.g., Bai and Ng (2002), Alessi et al. (2010), Breitung and Pigorsch (2009), Hallin and Liška 

(2007). More recently, Ahn and Horenstein (2013) and Lam and Yao (2012) proposed to 

select the largest ratio of the adjacent eigenvalues of Y′Y, based on the fact that the K largest 

eigenvalues of the sample covariance matrix grow fast as p increases, while the remaining 

eigenvalues either remain bounded or grow slowly.

We extend Ahn and Horenstein (2013)’s theory in two ways. First, when the loadings 

depend on the observable characteristics, it is more desirable to work on the projected data 

PY. Due to the orthogonality condition of U and X, the projected data matrix is 

approximately equal to G(X)F′. The projected matrix PY(PY)′ thus allows us to study the 

eigenvalues of the principal matrix component G(X)G(X)′, which directly connects with the 

strengths of those factors. Since the non-vanishing eigenvalues of PY(PY)′ and (PY)′PY = 

Y′PY are the same, we can work directly with the eigenvalues of the matrix Y′PY. 

Secondly, we allow p/T → ∞.

Let λk(Y′PY) denote the kth largest eigenvalue of the projected data matrix Y′PY. We 

assume 0 < K < Jd/2, which naturally holds if the sieve dimension J slowly grows. The 

estimator is defined as:

The following assumption is similar to that of Ahn and Horenstein (2013). Recall that U = 

(u1, ···, uT) is a p × T matrix of the idiosyncratic components, and  denote the p 

× p covariance matrix of ut.

Assumption 6.1—The error matrix U can be decomposed as
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(6.1)

where,

i. the eigenvalues of Σu are bounded away from both zero and infinity.

ii. M is a T by T positive semi-definite non-stochastic matrix, whose eigenvalues are 

bounded away from 0 and infinity,

iii. E = (eit)p×T is a p × T stochastic matrix, where eit is independent in both i and t, 

and et = (e1t, …, ept)′ are i.i.d. isotropic sub-Gaussian vectors, that is, there is C > 

0, for all s > 0,

iv. There are dmin, dmax > 0, almost surely,

This assumption allows the matrix U to be both cross-sectionally and serially dependent. 

The T × T matrix M captures the serial dependence across t. In the special case of no-serial-

dependence, the decomposition (6.1) is satisfied by taking M = I. In addition, we require ut 

to be sub-Gaussian to apply random matrix theories of Vershynin (2010). For instance, when 

ut is N (0, Σu), for any ||v|| = 1, v′et ~ N (0, 1). Thus condition (iii) is satisfied. Finally, the 

almost surely condition of (iv) seems somewhat strong, but is still satisfied by bounded basis 

functions (e.g., Fourier basis) and follows from the strong law of large numbers given that 

Eϕ(Xi)ϕ(Xi)′ is well conditioned.

We show in the supplementary material that when Σu is diagonal (uit is cross-sectionally 

independent), both the sub-Gaussian assumption and condition (iv) can be relaxed.

The following theorem is the main result of this section.

Theorem 6.1—Under assumptions of Theorem 4.1 and Assumption 6.1, as p, T → ∞, if J 

satisfies  and K < Jd/2 (J may either grow or stay constant), we have

7. Numerical Studies

This section presents numerical results to demonstrate the performance of projected-PCA 

method for estimating loading and factors using both real data and simulated data.
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7.1. Estimating loading curves with real data

We collected stocks in S&P500 index constituents from CRSP which have complete daily 

closing prices from year 2005 through 2013, and their corresponding market capitalization 

and book value from Compustat. There are 337 stocks in our data set, whose daily excess 

returns were calculated. We considered four characteristics X as in Connor et al. (2012) for 

each stock: size, value, momentum and volatility, which were calculated using the data 

before a certain data analyzing window so that characteristics are treated known. See 

Connor et al. (2012) for detailed descriptions of these characteristics. All four characteristics 

are standardized to have mean zero and unit variance. Note that the construction makes their 

values independent of the current data.

We fix the time window to be the first quarter of the year 2006, which contains T = 63 

observations. Given the excess returns {yit}i≤337,t≤63 and characteristics Xi as the input data 

and setting K = 3, we fit loading functions  for k = 1, 2, 3 using 

the projected-PCA method. The four additive components gkl(·) are fitted using the cubic 

spline in the R package “GAM” with sieve dimension J = 4. All the four loading functions 

for each factor are plotted in Figure 3. The contribution of each characteristic to each factor 

is quite nonlinear.

7.2. Calibrating the model with real data

We now treat the estimated functions gkl(·) as the true loading functions, and calibrate a 

model for simulations. The “true model” is calibrated as follows:

1. Take the estimated gkl(·) from the real data as the true loading functions.

2. For each p, generate {ut}t≤T from N(0, DΣ0D) where D is diagonal and Σ0 sparse. 

Generate the diagonal elements of D from Gamma(α, β) with α = 7.06, β = 536.93 

(calibrated from the real data), and generate the off-diagonal elements of Σ0 from 

 with μu = −0.0019, σu = 0.1499. Then truncate Σ0 by a threshold of 

correlation 0.03 to produce a sparse matrix and make it positive definite by R 

package “nearPD”.

3. Generate {γik} from the i.i.d. Gaussian distribution with mean 0 and standard 

deviation 0.0027, calibrated with real data.

4. Generate ft from a stationary VAR model ft = Aft−1 + εt where εt ~ N(0, Σε). The 

model parameters are calibrated with the market data and listed in Table 1.

5. Finally, generate Xi ~ N(0, ΣX). Here ΣX is a 4×4 correlation matrix estimated from 

the real data.

We simulate the data from the calibrated model, and estimate the loadings and factors for T 

= 10 and 50 with p varying from 20 through 500. The “true” and estimated loading curves 

are plotted in Figure 3 to demonstrate the performance of projected-PCA. Note that the 

“true” loading curves in the simulation are taken from the estimates calibrated using the real 

data. The estimates based on simulated data capture the shape of the true curve, though we 

also notice slight biases at boundaries. But in general, projected-PCA fits the model well.
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We also compare our method with the regular PC method (e.g., Stock and Watson (2002)). 

The mean values of ||Λ̂ − Λ||max, , ||F̂ − F0||max and  are plotted 

in Figures 1 and 2. where Λ = G0(X) + Γ (see section 7.3 for definitions of G0(X) and F0). 

The breakdown error or G0(X) and Γ are also depicted in Figure 1. In comparison, 

projected-PCA outperforms PC in estimating both factors and loadings including the 

nonparametric curves G(X) and random noise Γ. The estimation errors for G(X) of 

projected-PCA decrease as the dimension increases, which is consistent with our asymptotic 

theory.

7.3. Design 2

Consider a different design with only one observed covariate and three factors. The three 

characteristic functions are g1 = x, g2 = x2 − 1, g3 = x3 − 2x with the characteristic X being 

standard normal. Generate {ft}t≤T from the stationary VAR(1) model, that is ft = Aft−1 + εt 

where εt ~ N (0, I). We consider Γ = 0.

We simulate the data for T = 10 or 50 and various p ranging from 20 to 500. To ensure that 

the true factor and loading satisfy the identifiability conditions, we calculate a 

transformation matrix H such that , H−1G′GH′−1 is diagonal. Let the final 

true factors and loadings be F0 = FH, G0 = GH′−1. For each p, we run the simulation for 

500 times.

We estimate the loadings and factors using both projected-PCA and PC. For projected-PCA, 

as in our theorem, we choose J = C(p min(T, p))1/κ, with κ = 4 and C = 3. To estimate the 

loading matrix, we also compare with a third method: sieve-least-squares (SLS), assuming 

the factors are observable. In this case, the loading matrix is estimated by PYF0/T, where F0 

is the true factor matrix of simulated data.

The estimation error measured in max and standardized Frobenius norms for both loadings 

and factors are reported in Figures 4 and 5. The plots demonstrate the good performance of 

projected-PCA in estimating both loadings and factors. In particular, it works well when we 

encounter small T but a large p. In this design, Γ= 0, so the accuracy of estimating Λ = G0 is 

significantly improved by using the projected-PCA. The projected-PCA method 

significantly outperforms the traditional PCA. Figure 5 shows that the factors are also better 

estimated by projected-PCA than the traditional one, particularly when T is small. It is also 

clearly seen that when p is fixed, the improvement on estimating factors is not significant as 

T grows. This matches with our convergence results for the factor estimators.

It is also interesting to compare projected-PCA with SLS (Sieve Least-Squares with 

observed factors) in estimating the loadings, which corresponds to the cases of unobserved 

and observed factors. As we see from Figure 4, when p is small, the projected-PCA is not as 

good as SLS. But the two methods behave similarly as p increases. This further confirms the 

theory and intuition that as the dimension becomes larger, the effects of estimating the 

unknown factors are negligible.
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7.4. Estimating number of factors

We now demonstrate the effectiveness of estimating K by the projected-PC’s eigenvalue-

ratio method. The data are simulated in the same way as in Design 2. T = 10 or 50 and took 

the values of p ranging from 20 to 500. We compare our projected-PC based on the 

projected data matrix Y′PY to the eigenvalue-ratio test (AH) of Ahn and Horenstein (2013) 

and Lam and Yao (2012), which works on the original data matrix Y′Y.

For each pair of T, p, we repeat the simulation for 50 times and report the mean and standard 

deviation of the estimated number of factors in Figure 6. The projected-PCA outperforms 

AH after projection, which significantly reduces the impact of idiosyncratic errors. When T 

= 50, we can recover the number of factors almost all the time, especially for large 

dimensions (p > 200). On the other hand, even when T = 10, projected-PCA still obtains a 

closer estimated number of factors.

7.5. Loading specification tests with real data

We test the loading specifications on the real data. We used the same data set as in Section 

6.1, consisting of excess returns from 2005 through 2013. The tests were conducted based 

on rolling windows, with the length of windows spanning from 10 days, a month, a quarter, 

and half a year. For each fixed window-length (T), we computed the standardized test 

statistic of SG and SΓ, and plotted them along the rolling windows respectively in Figure 7. 

In almost all cases, the number of factors is estimated to be one in various combinations of 

(T, p, J).

Figure 7 suggests that the semi-parametric factor model is strongly supported by the data. 

Judging from the upper panel (testing ), we have very strong evidence of the 

existence of non-vanishing covariate effect, which demonstrates the dependence of the 

market beta’s on the covariates X. In other words, the market beta’s can be explained at least 

partially by the characteristics of assets. The results also provide the theoretical basis for 

using projected PCA to get more accurate estimation.

In the bottom panel of Figure 7 (testing ), we see for a majority of period, the null 

hypothesis is rejected. In other words, the characteristics of assets cannot fully explain the 

market beta as intuitively expected, and model (1.2) in the literature is inadequate. However, 

fully nonparametric loadings could be possible in certain time range mostly before financial 

crisis. During 2008–2010, the market’s behavior had much more complexities, which causes 

more rejections of the null hypothesis. The null hypothesis Γ = 0 is accepted more often 

since 2012. We also notice that larger T tends to yield larger statistics in both tests, as the 

evidence against the null hypothesis is stronger with larger T. After all, the semi-parametric 

model being considered provides flexible ways of modeling equity markets and 

understanding the nonparametric loading curves.

8. Conclusions

This paper proposes and studies a high-dimensional factor model with nonparametric 

loading functions that depend on a few observed covariate variables. This model is 
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motivated by the fact that observed variables can explain partially the factor loadings. We 

propose a projected PCA to estimate the unknown factors, loadings, and number of factors. 

After projecting the response variable onto the sieve space spanned by the covariates, the 

projected-PCA yields a significant improvement on the rates of convergence than the regular 

methods. In particular, consistency can be achieved without a diverging sample size, as long 

as the dimensionality grows. This demonstrates that the proposed method is useful in the 

typical HDLSS situations. In addition, we propose new specification tests for the orthogonal 

decomposition of the loadings, which fill the gap of the testing literature for semi-parametric 

factor models. Our empirical findings show that firm characteristics can explain partially the 

factor loadings, which provide theoretical basis for employing projected-PCA methods. On 

the other hand, our empirical study also shows that the firm characteristics can not fully 

explain the factor loadings so that the proposed generalized factor model is more 

appropriate.
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APPENDIX A: PROOFS FOR SECTION 3

Throughout the proofs, p → ∞, and T may either grow simultaneously with p or stay 

constant. For two matrices A, B with fixed dimensions, and a sequence aT, by writing A = B 
+ oP(aT), we mean ||A − B||F = oP (aT).

In the regular factor model Y = ΛF′+U, let K denote a K×K diagonal matrix of the first K 

eigenvalues of . Then by definition, . Let . 

Then

(A.1)

where

We now describe the structure of the proofs for

Note that F̂ − F = F̂ − FM + F(M − I). Hence we need to bound  and 

 respectively.

Step 1: prove that .

Due to the equality (A.1), it suffices to bound ||K−1||2 as well as the  norm of D1, 

D2, D3 respectively. These are obtained in Lemmas A.2, A.3 below.

Step 2: prove that .

Still by the equality (A.1), . Hence this 

step is achieved by bounding ||F′Di||F for i = 1, 2, 3. Note that in this step, we shall not 

apply a simple inequality ||F′Di||F ≤ ||F||F ||Di||F, which is too crude. Instead, with the 

help of the result  achieved in Step 1, sharper upper bounds for ||

F′Di||F can be achieved. We do so in Lemma ?? in the supplementary material.

Step 3: prove that .

This step is achieved in Lemma A.4 below, which uses the result in Step 2.
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Before proceeding to Step 1, we first show that the two alternative definitions for Ĝ(X) 

described in Section 2.3 are equivalent.

Lemma A.1 

Proof

Consider the singular value decomposition: , where V1 is a p×p orthogonal 

matrix, whose columns are the eigenvectors of ; V2 is a T × T matrix whose 

columns are the eigenvectors of ; S is a p × T rectangular diagonal matrix, with 

diagonal entries as the square roots of the non-zero eigenvalues of . In addition, by 

definition, D̂ is a K × K diagonal matrix consisting of the largest K eigenvalues of 

; Ξ̂ is a p × K matrix whose columns are the corresponding eigenvectors. The 

columns of  are the eigenvectors of , corresponding to the first K 

eigenvalues.

With these definitions, we can write V1 = (Ξ̂, Ṽ1), , and

for some matrices Ṽ1, Ṽ2 and D̃. It then follows that

Lemma A.2

||K||2 = OP (1), ||K−1||2 = OP (1), ||M||2 = OP (1).

Proof

The eigenvalues of K are the same as those of

Substituting Y = ΛF′ + U, and F′F/T = IK, we have , where
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By Assumption 3.3, ,

Hence

By Lemma ?? in the supplementary material, . Similarly,

Using the inequality that for the kth eigenvalue, |λk(W) − λk(W1)| ≤ ||W − W1||2, we have |

λk(W) − λk(W1)| = OP(T−1/2 +p−1), for k = 1, · · ·, K. Hence it suffices to prove that the first 

K eigenvalues of W1 are bounded away from both zero and infinity, which are also the first 

K eigenvalues of . This holds under the theorem’s assumption (Assumption 3.1). 

Thus ||K−1||2 = OP(1) = ||K||2, which also implies ||M||2 = OP(1).

Lemma A.3

(i) , (ii) , (iii) , (iv) 

.

Proof

It follows from Lemma ?? in the supplementary material that . Also, 

 and Assumption 3.1 implies . So
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By Lemma A.2, ||K−1||2 = OP (1). Part (iv) then follows directly from

Lemma A.4

In the regular factor model .

Proof

By Lemma ?? in the supplementary material and the triangular inequality, 

. Hence

Right multiplying M to both sides . In addition,

Hence

In addition, from ,

Because Λ′PΛ is diagonal, the same proofs of those of Proposition ?? lead to the desired 

result.
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Proof of Theorem 3.1

Proof

It follows from Lemmas A.3 (iv) and A.4 that

As for the estimated loading matrix, note that

where .

By Lemmas ?? and A.4,

By Lemma ??, , and from Lemma ?? 

. Hence , which implies

Proof of Theorem 3.2

Proof

Since Ĝ(X) = Ξ̂D̂1/2, by Theorem 3.1, . Hence 

. By lemma A.2, ||(D̂/p)−1||2 = ||K−1||2 = OP(1), 

which implies
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On the other hand, define Λ̄ = ΛṼ = (Λ̄
1, …Λ̄

K). Then Λ̄′Λ̄ is diagonal and 

, j = 1, …, K. This implies that the columns of Λ̄(Λ̄′Λ̄)−1/2 are the 

eigenvectors of ΛΛ′ corresponding to the largest K eigenvalues. In addition, in the factor 

model, we have the following matrix decomposition: for Σu = cov(ut), Σ = ΛΛ′ + Σu. Hence 

by the same argument of the proof of Proposition 2.2 in Fan et al. (2013),

Using ṼṼ′ = I, we have

On the right hand side, the first term is , as is proved above. Still 

by ||(p−1D̂)−1/2||2 = OP(1), the second term is bounded by

Finally, since (Λ̄′Λ̄)1/2 = Ṽ′(Λ′Λ)1/2Ṽ, so (Λ̄′Λ̄)1/2Ṽ′ − Ṽ′(Λ′Λ)1/2 = 0, which implies the 

third term is zero. Hence

All the remaining proofs are given in the supplementary material.
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Fig. 1. 
Averaged ||Λ̂ − Λ|| by projected-PCA (PPCA, red solid) and regular PC (dashed blue) and ||

Ĝ − G0||, ||Γ̂ − Γ|| by PPCA over 500 repetitions. Left panel:||·||max, right panel: .
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Fig. 2. 

Averaged ||F̂ − F0||max and  over 500 repetitions, by projected-PCA (PPCA, 

solid red) and regular PC (dashed blue).
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Fig. 3. 
Estimated additive loading functions gkl, l = 1, ···, 4. from financial returns of 337 stocks in 

S&P 500 index. They are taken as the true functions in the simulation studies. In each panel 

(fixed l), the true and estimated curves for k = 1, 2, 3 are plotted and compared. The solid, 

dashed and dotted red curves are the true curves corresponding to the first, second and third 

factors respectively. The blue curves are their estimates from one simulation of the 

calibrated model with T = 50, p = 300.
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Fig. 4. 

Averaged ||Ĝ − G0||max and  over 500 repetitions. PPCA, PC and SLS 

respectively represent projected-PCA, regular PCA and sieve least squares with known 

factors: Design 2. Here Γ = 0, so Λ = G0. Upper two panels: p grows with fixed T; bottom 

panels: T grows with fixed p.
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Fig. 5. 
Average estimation error of factors over 500 repetitions, i.e. ||F̂ − F0||max and 

 by projected-PCA (solid red) and PC (dashed blue): Design 2. Upper two 

panels: p grows with fixed T; bottom panels: T grows with fixed p.
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Fig 6. 
Mean and standard deviation of the estimated number of factors over 50 repetitions. True K 

= 3. PPCA and AH respectively represent the methods of projected-PCA and Ahn and 

Horenstein (2013). Left panel: Mean; Right panel: standard deviation.
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Fig 7. 
Normalized SG, Sγ from 2006/01/03 to 2012/11/30. The dotted lines are ± 1.96.
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