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Abstract

We compared the performance of several prediction techniques for breast cancer progno-
sis, based on AU-ROC performance (Area Under ROC) for different prognosis periods. The
analyzed dataset contained 1,981 patients and from an initial 25 variables, the 11 most
common clinical predictors were retained. We compared eight models from a wide spectrum
of predictive models, namely; Generalized Linear Model (GLM), GLM-Net, Partial Least
Square (PLS), Support Vector Machines (SVM), Random Forests (RF), Neural Networks, k-
Nearest Neighbors (k-NN) and Boosted Trees. In order to compare these models, paired t-
test was applied on the model performance differences obtained from data resampling.
Random Forests, Boosted Trees, Partial Least Square and GLMNet have superior overall
performance, however they are only slightly higher than the other models. The comparative
analysis also allowed us to define a relative variable importance as the average of variable
importance from the different models. Two sets of variables are identified from this analysis.
The first includes number of positive lymph nodes, tumor size, cancer grade and estrogen
receptor, all has an important influence on model predictability. The second set incudes var-
iables related to histological parameters and treatment types. The short term vs long term
contribution of the clinical variables are also analyzed from the comparative models. From
the various cancer treatment plans, the combination of Chemo/Radio therapy leads to the
largest impact on cancer prognosis.

Introduction

Cancer is the leading cause of death world-wide, accounting for 13% of all deaths [1]. For
women, breast cancer is one of the major causes of death, in both developed and developing
countries [2]. In 2012, the number of breast cancer cases worldwide was estimated at 14.1 mil-
lion new cases and 8.2 million deaths. It is estimated that incidence of breast cancer has
increased by 20% since 2008, and mortality by 14% [3]. Disease management of breast cancer
is a complex process and the treatment plan depends largely on cancer prognosis. Therefore
the estimation of the prognosis period is an important information for both patients and clini-
cians. Cancer prognosis can be defined as the estimation of the probability of surviving beyond

PLOS ONE | DOI:10.1371/journal.pone.0146413 January 15,2016

1/15


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0146413&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0146413&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0146413&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://www.synapse.org/#!Synapse:syn1710250/wiki/
https://www.synapse.org/#!Synapse:syn1710250/wiki/

@’PLOS ‘ ONE

Model Comparison for Breast Cancer Prognosis Based on Clinical Data

a certain period of time. For example, a 5-year prognosis of 80% would mean that the chance
of surviving 5 years after cancer diagnosis, or surgery, is estimated as a 80% probability. The
prediction of patient prognosis can be very useful for the selection of best treatment protocols.
Eloranta et al. introduced a relative survival framework to estimate the probability of death in
the presence of competing risks [4]. In this work we formulate the prognosis estimation prob-
lem in terms of a classification problem. For different prognosis periods (e.g., 5 or 10 years),
classification classes are defined using patient survival information. Patients who survived
beyond the prognosis period are labeled in the positive class and patients who died before
reaching that period are considered in the negative class. Hence, a binary classification problem
can be properly defined and predictive models from machine learning can be used. We made
the choice to focus this research on predictive model comparisons and we excluded survival
analysis models (such as Cox proportional hazard models) from the scope of this research. The
no-free lunch theorem states that without prior knowledge about the prediction problem there
is no single model that will always perform better than others [5]. Therefore, we opt for the
approach of considering multiple predictive models for the prognosis of breast cancer. In the
literature there are a number of references that investigated the comparison of multiple
machine learning techniques for the prediction of breast cancer prognosis. Maglogiannis et al.
propose five feature models based on clinical, gene expression and combined models are evalu-
ated under different conditions [6]. Binary classifiers (SVM, Random Forests and Logistic
regression) are tested on the five models for the prognosis task. A comparison of three predic-
tion algorithms (Decision trees, Artificial Neural Networks and logistic regression) are given in
[7]. Data with 200,000 samples from SEER are used for the evaluation. The three methods per-
formed with 93.6%, 91.2% and 89.2% accuracy, respectively. Burke et al. evaluated different
predictive models including pTNM staging, PCA, CART decision tree (shrunk, pruned), ANN
(probabilistic, back-propagation, etc) on 8,271 samples for 5-year prognosis end-point [8]. The
performance in terms of area under curve of the receiver operating characteristic AU-ROC
ranged from 0.71 to 0.78. The best reported model is the ANN-back-propagation. A compari-
son of seven algorithms for the same task on 37,256 subjects showed that decision tree J48 had
the highest sensitivity, and Artificial Neural Network had the highest specificity [9].

Here we evaluate and compare the most recent and successful predictive techniques in
machine learning. We consider the area under the ROC curve (AU-ROC) as the performance
metric for the analysis. Maximizing AU-ROC allows us to avoid the problem of choosing a sin-
gle operating point for the classification model. The latter requires an additional validation
dataset, or should be properly integrated in the training and validation stage. In addition,
choosing a classifier threshold would limit the utility of the method. For instance, if the predic-
tive methods are planned to be used in a cancer screening system, specificity should be very
high, even at the cost of sensitivity. While in a diagnostic system, both sensitivity and specificity
should be high. Since we would like to capture many potential clinical applications, maximiz-
ing AUC-ROC allows us to keep all these applications feasible.

Below we provide a description of the dataset and pre-processing steps applied in order to
clean and format the data. The chosen models are then presented and a description of model
fitting and parameter tuning results are given. Finally, model comparison is analyzed using sta-
tistical tests, and contribution of the clinical variables to the model prediction is discussed.

Data pre-processing

The analysis we describe in this paper is based on the clinical subset of the METABRIC breast
cancer dataset [10]. Our aim was to restrict the analysis to the most common variables in clini-
cal practice. For this reason we excluded genomic related variables as these are not yet widely
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Table 1. Description of the clinical variables included in the comparative analysis.

Variables Description Value examples
Age at diagnosis Age at cancer diagnosis 42.7 years
Tumor size Tumor size in mm (used in TNM classification) 23,41 cm
Lymph nodes positive The number of lymph nodes (used in TNM classification) 1, 3,10
Grade Grouping of Nottingham scores into three groups 1,2,3
Histological type Histology outcome DCIS, IDC, ILC
Estrogen Receptor IHC Estrogen receptor status measured by Immunohistochemistry positive, negative
status
PR Expr Progesterone Receptor Expression positive, negative
Her2 Expr Human Epidermal growth factor receptor 2 (Her2) positive, negative
Treatment One of the three treatments (CT: Chemotheraphy, HT: Hormonal Therapy, RT: Radiaton CT, CT/, CT/HT/RT, NONE,
Therapy) RT
Stage TNM stage 1,2,3,4
Lymph nodes removed Number of removed lymph nodes 8, 14,25

doi:10.1371/journal.pone.0146413.1001

available for clinicians and might limit the applicability of our approach. Table 1 provides the
list of included variables as well as description details and possible values.

The first step in building a predictive model is a pre-processing stage. It consists typically in
cleaning and formatting the data before model fitting. For missing values we decided to remove
the related subjects. Although imputation techniques could have been used for dealing with the
missing values, we opted for not introducing an additional bias factor to the analysis due to the
influence of the imputation technique choice on the prediction results. In addition, the number
of subjects after missing values removal was still sufficiently large (N = 1,421) for a good statis-
tical analysis.

The next step in the pre-processing stage is to transform categorical variables into binary
dummy variables. This is required for a number of predictive models as they only use numeri-
cal or binary input variables. Variable collinearity is also checked to ensure no strong correla-
tion between the predictors. Since some models work under the assumption that variables are
independent, highly correlated variables would invalid the results of these models. Collinear
variables are obtained by decomposing the data matrix using a QR decomposition to verify if
the matrix is full rank then find the set of variables that are collinear by iteratively removing
one variable and checking the matrix rank. We excluded three histological variables due to
their collinearity namely: “MIXED NST AND A SPECIAL TYPE”, “OTHER INVASIVE” and
“IDC-MUC?”. The last step was to center and scale the data as most models are affected by the
difference in scaling of the variables. The normalization step is not applied at a global level of
the data, but rather at each resampling data block to avoid over-fitting.

Next, we defined different subsets of the data to solve the prognosis prediction problem.
Given a prognosis period T, subjects that survived longer than T are labeled in the class {sur-
vived} and subjects that did not survive longer than T are labeled in the class {not survived}.
Subjects that are indicated to have survived with a period ¢ < T are discarded from the subset.
The choice of T depends on the short term vs. long term prediction to be achieved by the mod-
els. For this analysis we tried to cover both short and long terms prediction by choosing four
values of the prognosis period T, namely 2, 5, 8 and 11 years. For each data subset, the progno-
sis prediction can be formulated in term of a binary classification problem. Table 2 summarizes
the sample distribution among the class for the different periods T, as well as the total sample
size. We notice that the total number of samples decreases as the prognosis period T increases.
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Table 2. Sample size for the different selected prognosis periods. Depending on the surival period, sam-
ples are included or excluded in one or more datasets among the four.

Prognosis period T #Survived > T #Not survived > T Total #samples
2 years 1311 76 1387
5 years 976 253 1229
8 years 674 343 1017
11 years 434 398 832

doi:10.1371/journal.pone.0146413.t002

If we consider the 2- and 5-year prognosis periods as examples, there is a decrease of 158 sub-
jects in the total number of samples between these periods. These subjects are reported to have
survived between 2 and 5 years at the end of the clinical trial. Therefore they cannot be placed
in any of the two classes for the 5-year period and hence are excluded from the analysis for that
period. This is referred to as random censoring in survival analysis [11].

Model comparison

We investigate the comparison of classification models for the purpose of predicting breast
cancer prognosis. Our selection of models was based on diversifying the choice to capture a
wide spectrum of methodologies and levels of model complexity (linear models, decision tree,
neural networks, kernel methods). We selected techniques from linear modeling; Partial Least
Square (PLS), Generalized Linear Model (GLM), and a penalized version of GLM namely Elas-
tic-Net. We included a Neural Network model as it is an important class of non-linear predic-
tive models. From kernel methods, we selected Support Vector Machine with a Gaussian
kernel as it is capable of dealing with non-linearity and data noise. From decision tree methods,
Random Forests and Boosted trees are considered in this analysis since they are well-known
ensemble-based decision-tree techniques. Finally, we included a basic prediction technique, i.e.
k-Nearest Neighbors, to verify the complexity of the prediction problem.

Models description

We describe the technical aspects of the selected predictive models and give the main optimiza-
tion and prediction equations. This gives a general idea on how these models are fitted and
identifies the tuning parameters that need to be estimated for an optimal use of the models.
The list of tuning parameters and notations are summarized in Table 1. For further details on
the models we refer the readers to a key publication for each model.

« Neural Networks: NNs introduce intermediate variables that are not observable, called hid-
den variables or hidden units /. [12]. These variables are obtained by combining the input

variables linearly and transforming them using a sigmoid function as /;(x) = g(f; +
SFxp ) where g(v) = H% and P is the number of input variables. The number of hid-
den variables H is usually a tuning parameter. The prediction function can be written as a lin-
ear combination of the hidden variables /' (x) = 7, + S_r_, 74/ (x). Fitting the function f

can be achieved in a robust way by introducing a regularization term with a weight decay
parameter A. The problem then consists of finding the coefficients B and y; that optimize

the squared errors: Y0, (i —f(x:))* + 234, Z;D:O ﬂjzk + 320 v3 where n is the sam-
ple size and (x;, ;) is the training dataset.
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The higher the value of the weight decay A4, the lower the risk of over-fitting, since the

obtained solution is smoother. A back-propagation algorithm can be used to optimize this
problem where A is a tuning parameter. However there is no guarantee that this optimization
will lead to a global solution, as convexity is not assured. The model above is called a single-
layer feed-forward neural network. More advanced neural networks have been proposed where
multiple hidden layers and customized connections between the units are introduced.

Support Vector Machine: SVM can be formulated in the context of binary classification as
the model that finds the decision boundary which maximizes the margin between two data
classes [13]. The dual optimization problem can be written as a convex problem:

L(e) =" o — 3 2%y ik (xi, ;) subject to 0 < o < C and Y-, oy; = 0. The con-
vexity of the problem ensures a unique global solution. The second constraint ensures the
sparsity of the solution. Hence only a few training samples will be expressed in the prediction
function: f{(x) =¥, ¢ sv a; k(x;, x) where SV is the set of support vectors. These properties
ensure an efficient prediction function for SVM. The introduction of kernel functions allows

decoupling of the prediction and generalization properties from data modeling and represen-
[l

tation. For our analysis we chose to use Gaussian kernel K,;(x,y) = ¢ ¢ . The Gaussian ker-
nel can deal with non-linearity in the data, in addition to scaling. The tuning parameters o
and C are optimized via resampling procedures.

Random Forests: Decision-tree techniques seek, in an iterative manner, the best variables
and disjoint regions that lead to a minimum training error when the decision is taken as
the average outcome on these regions. The basic optimization problem of decision trees
can be written as follow > (vi — V&, )+ > ower, Vi — Ir, )?. The process of looking for
regions and selecting variables is performed in a nested way until some stopping criterion
is fulfilled such as a minimum number of points in each region. Techniques for pruning
the fully grown trees are applied to create robust decision trees. Ensemble techniques have
been applied to solve the sensitivity of decision trees to different views of data. Random
Forests present an improvement on simple decision tree by applying an ensemble tech-
nique in a more optimised way than the bagged trees model [14]. The latter uses bootstrap-
ping to average the tree decisions. However, the obtained trees are highly correlated.
Random Forests solve this issue by randomly picking a limited number of variables for
each bootstrap iteration. The number of randomly selected variables mtry is typically a tun-
ing parameter for Random Forests.

Boosted Trees: In Random Forests and bagging tree, the different trees are combined in an
independent fashion. Boosted trees, however, update the decision trees at each iteration [15].
The tuning parameters for boosted trees are the interaction depth, which defines the tree
depth, and the number of iterations. In general, boosting has been shown to work well with
weak-learners, therefore it is expected that shallow trees (low interaction depth) should give
better performances than deep trees.

GLM-Elastic Net: Generalized Linear Models (GLM) are an extension of regression models
designed to deal with error distributions beyond the normal distribution. GLM-Elastic Net is
a penalized version of GLM [16]. The fitting of GLM-Net model fitting consists in optimizing

the binomial likelihood function £(0) = 3"V | log() — A [(1 —a) %Z;‘;l ﬁf +a Z/il IB;]

where o is a mixing factor that determines the weight between the lasso regression (o = 1)
and the ridge regression (o = 0), and A is a global regularization parameter. The basic GLM
included in this analysis can be seen as a particular case of GLM-Elastic Net with 4 = 0. We
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made the choice of including the simple GLM to evaluate the effect of introducing the regu-
larization term on performance in the case of breast cancer prognosis prediction.

k-Nearest Neighbors: Nearest-Neighbor algorithm is one of the simplest classification algo-
rithms as its implementation is straightforward. k-NN uses the training samples to predict a
new sample by a majority vote on the outcome of the k-nearest points to the new sample.
This decision function can be written as y(x) = %ine Ne(x)Vi> Where Ni(x) is the training
data subset of k nearest points to x. Neighborhood searching implies the use of a metric such
as Euclidean distance. The number of neighbors k is a tuning parameter. The higher k, the
smoother the decision boundaries. We chose to include k-NN in this analysis to identify how
the performance of advanced predictive models compare with a basic one. This helps assess-
ing the level of difficulty of the classification problems in hand.

o Partial Least Square: Principal Component Analysis (PCA) is similar in concept to Partial
Least Squares (PLS) [17]. PCA seeks linear combinations of the input variables that maximize
their variation. These linear combinations are called components. A few first components usu-
ally capture most of the variation in the variables. PCA is an unsupervised dimension reduction
technique, and hence cannot be used for classification. PLS extends the PCA approach for
supervised learning. It seeks optimal components that both maximize variable variation and
correlation with the outcome variable. We note that there is a difference between LDA and
PLS. In LDA there are two steps, applying PCA then maximizing the between-to-within group
variability. In PLS, the two steps are combined in one objective function.

Model parameter tuning

Data resampling techniques are used for model evaluation. Approaches such as cross-valida-
tion, leave-one-out or bootstrapping are typically used for this purpose. Resampling techniques
are used for the tuning of model parameters [18, 19]. These approaches ensure that the perfor-
mance estimate is not overly optimistic. First, a grid of possible values of the tuning parameters
are defined. Then the data is split into training and hold-out sets, therefore defining multiple
resampling iterations. For each tuning parameter value, the model is fitted using the training
data and prediction is performed on the hold-out set. The average performance can be calcu-
lated across the different resampling iterations. The previous step is repeated across the tuning
parameter set. The optimal tuning parameter is selected as the one that corresponds to the best
performance.

In our analysis we modify the previously described approach to take into account both
parameter tuning and final performance estimation. As described in algorithm 1, we split the
data randomly into four folds such the two class proportions are kept the same across the split-
ting. This step was repeated randomly 10 times to define 10 resampling iterations. We used the
same resampling to evaluate the different models. Hence we ensure a fair model comparison by
having the same data splits and repetitions. Within each repetition, the four data folds are used
as follows; 1) the first two folds are used to select the optimal tuning parameters, 2) the second
two folds are used to evaluate the performance of the model based on the selected tuning
parameters.

Algorithm 1: Model training, parameter tuning and performance estimation

1 Define sets of model parameter values toevaluate

2 Prepare data resampling: split datausingstratificationinto 4 foldswith
10 repetitions

3 for each parameter set do
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Table 3. Tuning parameters of the listed predictive models.
Models

Partial Least Square (PLS)
Neural Networks (NN)
Support Vector Machine (SVM)
Boosted Trees (B-Trees)
Random Forests (RF)
GLMNet
GLM
k-Nearest Neighbors (k-NN)

Tuning parameters

ncomp(#Components)
size(#hidden units), decay (weight decay)
o(gaussian kernel), C (Cost)
shrinkage, max.treedepth, boosting.iterations
mtry(#randomly selected variables)
a(mixing percentage), A(regularization parameter)
no tuning parameter
k(#Neighbors)

doi:10.1371/journal.pone.0146413.t003

for each resampling iterationdo
Fit themodel on foldl data
Predit fold2 data samples
Calculate the average performance across repetitions fromfold2 sample
predictions
8 Determine the optimal parameter set
9Fit themodel on fold3 samples
10 Predict fold4 data samples

~ o U1

Table 3 summarizes the tuning parameters of the different models. There is one model with-
out tuning parameters (GLM), three models with one tuning parameter (PLS, RF and k-NN)
and four models with two tuning parameters (NN, B-Trees, GLMNet, SVM). We mention that
shrinkage parameter for boosted trees has been considered fixed in order to control model
complexity. For each set of parameters, the models are fitted and evaluated using the procedure
described in algorithm 1. This procedure is repeated for the complete set of hyper-parameters.
The optimal parameters for each model is selected by maximizing the performance based on a
grid of parameter values. Fig 1 shows the average AU-ROC for the different models and

GLMNet SVM Random Forests Neural Networks
0.65- 0667 %\
alpha [ G EEEEEEE—— —: sigma \
0 § 0.001 0644
0.1 0.60- 4 0.01 0.715- .J\ decay
(02 1) | O ) 1) “mtry" 1) X t 0.001
04 e b\«"'/’/ -1 e mtry Qo62- - 0.01
- 06 05851 -~ 10 0.1
08 100 0710~ 060~
1 0.50- 1000 :
U 1 1 1 T U 1 U 1 1 0.58 - T 1 1 1
00 0.1 02 03 04 0 25 500 750 1000 0 20 40 60 4 8 12 16
lambda (&3 mtry size
Boosted Trees Partial Least Square k-Nearest Neighbors
070-
060-
069~ 072+
inter.depth
Q6s- 1 o “ncomp” %% k"
Q -5 0704 ncomp 2 K
° 050~
067~ )
/ — J 0.45-
0664 7 \, 068
0 80 120 25 50 75 100 5 10 15
n.trees ncomp k
Fig 1. Tuning results of model parameters using re-sampling (GLM is not included since it does not have tuning parameters).
doi:10.1371/journal.pone.0146413.g001
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Partial Least Square 1
Boosted Trees 1
k-NN 1
Neural Network 8!
Random Forests 1
Support Vector Machines -
GLMNet 1
GLM 1

5 years

“ﬁ**e*

.

8 years 11 years

method

Partial Least Square 4
Boosted Trees 1
k=NN 1
Neural Network .
Random Forests 1
Support Vector Machines-
GLMNet 4
GLM 1

04

ﬁ- =

_._
-
-1l
n
m

0.5 0.6 0.7

.8 0.4 0.5 0.6 0.7 0.8
AUC.ROC

Fig 2. Comparison of model performances for the different use cases (prognosis periods of 2, 5, 8 and 11 years).

doi:10.1371/journal.pone.0146413.9002

parameters. SVM seems to be insensitive to the cost choice C, kernel smoothing parameter o of
10 is the optimal. For PLS, the choice of 5 components is optimal. For k-NN, a relatively large
number of k as 13 is the optimal. For RF, a limited number of randomly selected predictors of 3
seems to give the best performance. As expected for boosted trees, shallow trees (with interac-
tion depth of 1) and a number of iterations (30) were the best parameters.

Results and Discussion
Model comparison

Fig 2 depicts boxplots of the 8 model performances in terms of AU-ROC for the different prog-
nosis periods. The choice of AU-ROC as performance indicator is justified for two reasons.
Firstly, the data classes can be imbalanced as indicated in Table 2 for the prognosis period of 2
years. Therefore performance criteria such as accuracy is not adequate for assessing model per-
formance as it tends to give advantage to models that always output the class with highest fre-
quency. Secondly, AU-ROC is independent of cut-off point choices and hence keeps the choice
of clinical applications open beyond this analysis. k-NN had the worst performance in the four
different use cases. This result is expected as k-NN is very sensitive to data sampling and the
number of neighbors. Including k-NN in our analysis provided an indication on the lower
bound of performance and hence the level of difficulty of the prediction problem in hand. The

PLOS ONE | DOI:10.1371/journal.pone.0146413 January 15,2016
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Table 4. Performance summary in terms of AUC-ROC.

Model 2 years 5 years 8 years 11 years

GLM 0.62 + 0.07 0.76 + 0.02 0.74 £ 0.02 0.71 £ 0.01
GLMNet 0.75 + 0.05 0.77 £ 0.01 0.76 + 0.03 0.72 £ 0.03
Support Vector Machines 0.64 £ 0.08 0.77 £ 0.04 0.76 £ 0.04 0.72 £ 0.01
Random Forests 0.73 £ 0.09 0.77 £ 0.02 0.77 £ 0.03 0.75 £ 0.02
Neural Network 0.67 £ 0.09 0.73+0.03 0.74 £ 0.04 0.72+0.02
k-NN 0.58 +0.13 0.72 £ 0.02 0.71 £ 0.05 0.68 £ 0.03
Boosted Trees 0.75 £ 0.07 0.78 £ 0.02 0.75 +£0.03 0.74 £ 0.03
Partial Least Square 0.75 + 0.05 0.77 £ 0.02 0.76 £ 0.03 0.73 £ 0.02

doi:10.1371/journal.pone.0146413.t004

lowest performance, as depicted in Table 4, is around 58% AUC for 2-year prognosis window.
The lower bound is higher for 5 and 8 years and is about 72% AUC. This indicates that it is bet-
ter to use these prediction techniques for a mid-term prognosis, rather than short or long-term
prognosis. This observation is analyzed in more detail below.

For the prognosis period of 2 years, we notice a large performance variance between the
models, as well as large model variances across resampling iterations. This could be explained
by the data imbalance between the two data classes (5%, 95%) as described in Table 2. Model
variance is lower for the other use cases due to the balance between the two data classes as well
as the large number of samples. Table 4 shows a numerical representation of the performance
summary as in Fig 2. Mean AUC and standard deviation are captured across the different
resampling sets. For 2-year window, GLMNet, Boosted Trees and Partial Least Squares have
the best performance (0.75 AUC). For 5 years, Boost Trees model has the highest performance
with 0.78 AUC. For 8 and 11 years, Random Forests has the highest performances with 0.77
and 0.75 AUC respectively. In order to assess the stability of model prediction across the differ-
ent prognosis periods we average model performance as shown in Table 5. Random Forests,
Boosted Trees, Partial Least Square and GLMNet have the best performance around 0.75 AUC.
In order the assess model predictability over time, we averaged the performance of the top four
mentioned models as depicted in Table 6. We observe that the prediction for 5 and 8 years are
better than 2 and 11 years with 3% to 4% AUC on average. We can conclude that mid-term
prediction (5 and 8 years) is more accurate than short and long-term prediction (2 and 11
years). 5-year prognosis prediction has the highest performance and therefore a 5-year progno-
sis is the recommended time window from our analysis.

Table 5. Overall model performance average in terms of AUC-ROC.

Model AUC

Random Forests 0.76 £ 0.05
Boosted Trees 0.75 £ 0.04
Partial Least Square 0.75 £ 0.04
GLMNet 0.75 + 0.04
Support Vector Machines 0.72 £ 0.07
Neural Network 0.71 £ 0.06
GLM 0.71 £ 0.06
k-NN 0.67 £ 0.09

doi:10.1371/journal.pone.0146413.t005
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Table 6. Performance average of top models sorted by AUC-ROC for the different prognosis periods.

Period AUC

5 years 0.77 £ 0.02
8 years 0.76 £ 0.03
2 years 0.74 £ 0.07
11 years 0.73 £ 0.03

doi:10.1371/journal.pone.0146413.t006

In order to better assess model comparison we used a statistical test on model performance
differences as proposed in [20, 21]. Paired t-test is applied for each of the model differences
across resampling iterations. Fig 3 depicts the average AUC differences of all model pairs and
corresponding confidence intervals for the four prognosis periods. We notice that k-NN results
are mostly on the left side indicating poor performance compared with the other models. Mod-
els such as Random Forests, GLMNet, Boosted Trees and Partial Least Square (PLS) are mostly
on the right side indicating superior performance than other models.

Table 7 presents details on AU-ROC average differences and p-value of the paired t-test.
The table should be read as follow: For each pair models (row, column), the average of the dif-
ference model_row—model_column is given in the upper part of the table. The lower part
gives the corresponding p-value for the paired t-test. We highlighted in the upper part perfor-
mance differences corresponding to p-values below 0.05. As an example, we consider the col-
umn corresponding to Boosted Trees in Table 7. We notice that most of the differences are
negative, meaning that almost always Boosted Trees have better performances than the other
models. Boost Trees model has advance performance varying between 0-8% AU-ROC, with
respect to the other models. However this difference is mostly not statistically significant. On
the other hand, most of the statistical significant differences involve k-NN as its performance is
clearly lower than the rest of the models.

Considering the performance of SVM, we notice that it is overall good, however it is slightly
lower than the top pool of models. This could be explained by the fact that SVM is not designed
to optimize AU-ROC as the prediction function is not calibrated by design in the SVM algo-
rithm. In order to get a calibrated prediction output for SVM and other non-calibrated models
we used the softmax transformation [22].

Relative Importance

In addition to performance comparison, we analyzed the most important variables that con-
tribute to the prediction models. For each model we quantified relative importance by giving a
weight between 0 and 100 for each variable. We averaged the variable importance from the dif-
ferent models for the final analysis as shown in Fig 4 and Table 8. Models GLM, GLM-Net,
Boosted Tree, Random Forests and PLS allow the derivation of variable importance during
model training [16, 23, 24]. It is beyond the scope of this paper to provide the details of the der-
ivation of variable importance for each model. For illustration purposes we describe briefly the
derivation of variable importance for Random Forests model. In order to measure the relative
importance of a certain variable, first Random Forests model is fitted on the training data and
the out-of-bag error is estimated [25]. Then the values of this variable are perturbed in the
training data and the out-of-bag error is estimated on the new perturbed dataset. The relative
importance is therefore obtained as the average of the difference between the out-of-bag error
before and after the perturbation over all trees. The score is finally normalized by the standard
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Fig 3. Model comparison in terms of AU-ROC differences and confidence intervals for the different prognosis periods.

doi:10.1371/journal.pone.0146413.9003
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Table 7. Paired t-test for the statistical evaluation of model differences for the different prognosis periods. The upper part of the matrix represents the
average difference in term of AU-ROC between models in the rows and models in the columns. The lower part represents the adjusted p-values.

2 years GLM GLM-Net SVM RF NN k-NN B-Trees PLS
GLM - -0.12 -0.02 -0.11 -0.04 0.04 -0.12 -0.13
GLM-Net 0.02 - 0.10 0.01 0.08 0.16 0.00 -0.01
SVM 1.00 0.06 -0.09 -0.03 0.06 -0.10 -0.11
RF 0.04 1.00 1.00 - 0.07 0.15 -0.01 -0.02
NN 1.00 0.32 1.00 0.07 - 0.09 -0.08 -0.09
k-NN 1.00 0.04 1.00 0.08 0.89 - -0.16 -0.17
B-Trees 0.02 1.00 0.25 1.00 0.05 0.04 - -0.01
PLS 0.03 1.00 0.07 1.00 0.32 0.04 1.00 -

5 years GLM GLM-Net SVM RF NN k-NN B-Trees PLS
GLM - -0.02 -0.01 -0.01 0.03 0.04 -0.02 -0.01
GLM-Net 0.06 - 0.01 0.00 0.04 0.05 -0.00 0.01
SVM 1.00 1.00 - -0.01 0.03 0.04 -0.01 -0.00
RF 1.00 1.00 1.00 - 0.04 0.05 -0.01 0.00
NN 0.65 0.03 0.03 0.26 - 0.01 -0.04 -0.04
k-NN 0.08 0.00 0.39 0.01 1.00 = -0.06 -0.05
B-Trees 0.27 1.00 1.00 1.00 0.01 0.02 - 0.01
PLS 0.32 1.00 1.00 1.00 0.05 0.01 1.00 =

8 years GLM GLM-Net SVM RF NN k-NN B-Trees PLS
GLM - -0.02 -0.01 -0.03 0.00 0.04 -0.01 -0.02
GLM-Net 0.53 - 0.01 -0.01 0.02 0.06 0.01 0.00
SVM 1.00 1.00 - -0.01 0.02 0.05 0.00 -0.00
RF 0.48 1.00 1.00 - 0.03 0.06 0.01 0.01
NN 1.00 1.00 1.00 0.92 - 0.03 -0.01 -0.02
k-NN 0.30 0.00 0.01 0.00 1.00 - -0.05 -0.05
B-Trees 1.00 1.00 1.00 1.00 1.00 0.14 - -0.01
PLS 0.53 1.00 1.00 1.00 1.00 0.01 1.00 -

11 years GLM GLM-Net SVM RF NN k-NN B-Trees PLS
GLM - -0.01 -0.01 -0.04 -0.01 0.03 -0.03 -0.02
GLM-Net 1.00 - -0.00 -0.03 0.00 0.04 -0.02 -0.01
SVM 0.91 1.00 - -0.03 0.01 0.04 -0.02 -0.01
RF 0.01 0.35 0.23 - 0.03 0.07 0.01 0.02
NN 1.00 1.00 1.00 0.33 - 0.04 -0.03 -0.01
k-NN 0.21 0.04 0.03 0.00 0.17 - -0.06 -0.05
B-Trees 0.09 1.00 1.00 1.00 1.00 0.01 - 0.01
PLS 1.00 1.00 1.00 0.11 1.00 0.01 1.00 -

doi:10.1371/journal.pone.0146413.1007

deviation of these differences [14]. The last procedure is repeated for the other variables to
obtain the complete set of variable importance for Random Forests.

For models for which it is not straightforward or not possible to extract variable importance,
such as k-NN or SVM, we considered the use of AU-ROC as an alternative to evaluate the
importance of each variable [24]. This can be obtained by considering single variable and then
building an ROC using that variable as a predictor. Therefore variable importance is obtained
for each predictor as the AU-ROC value. The obtained numbers are normalized across vari-
ables such that it ranges between 0 and 100 according to the following steps. The normalization
is obtained by subtracting the min value of variable importance. The obtained values are then

PLOS ONE | DOI:10.1371/journal.pone.0146413 January 15,2016 12/15



D)
@ : PLOS | ONE Model Comparison for Breast Cancer Prognosis Based on Clinical Data

2 year 5 years 8 years 11 years
lymph_nodes_positive - [N ] . F |
ER Expr-- [ I [ | [ ]
size- [N 1 ] ]
stage- [ [ ] [ ] I
ER_IHC_statuspos- [ ] | B
PR.Expr-- [ I [ ] L1
grade3- [ | ] L] L]
TreatmentCT/RT- [ 1 | ] [ ]
lymph_nodes_removed - [N I [ I
age_at_diagnosis- [ I ] |
histological_typelDC- [l | ] | ] ||
0 TreatmentCT/HT/RT- [l || [ ] [ ]
S histological_typelDC-MED- [l [ | [ | B
% histological_typelDC+ILC- [l [ ] [ | [ ]
19 histological_typeOTHER- [l ] [ ] B
o histological_typelLC- [l [ | [ [ ]
TreatmentNONE- [l [ | B | ]
histological_typeINVASIVE TUMOUR- [l [ | [ ] [ |
TreatmentCT/HT- [l [ ] [ ] [ ]
histological_typePHYL- [l [ ] [ ] [ ]
histological_typelDC-TUB- [l [ | || B
grade1- [ || [ | [ |
Her2.Expr-- [ [ ] | | ||
TreatmentRT- [l [ | [ ] ]
TreatmentHT/RT- [l [ | || [ |
TreatmentHT- [l [ ] B | ]
grade2- [l ] | | 1
0 25 5 75 1000 25 50 75 1000 25 50 75 1000 25 50 75 100

importance

Fig 4. Normalized average relative variable importance for the different prognosis periods.

doi:10.1371/journal.pone.0146413.9004

divided by the new max value. Therefore the variable with the largest variable importance will
have a value of 100 corresponding to the maximum importance and lowest variable importance
will correspond to 0. This normalization preserves the ranking of variables and allow the com-
bination of results of variable importance from heterogeneous models. The final step in quanti-
tying variable importance is to average the obtained values across models. Therefore predictors
with an average variable importance close to 100 tend to be the most important variable for all
models.

Fig 4 provides a plot of the average normalized relative importance for the different clinical
variables and prognosis periods. Table 8 provides a numeric representation of Fig 4 corre-
sponding to the same results. Variable importance values are sorted in a descending order for

Table 8. Relative importance of the top 9 predictors for the different prognosis periods.

Predictors 2 years 5 years 8 years 11 years
lymph_nodes_positive 37.52 67.91 99.49 82.09
ER.Expr- 30.95 32.59 24.22 16.61
size 28.81 56.39 71.54 59.24
stage 28.65 40.19 38.17 29.68
ER_IHC_statuspos 26.28 17.24 7.30 8.23
PR.Expr- 25.18 30.15 44.47 2297
grade3 23.15 32.66 25.54 21.38
TreatmentCT/RT 22.72 31.55 25.94 17.33
lymph_nodes_removed 22.06 28.06 37.02 36.08

doi:10.1371/journal.pone.0146413.t008
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the prognosis period of 2 years. We can distinguish two sets of variables: The first set of vari-
ables has a strong influence on breast cancer prognosis while the second set has less impact on
model predictability. The latter is mainly formed by variables related to the histological state,
treatment types and the first two grades of the cancer. Concerning the first set of variables, the
number of positive lymph nodes is the most important predictor for cancer prognosis across
all prognosis periods with an average relative importance ranging from 37% to 99%. This pre-
dictor is highly important For mid and long-term prognosis and is the most important predic-
tors for all models for the 8-year prognosis as it reached about 100%. Similarly, the number of
positive lymph nodes, size, stage, PR.Expr and age at diagnosis variables have average relative
importance of about 25%, but increase for mid and long-term prognosis. Tumor size is the sec-
ond most important predictor for 5, 8 and 11 years with a relative variable importance of more
than 50%. However its importance is around 25% for the short-term prognosis.

Variables such as Lymph node positive, Tumor size, Age and Stage are the most important
predictors for T = 2 years. These predictors play also an important role for the other prognosis
periods. However a predictor such as Treatment seems to have an important predictive factor
for 5 years. Combined treatment Hormonal/Radio has slightly higher importance than other
treatments. This result indicates that this treatment is important for improving mid-term
breast cancer prognosis (5 years). However for long-term prognosis its corresponding relative
importance drops to approximately 10%.

Conclusion

We considered the problem of predicting breast cancer prognosis using clinical variables. We
focused our analysis on the comparison of different classification techniques under the same
resampling conditions. The best performing techniques have comparable results indicating
that breast cancer prognosis can be made stable. The fitted models are used to extract relative
importance of the different variables. The analysis of variable importance allows the quantifica-
tion of the contribution of the clinical predictors in the prognosis models. We identified two
sets of predictors: A first set that has a significant impact on prediction models. A second set
that has a minor influence on prediction models. The most important predictors identified in
the first set are: The number of positive lymph nodes, age at diagnosis, tumor size and cancer
stage. These variables are important for the prediction across the different selected prognosis
periods. This information can be used to improve the data collection quality of these parame-
ters during clinical trials as they seem to be critical for the prediction. Concerning the effect of
treatments on model prediction power, the analysis of relative variable importance reveals that
Chemo/Radio therapy has an important mid-term prognosis effect. The remaining treatment
types have limited effect on prognosis.

These results will go through a clinical validation step by sharing the results with clinicians
and planning additional complementary analyses. Supplementary variables will be included to
quantify and compare the importance of genomic versus clinical predictors. Since the number
of genomic variables are usually much large than clinical variables, appropriate ways of com-
bining both sets should be investigated. In order to further confirm the results of this paper we
plan to benchmark the results with other breast cancer prognosis datasets. As a next step for
model comparison, we will investigate different approaches to combine the models such as
bagging, boosting and other ensemble techniques. We expect that the combined model should
show better performance and higher robustness.
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