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Abstract

We present a method for automated, depth-resolved extraction of the attenuation coefficient from 

Optical Coherence Tomography (OCT) data. In contrast to previous automated, depth-resolved 

methods, the Depth-Resolved Confocal (DRC) technique derives an invertible mapping between 

the measured OCT intensity data and the attenuation coefficient while considering the confocal 

function and sensitivity fall-off, which are critical to ensure accurate measurements of the 

attenuation coefficient in practical settings (e.g., clinical endoscopy). We also show that further 

improvement of the estimated attenuation coefficient is possible by formulating image denoising 

as a convex optimization problem that we term Intensity Weighted Horizontal Total Variation 

(iwhTV). The performance and accuracy of DRC alone and DRC+iwhTV are validated with 

simulated data, optical phantoms, and ex-vivo porcine tissue. Our results suggest that 

implementation of DRC+iwhTV represents a novel way to improve OCT contrast for better tissue 

characterization through quantitative imaging.
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I. Introduction

Optical coherence tomography (OCT) is a confocal-like, near-infrared imaging modality 

capable of high-resolution, subsurface imaging of biological tissue. The attenuation of near-

infrared light in biological specimens is governed by the Beer-Lambert Law, and the 

magnitude of this attenuation as a function of depth is characterized by the attenuation 

coefficient. Several studies have shown that using OCT to quantify the local attenuation 

coefficient is relevant to diagnostic, classification, and surveillance applications. For 

example, measurements of the attenuation coefficient have been implicated in 

atherosclerotic plaque characterization [1], renal cancer diagnosis [2], glucose diffusion 

measurement [3], bladder cancer tumor staging [4], burn scar assessment [5], ovarian tissue 

collagen content quantification [6], cerebral edema detection [7], and glaucoma diagnosis 

and surveillance [8].

The attenuation coefficient in biological tissue is related to the intensity of light that is back-

scattered from the sample and measured by the OCT system. Faber et al. introduced the 

following depth-wise model:

(1)

where μ is the attenuation coefficient and z is the depth of interest [9]. The function h, 

known as the confocal function [10] (or the confocal point spread function [9]), describes 

the intensity profile emitted from and coupled back into the fiber as a function of depth (i.e., 

optical pathlength difference between the reference arm and the distance of the beamsplitter 

to this location) and is defined for irradiance as

(2)

where z0 is the depth of the focal plane and zR is the apparent Rayleigh range. The apparent 

Rayleigh range is related to the Rayleigh range by zR = αRnzr, where zr is the Rayleigh range 

of the Gaussian beam, n is the index of refraction of the medium, and αR equals 2 for diffuse 

reflectors [9]. Importantly, others have shown that a valid signal model for the back-

scattered OCT intensity should account for the confocal function when the focal plane of the 

optical system is located within the sample, as failing to do so results in inaccurate estimates 

of the attenuation coefficient [10].

Several methods have been proposed to estimate the attenuation coefficient from OCT data 

by fitting equation (1) to a segment of an A-scan over which the attenuation coefficient is 

assumed to be constant [1], [4], [9]. While such “curve-fitting” algorithms are able to 

account for the known effect of the confocal function, they are subject to three key 

problems: 1) their reliance on manual segmentation to define the boundaries between 

regions with different expected attenuation coefficients can lead to high intraobserver and 

interobserver variabilities [11]; 2) the curve-fitting algorithms proposed to date are unstable 

when applied to very thin layers and therefore exhibit low reliability and high sensitivity to 

noise in these regions [12]; and 3) since entire regions are assigned a single attenuation 
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coefficient value, small changes in the attenuation coefficient may be lost (i.e., the resolution 

of these algorithms is extremely poor).

To address these problems, Vermeer et al. introduced the following model:

(3)

where β is the quantum efficiency of the camera, L0 is the intensity of the light source, α is 

the fraction of attenuated light that is backscattered, μ(z) is the local attenuation coefficient, 

θ is a variable of integration [12], and I(z) is the measured irradiance after subtraction of the 

noise floor and division by the sensitivity fall-off (modeled as a Gaussian). Using this 

model, the authors derived an invertible mapping between the measured light intensity and 

the attenuation coefficient that allowed them to calculate the attenuation coefficient for 

every pixel in the OCT image. Importantly, the Depth Resolved (DR) technique they 

introduced eliminated the need for manual segmentation, offering instead an algorithm that 

is fully automated and computationally efficient. Furthermore, since μ is not assumed to be 

constant within any segment, its resolution is much better than that of existing curve-fitting 

algorithms.

One remaining shortcoming of the DR method, however, is that it does not take the confocal 

function into account; hence, the obtained results are only accurate when the focal plane is 

positioned above the sample. Unfortunately, measurements acquired when the focal plane is 

located above the sample suffer from a reduced signal-to-noise ratio (SNR). Also, requiring 

the focal plane to be positioned above the sample restricts the applicability of the algorithm 

in clinical settings [13], where the position of the focal plane relative to the sample is 

constantly varying and is often located within the sample, even as the relative position of the 

focal plane to the position of zero pathlength delay doesn’t change.

Another phenomenon that influences the depth-dependent intensity of the OCT signal is 

sensitivity fall-off (in Fourier-domain techniques). Vermeer et al. accounted for fall-off 

using a Gaussian model. Yun et al. [14] have created a more comprehensive model for 

sensitivity fall-off in spectral domain (SD)-OCT, which is an explicit function of 

spectrometer and CCD parameters as follows:

(4)

where δλ is the spectrometer’s spectral resolution (FWHM), Δλ is the wavelength spacing 

between pixels, and ζ = (π/2) · (z/zRD) represents the depth normalized to the maximum 

ranging depth, zRD. The maximum ranging depth can be calculated as , 

where λ0 is the central wavelength of the source [14]. For the most accurate signal intensity 

model, it is important to include the effects of sensitivity fall-off.

In this work we introduce a modification of the DR method that takes into account the 

confocal function and the more comprehensive model for sensitivity fall-off – termed the 

Depth-Resolved Confocal (DRC) technique – to extend its applicability to practical 
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measurements in clinical settings. Like DR, DRC utilizes an invertible mapping between the 

OCT signal intensities and the attenuation coefficient, but unlike DR it also enables accurate 

measurement of the attenuation coefficient independent of the position of the focal plane. 

Thus, DRC is the first fully automated algorithm that can estimate the attenuation coefficient 

when the focal plane is located within the sample.

To improve estimates of the attenuation coefficient, one of two common pre-processing 

methods is often implemented: 1) lateral averaging across several A-scans within a B-scan 

[4], [15], [16] and 2) averaging many B-scans together [1], [17]. Unfortunately, the former 

method degrades the image quality when the sample exhibits horizontal variations in 

structure while the latter is time-intensive and requires that the subject stay still during 

imaging, a restrictive requirement in clinical settings where motion is often present.

To improve the accuracy of the DRC estimate, we introduce a novel noise reduction 

technique – Intensity Weighted Horizontal Total Variation (iwhTV) denoising – that 

exploits the layered structure of certain biological tissues such as bladder, skin, colon, and 

retina. A priori knowledge of the horizontal, layered structure of the tissue is used to 

influence the final attenuation coefficient estimate through weighted total variation 

regularization in a convex optimization problem. This regularization increases the stability 

of the algorithm compared to modern curve-fitting algorithms.

In section III we show that iwhTV retains more of the imaged subject’s structure than other 

standard, post-estimation denoising techniques (i.e., Gaussian smoothing, TV denoising). It 

should be noted that there are other structure-preserving denoising techniques that could be 

utilized: bilateral filtering [18], non-local means [19], and sparsity-based dictionary 

techniques [20], [21] are a representative selection. We used total variation since the 

regularization term incorporates the prior information that the sample is approximately 

piece-wise constant (layered), thereby allowing us to denoise the sample with decreased 

blurring. The denoising algorithm iwhTV further accounts for the physical constraint that 

the attenuation coefficient be non-negative and accounts for depth-dependent noise in the 

estimate of the attenuation coefficients, leading to more accurate estimates. While it may be 

possible to incorporate such knowledge into the aforementioned techniques, since they are 

not formulated as optimization problems it is not a straightforward task and that remains 

something to be explored in the future.

Finally, the performances of both DRC and iwhTV denoising are validated with numerical 

simulations and measurements in optical phantoms comprised of Intralipid. The suitability 

of both techniques for clinical imaging is then tested by showing results from a layered 

phantom and ex-vivo tissue samples of porcine bladder and colon.

II. Methods

A. Signal Model

We utilize the following model presented by Vermeer et al.,
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(5)

The subscript fh denotes that this signal model for the intensity accounts for the confocal 

function and sensitivity fall-off.

For simplicity, let us consider the measurement obtained by an SD-OCT system with a 2 · 

M-pixel spectrometer. After resampling, apodization, and DC subtraction, sample m of the 

obtained M-point A-scan (one-sided) corresponds to an integration of the interferometric 

information over a small depth range:

(6)

Here zm and zm+1 are the physical bounds of the mth sample in depth, m ∈ {1, …, M}, and 

the bold emphasis denotes that the function is discrete, as is the case when sampling the data 

using SD-OCT. To improve the estimation accuracy, we extend the model to account for 

additive noise sources, such as shot-noise, dark current, read-out noise, and digitizer noise 

[22]. The final model of the measured signal (Imeas) is

(7)

where c[m] ∈ ℝ is a random variable that accounts for additive noise typical of most SD-

OCT systems.

B. Estimating the Attenuation Coefficient

Our ultimate goal is to estimate the attenuation coefficient from the measured data. One 

might suspect that the effects of additive noise, confocal function, and sensitivity fall-off 

could be removed by subtracting the mean of the additive noise and dividing by the confocal 

and fall-off functions. However, doing so amplifies the effects of the remaining noise; this is 

particularly hazardous when the noise makes up a large portion of the measured signal. 

Instead, these effects can be addressed in measured data by using a restoration filter, which 

has been shown to optimally reduce the effects of additive noise [23]:

(8)

where

(9)

The .^ symbol denotes an estimated parameter (i.e., parameters not directly measured using 

the OCT system), and the ·̄ symbol represents the expected value function. The average 

noise power, , is a parameter of the algorithm and specified by the user. The 

sensitivity fall-off function can be determined from system parameters, and the confocal 

Smith et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



function can be determined experimentally using the location of the focal plane and the 

Rayleigh range of the scanning lens, as described in section II-E.

As shown by Vermeer et al., the attenuation coefficient associated with a given depth can 

then be estimated from Î using

(10)

where Δz = zm+1 − zm [12]. Equation (10) makes it clear that the attenuation coefficient at 

the depth corresponding to sample m is proportional to the ratio of the intensity of light 

backscattered from that depth to the amount of light backscattered from all deeper positions 

(that is, locations further from the position of zero pathlength delay).

C. Noise Reduction

The presented algorithm, DRC, estimates the attenuation coefficient for each pixel in an A-

scan. Denoising can improve the estimate; for this, we introduce a new technique – Intensity 

Weighted Horizontal Total Variation (iwhTV) denoising – which exploits inter-A-scan 

correlations to achieve smoothing across tissue layers (similar to averaging)while also 

preserving lateral structure in a sample. Note that vertical smoothing is also possible [24], 

but as the geometry is not well matched to layered structures and because variations in SNR 

as a function of depth complicate the smoothing, we chose to limit the current work to 

horizontal smoothing.

Consider the 2D matrix μ̂ ∈ ℝM×Nthat describes the estimated attenuation coefficient for 

every pixel in the collected B-scan: μ̂ is simply the concatenation of estimates from all A-

scans in a single B-scan. We first formulate a regularized least squares optimization problem 

for each row (i.e., depth) in the B-scan:

(11)

where μ̂
m ∈ ℝ1×N is the mth row of μ̂, μ̃

m ∈ ℝ1×N is the optimization variable, η ∈ ℝ is the 

regularization parameter, and Reg is a regularization function. The denoised estimate of the 

attenuation coefficient is denoted by . The goal of the optimization problem is to find the 

 that best fits the data while adhering to the imposed regularization and constraints. In 

general, regularization functions require that the estimate (i.e., the attenuation coefficient) 

adhere to some expected behavior, and the regularization parameter is chosen based on the 

degree to which the data adhere to this behavior. In the case of the layered biological tissues 

of interest to this work (e.g., bladder, skin, colon, and retina), we can safely assume that μ is 

approximately piecewise constant. Thus, total variation (TV) regularization [25] is an 

appropriate regularization function:

(12)
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where D ∈ ℝN−1×N is the discrete gradient operator with symmetric boundary conditions 

defined as

For TV regularization, the choice of the regularization parameter η should be based on how 

well a piecewise constant function serves to model the data; a higher η corresponds to data 

that are modeled better by a piecewise constant function. Applying the regularization 

function to each row of the B-scan will reduce the noise laterally, much like averaging many 

A-scans. However, unlike averaging, the L1 norm gives the regularization function 

flexibility to allow for abrupt lateral variations in the attenuation coefficient due to the 

presence of real structures such as granules, glands, and vasculature [26]. Hence, we expect 

that this algorithm will essentially smooth “smartly.”

When estimating μ̂ using equation (10) (DRC), we divide by a summation representing the 

proportion of light backscattered from deeper positions. For large values of m (i.e., deeper in 

the sample), the intensity of the OCT image is small due to the attenuation of light, and the 

SNR at those depths becomes correspondingly low. Hence, in these regions the estimate of 

the back-scattered light is significantly corrupted by noise. To compensate for this effect, we 

replace the standard TV regularization with a weighted TV regularization [27],

(13)

where the standard L1 norm is replaced with a weighted L1 norm, defined as

Note that the standard TV regularization function is a special case of weighted TV 

regularization where all the weights have value 1.

Regions of high SNR are associated with low noise and more confident estimates. 

Therefore, we aim to smooth (denoise) the data more in regions where the SNR is low and 

less where the SNR is high. Based on this intuition, we heuristically created the following 

weights:

(14)
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where we have used Imeas as a surrogate for the SNR, which is reasonable in the shot-noise 

limit. The value ε is a small number that prevents the denominator from becoming zero and 

limits the maximum value of the weight. The effect of ε is minimal; in our work its value 

was chosen experimentally to be 0.001 based on the magnitude of the measured intensities.

While μ̂[m] is a ratio of intensity at pixel m over an integration of all pixels below it as is 

shown in (10), the SNR of μ̂[m] is still related to Imeas[m]. When the summation of (10) 

covers a relatively large number of pixels, then the noise in the summation is small and the 

noise in the estimated attenuation coefficients is nearly equal to that of the noise in the OCT 

intensity data. Additionally, if Î[m] is large relative to the noise, then the numerator and 

denominator of equation (10) are not significantly affected by noise since Î[m] appears in 

both. However, if Î[m] is small relative to the noise, then we cannot be confident in the 

estimate of μ̂[m] at these points. Therefore, weighting μ̂[m] based on the SNR of the signal 

allows us to identify regions of low SNR for which we should apply increased smoothing.

Finally, to avoid blurring across the surface boundary, we introduce a mask to the data to 

impose regularization only in regions where the sample exists. While TV regularization 

could have been applied at the surface, the use of a mask reduces the computational time 

significantly. We first identify the surface of the tissue and then formulate a mask in the 

form of a diagonal matrix: Xm ∈ ℝN×N, where Xm[n, n] = 0 if the nth sample lies above the 

tissue surface, and Xm[n, n] = 1 otherwise. The final regularization function can thus be 

described as

(15)

where Nx is the number of nonzero elements in Xm. When combined with the regularization 

function presented in (15), problem (11) becomes a convex optimization problem. Thus, it 

can be solved using standard algorithms, such as interior point methods [26], or existing 

software. These algorithms converge to the unique optimal solution of the convex 

optimization problem. The solution to this problem is a denoised estimate of the attenuation 

coefficients for a given row in the B-scan. This process can be repeated for all rows to yield 

a denoised estimate of the attenuation coefficients for the entire image, μ̃★.

D. Algorithm Implementation

Algorithm 1 and Fig. 1 summarize the steps needed to compute μ̃★ from Imeas with iwhTV 

denoising. The input to the algorithm is a processed B-scan comprised of N A-scans and M 

rows. A detailed description of each step of the algorithm follows.

Algorithm 1

Attenuation Coefficient Estimation

Input: B-scan

Step 1:
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for each A-scan (n = 1, 2, … N)

 Locate the surface of the tissue

end

Step 2: Create an image mask, X, to isolate tissue from background

Step 3: Calculate the intensity Î using (8)

Step 4:

for each A-scan (n = 1, 2, … N)

 Estimate the attenuation coefficient μ̂ using (10)

end

Step 5:

for each row in the reconstruction (m = 1, 2, … M)

 Solve problem (11) with the regularization of (15) to denoise the estimate and attain μ̃★

end

Step 1: Locate the surface of the tissue: The location of the surface was determined 

independently for each A-scan. We used a simple thresholding algorithm that computed 

two numbers: tl, the mean of the lowest 10% of intensity values in the A-scan, and th, 

the mean of the highest 10% of intensity values. The surface location was taken to be 

the index of the first depth at which the intensity exceeded the threshold given by t = 

mean(tl, th). Note that the choice of thresholding technique may be sample dependent; 

for example, the presence of fur or a highly reflective water surface may necessitate a 

more complicated surface extraction technique [28].

Step 2: Create an image mask, X: We created a mask for the image, X ∈ ℝM×N, to 

identify tissue structures below the surface identified in Step 1. We assigned X[m, n] = 

0 to all points on or above the surface and X[m, n] = 1 to all points below the surface. 

To avoid creation of abrupt isolated regions, the surface was smoothed by applying a 

morphological close operation to the image mask. Additionally, the surface itself was 

masked out by applying a morphological erosion operation. This was done to avoid 

problems from the large difference in the index of refraction between air and the 

biological sample, which is not accounted for in the signal model.

Step 3: Calculate the intensity, Î: The intensity uncorrupted by the effects from additive 

noise, the confocal function, and sensitivity fall-off (Î) was calculated from Imeas (data 

obtained from the OCT system) using equation (8).

Step 4: Estimate the attenuation coefficient, μ̂: We calculated μ̂ for every A-scan in the 

B-scan using equation (10).

Step 5: Determine the denoised estimate, μ̃★: We generated the convex optimization 

problem (11) with the regularization of (15) by performing the following for each row: 

estimate μm̂, assign a weight matrix Wm, and construct the mask Xm. The estimates for 

a single row, μ̂
m, were trivially extracted from μ̂. The weight matrix Wm was 

determined according to (14), and a weight was assigned to each pixel in the B-scan. 

The mask Xm for the mth row of the OCT data is a diagonal matrix with diagonal 

elements consisting of the mth row of the image mask, X. Once the convex optimization 
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problem (11) was generated, we solved it using CVX, a software package for Matlab 

[29].

E. Experimental Design

Numerical Simulations—To test the effect of parameters such as the location of the focal 

plane, magnitude of the attenuation coefficient, and SNR on the accuracy of DRC, we 

simulated shot-noise-limited A-scans as follows: Isim[m] = Ih[m] + p[m], where p is an 

independent and identically distributed Gaussian random vector with zero mean and 

variance σ2 = 0.0004 intended to account for the additive noise. The variance of the noise 

was chosen to match a typical SNR value of 40 dB for tissue obtainable with OCT. The 

simulations were designed to mimic bi-layer tissue samples comprised of regions of constant 

attenuation. The true values of the layer positions, layer thicknesses and attenuation 

coefficients were encoded in a single vector μtrue of length M. The values for α, β and L0 

from equation (5) were chosen arbitrarily (α = 0.2, β = 1.0, L0 = 2000); note that the choice 

of these values has no effect on the results of DRC as long as the regularization parameter is 

scaled appropriately. For each simulation, we created a B-scan by concatenating many A-

scans – each having the same noise statistics – and the attenuation coefficient of the B-scan 

was estimated using either DR, DRC, or DRC with a denoising algorithm. The denoising 

algorithms tested included iwhTV, 2D Gaussian smoothing, and TV denoising [25].

For all Gaussian smoothing results, a standard deviation of 2 pixels was used for the blur 

kernel. For all TV results, the regularization parameter was set to 1. For all iwhTV results, 

unless otherwise stated, the regularization parameter was set to 6.

Phantom Experiments—To evaluate the accuracy of DRC experimentally, we fabricated 

several liquid optical phantoms comprised of different Intralipid concentrations. The volume 

to volume (v/v) ratios used were approximately 1.25%, 2.5%, 5%, 10%, 15%, and 20%. 

These ratios were chosen to span the range of scattering coefficients expected in soft tissue 

(e.g., bladder). Reference attenuation coefficients were taken from previously reported 

values [30]. The average attenuation coefficient using DRC was calculated for each A-scan 

over a range of 0.25 mm of depth just below the surface. The mean and standard deviation 

were calculated over all A-scans. For all Intralipid concentrations we used n = 1.353.

To better evaluate the accuracy of DRC using a sample that closely resembles the 

heterogeneous nature of tissue, we also fabricated a scattering optical phantom (TiO2 

dispersed in poly(dimethylsiloxane) (PDMS)) comprised of four layers with different 

attenuation coefficients. The attenuation coefficient of the PDMS/TiO2 mixture was 

controlled by varying the percentage by weight of TiO2 added. Layers were produced by 

spin-coating mixtures of PDMS/TiO2 on a silicon wafer and were constructed sequentially 

with interspersed heat-curing steps. From top to bottom the level of scattering in each layer 

is medium, low, medium, and high. To better mimic the heterogeneous nature of tissue, we 

intentionally did not sonicate the PDMS/TiO2 mixtures [31], [32]. To minimize surface 

reflections the phantom was submerged in water during imaging and an index of refraction n 

= 1.4 was used for all results.
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Biological Sample Preparation—To demonstrate the performance of DRC and iwhTV 

in actual tissue, estimates of the attenuation coefficients of biological tissue were performed 

on healthy bladder and colon tissue harvested from a pig euthanized as part of an unrelated 

study. Pig bladder is known to closely mimic human bladder in terms of composition and 

mechanical properties [33]. For all tissue results we used an index of refraction n = 1.37. 

The pig used was a 10-month-old female Yorkshire, weighed approximately 50 kg, and was 

in good overall body condition. Data were collected within 12 hours of euthanization.

OCT System—All OCT measurements were collected with a commercial SD-OCT system 

(λ0 = 1325 nm, TELESTO, ThorLabs) with a lateral resolution of 15 μm and an axial 

resolution in air of 7.5 μm. A lateral scanning lens (LSM03, ThorLabs) with a Rayleigh 

range of 105.91 μm was installed. To determine the parameters of the sensitivity fall-off 

function for our system, we imaged a neutral density filter at several depths and fit the data 

with a function of the form of equation (4) to obtain the following parameter values: δλ = 

0.11 nm and Δλ = 0.07 nm/pixel.

Image Acquisition and Processing—Raw interferograms (1024 pixels) were collected 

to an imaging depth of 2.57 mm and spanned a lateral imaging range of 2.57 mm (512 

pixels). Each dataset (phantom or ex-vivo tissue) comprised a single B-scan (i.e., averaging 

was not performed during collection) obtained by processing the raw interferograms using a 

custom Matlab script.

For each sample the location of the focal plane was determined visually by 1) moving the 

sample in and out of the focal plane and 2) determining the plane of maximum brightness. 

The focal plane was determined once at the beginning of the imaging session for a given 

position of the reference arm. All results were generated using software written in Matlab. 

The convex optimization problem of equation (11) was solved using the CVX software 

package [29]. This package allows one to set an error tolerance that dictates how close the 

result should be to the optimal solution prior to stopping. For all results presented, the 

default tolerance value of CVX was used.

III. Results and Discussion

A. Numerical Simulations

Shot-noise-limited simulations were performed to assess the accuracy of the attenuation 

coefficient estimates obtained using DR, DRC, and DRC with various denoising algorithms 

as a function of different system and sample parameters. To quantify the accuracy of the 

various methods, we investigated the energy (L2 norm) of the signal and defined an excess 

energy metric e as follows:

(16)

Here, μd is the denoised estimate of the attenuation coefficient and μtrue is a vector encoding 

the true layer positions, layer thicknesses, and attenuation coefficients for the simulation. 

Smith et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For all simulations, the energy error depth, which we define as the depth at which the excess 

energy e exceeded 5%, was measured for each column of a 201 × 100 element simulation 

and the reported value is the average over all the columns (A-scans). The larger the value of 

e, the better the performance of the algorithm.

Fig. 2 shows how the energy error depth for each algorithm changes with system properties 

(SNR, focal plane location, and focal plane offset). Note that the energy error depth 

increases as we go down the vertical axis and that a larger energy error depth indicates 

higher accuracy. The simulation consisted of a 2-mm sample with two layers comprised of 

different attenuation coefficients, as shown in Fig. 2(a). For all simulations, unless otherwise 

specified, the focal plane was located within the sample. Recall that when the focal plane is 

located within the sample, the DR algorithm is predicted to fail.

Fig. 2(b) shows how the energy error depth for each algorithm changes as a function of 

SNR. For these simulations, the focal plane position was kept constant at a depth of 0.5 mm. 

The SNR of the system was varied between 22 dB and 89 dB by altering the variance of p 
(described in section II-E). As expected, DRC (▼) is more accurate than standard DR (▲). 

The performance of DR varies little as a function of SNR, and performs worse than DRC for 

all values of SNR. The effect of the noise parameter from the restoration filter of equation 

(8) is also evident in Fig. 2(b); all simulations were run using the same restoration filter, 

(i.e., with the same noise parameter) in spite of changing noise levels. This restoration filter 

is only optimal for a single value of SNR (indicated by the arrow); for SNRs below/above 

the optimal point, the noise power is under/over-estimated, respectively. One might expect 

the results to improve with increasing SNR, as is seen when the noise power is 

underestimated. However, when the noise power is overestimated the restoration filter is too 

aggressive and filters out too much of the signal, leading to a degradation in performance. 

While we could have altered the noise parameter in the restoration filter to be optimal for 

each SNR tested, we found it informative to keep this parameter constant to explore its 

effect on the estimated attenuation coefficients. Interestingly, Gaussian smoothing performs 

worse than DRC without denoising in situations of high SNR (above 50 dB); this is because 

Gaussian smoothing blurs estimates at the interface of the two layers even in the absence of 

noise.

Fig. 2(c) shows the effect of focal plane position on the accuracy of each method. The top 

surface of the sample is located at 0 mm. The position of the focal plane is negative when 

located above the sample and positive when located within the sample. As expected, DRC 

(▼) is more accurate than standard DR (▲). Fig. 2(c) also shows that denoising improves the 

performance of DRC and reduces the dependence of accuracy on focal plane position. 

Notably, DRC with iwhTV denoising (●) produces the most accurate estimates.

Figs. 2(d)–(f) show how the accuracy changes for each method when the actual focal plane 

position is incorrectly specified to the algorithm for various Rayleigh ranges. The Rayleigh 

range affects the broadness of the confocal function and therefore has significant impact on 

the performance of both DRC and iwhTV. The Rayleigh ranges for Figs 2(d)–(f) are 50 μm, 

106 μm, and 238 μm, respectively. For these simulations, the focal plane position was kept 

constant at a depth of 0.5 mm and the focal plane input to the algorithm varied from 0.4 to 
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0.6 mm. Here, the x-axis indicates the deviation (offset) in the actual and specified focal 

planes. The standard DR algorithm has no capacity to take into account the position of the 

focal plane; therefore, the obtained result is independent of the deviation, leading to a flat 

line for all values. In contrast, DRC preforms well even when the focal plane is incorrectly 

specified. The amount of offset that can be tolerated is dependent on the Rayleigh range of 

the system. A larger Rayleigh range allows for higher error in specifying the focal plane 

without sacrificing accuracy of the attenuation coefficient measurements (as demonstrated in 

Fig. 2(f)), while a small Rayleigh range (Fig. 2(d)) decreases the accuracy of DRC and 

results in similar performance by all denoising techniques. In particular, for the Rayleigh 

ranges tested, the amount of tolerable offset is approximately equal to the Rayleigh range of 

the system. For example, when the Rayleigh range is 106 μm the amount of tolerable offset 

is 0.1 mm (100 μm). Note that denoising further increases the accuracy of the technique, 

with iwhTV denoising performing best.

The effect of sample properties (i.e., contrast in the attenuation coefficient and relative 

thicknesses of the layers) on the accuracy of various estimation algorithms was investigated. 

Fig. 3(a) shows the effect of contrast between the layers ranging from 0.5 mm−1 to 3 mm−1. 

These values reflect the range of attenuation coefficients that are reasonable to detect using 

OCT [34] and that can be seen in actual tissue; for example, the three layers of the bladder 

visible with OCT have attenuation coefficients of approximately 0.49 mm−1, 2 mm−1, and 

1.38 mm−1 [35]. For all simulations, the attenuation coefficient of the top layer was fixed at 

1 mm−1, the focal plane was located at a depth of 0.5 mm, and the layer thicknesses were all 

1 mm. The ★ in the graphs identifies the position of the boundary between layers. Fig. 3(a) 

shows the energy error depth as a function of the attenuation coefficient of the second layer. 

Notably, the DR result improves with increasing contrast between the layers, although the 

excess energy depth is still shorter than the thickness of the first layer. DRC with iwhTV 

denoising produces the most accurate estimates (i.e., the highest energy error depth) in all 

cases. It is important to note that presented results are not only a function of the contrast 

between layers, but will also vary with the absolute attenuation coefficients of each layer.

Fig. 3(b) shows the energy error depth as a function of top layer thickness. For all 

simulations the total thickness (2 mm), attenuation coefficients (1 mm−1 for the top layer 

and 2 mm−1 for the bottom layer), SNR (40 dB) and focal plane location (0.5 mm) were kept 

constant. The thickness of the top layer was varied from 0.3 mm to 1.7 mm. For all 

algorithms, a thin top layer (left inset) results in worse energy metrics compared to layers of 

even thickness. All the algorithms failed to accurately measure the attenuation coefficient of 

a thin layer at the bottom of the sample (right inset), as evidenced by the ★ falling below the 

energy error depth. This is most likely due to the very low signal intensity by the time that 

depth is reached. Once again, DRC with iwhTV denoising outperforms all the other 

algorithms, yielding the highest energy error depth at approximately 1.3 mm.

Overall, Figs. 2 and 3 show that DRC with iwhTV denoising produces the most accurate 

estimates of attenuation coefficients when compared to other typical denoising algorithms, 

independent of important system and sample parameters.
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B. Phantom Experiments

To validate the results obtained using DRC experimentally, we estimated the attenuation 

coefficient of several Intralipid phantoms. Table I shows the estimated attenuation 

coefficients for each phantom. The values reported for DRC are the average and standard 

deviation over all A-scans. The focal plane was positioned within the sample in all cases. 

Because the phantoms were uniform and devoid of structure, none of the denoising 

techniques yielded significant improvement in the results (data not shown).

Table I shows that DRC achieves good agreement with values previously reported in 

literature [30] for all concentrations of Intralipid. The agreement is worst for 1.25% and 

2.5%. We attribute this reduction in performance to the fact that these concentrations do not 

sufficiently attenuate the light at the bottom of the imaging range. As expected, violation of 

this fundamental assumption of the DR method (and DRC) will produce less reliable results. 

Conversely, DRC produces highly reliable results when the attenuation of light is sufficient.

We also estimated the attenuation coefficient from a multilayer optical phantom. Fig. 4(a) 

shows the original OCT B-scan, while the boxed regions of interest appear magnified in the 

right half of the figure. Fig. 4(b) shows the results of DRC without any additional denoising, 

while Figs. 4(c)–(e) show the results after applying various denoising techniques. Note that 

the data were not averaged in any way nor was the image segmented prior to applying DRC. 

As expected, DRC accurately determines that the first and third layers have the same 

attenuation coefficient (they were made from the same mixture of PDMS/TiO2), the second 

layer has the lowest attenuation coefficient, and the fourth layer has the highest attenuation 

coefficient. The fact that these structural properties of the sample were not obvious in the 

original B-scan – where the intensity decreases continually with depth – validates the 

relevance of the DRC method.

Further improvements to the estimate of the attenuation coefficient over DRC can be 

attained by denoising. The choice of algorithm may affect data quality in addition to noise 

reduction. We compared Gaussian smoothing, TV denoising, and iwhTV. For the image 

portion selected in column A of Fig. 4, the SNR is high because this region of the sample is 

nearest the light source. In this region, the estimate provided by DRC is accurate and should 

not be altered much. The magnified images in column A of Fig. 4 show that Gaussian 

smoothing and TV denoising blur the structure of the data. In particular, the scatterers 

indicated by the arrow are blurred significantly by Gaussian smoothing and TV denoising. 

However, the structure is best retained by iwhTV denoising, and the scatterers remain in-

tact. Column B of Fig. 4 shows a region of relatively low SNR. In this region, there appears 

a scattering particle of significant size and a resulting shadow (both indicated by arrows). 

The shadow remains prominent in the TV denoised image, indicating insufficient 

smoothing. The shadow is addressed comparably by Gaussian smoothing or iwhTV 

denoising; however, the structure of the scattering particle is blurred by the Gaussian 

smoothing algorithm. In contrast, iwhTV is able to retain the structure of the scattering 

particle while mitigating the shadow beneath it.

The regularization parameter, η, is an important adjustable parameter in the iwhTV 

algorithm. Increasing η encourages stronger piecewise constant behavior, effectively 
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increasing the amount of smoothing to apply to the reconstruction. Fig. 5 shows the effect of 

changing the regularization parameter on the estimated attenuation coefficient. Fig. 5(a) 

shows the reconstruction of the attenuation coefficient using DRC without any additional 

denoising, and 5(b)–(d) show the reconstructions with iwhTV denoising and regularization 

parameters of η = 3, η = 6, and η = 12, respectively. Larger η leads to more lateral 

smoothing of the reconstruction, as evidenced by the magnified sections. The choice of 

which value of η to use should be governed by factors such as noise levels, confidence in the 

obtained data, and a priori knowledge of the amount of variation expected in the attenuation 

coefficient. For all instances of iwhTV denoising we set ε = 0.001. Varying ε has minimal 

effect on the results (data not shown).

C. Ex-vivo Tissue Experiments

To demonstrate the performance of DRC and iwhTV denoising on data obtained from 

biological samples, we estimated the attenuation coefficient of porcine bladder and colon 

samples. The focal plane was positioned within the sample in both cases, necessitating the 

use of DRC over DR to get accurate results. Fig. 6 shows comparison images between DRC 

(Fig. 6(b)) and DRC with various denoising conditions (Fig. 6(c)–(e)), as well as the original 

OCT B-scan (Fig. 6(a)). Differences between the B-scan and the attenuation coefficient 

reconstruction confirm that the attenuation coefficient measurement reveals information not 

evident in the original B-scan. For example, the region of relatively high attenuation, 

indicated with an arrow in Fig. 6(b) and corresponding to highly scattering muscle fibers 

would not have easily been identified by observing the B-scan alone.

Similar to observations in the phantom, pure DRC captures the overall trend of the 

attenuation coefficient but suffers from high speckle noise. Gaussian smoothing and TV 

denoising blur the image leading to a loss of resolution. Using iwhTV denoising results in 

reduced speckle with less degradation of resolution. Columns A and B in the right half of the 

figure show magnified regions of structural boundaries that are blurred by Gaussian 

smoothing and TV denoising. In contrast, iwhTV maintains these boundaries while still 

reducing speckle.

As was discussed in regards to the phantom, the user has control over the regularization 

parameter, η. Fig. 7 shows the effects of the regularization parameter when applied to a 

sample of ex-vivo porcine colon tissue. When η = 3, the image exhibits a significant amount 

of speckle, while increasing η leads to more smoothing, as expected.

IV. Conclusion

In this paper we presented a modification to the model presented by Vermeer et al. that takes 

into account the confocal function and a more comprehensive estimate of sensitivity fall-off. 

We used this model to derive an invertible mapping between the OCT signal and the 

attenuation coefficient. The proposed DRC technique is the first fully automated algorithm 

to estimate the attenuation coefficient that simultaneously takes into account the confocal 

function and fall-off of the OCT system. Doing so makes the algorithm amenable to a wider 

variety of applications; most notably, it is able to accurately estimate the attenuation 
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coefficient even when the focal plane is located within the sample, which is important when 

imaging in clinical settings.

Locating the focal plane from that data alone may be difficult; however, the focal position is 

often a fixed or measurable parameter in many clinical systems, suggesting that the focal 

plane position can be measured accurately prior to data collection and will remain constant 

throughout collection. To further improve upon the DRC results, we also introduced a novel 

denoising method based on weighted TV regularization, iwhTV denoising, that exploits the 

layered nature of certain biological samples.

We compared iwhTV denoising to Gaussian smoothing and TV denoising. Variations of TV 

denoising have been utilized previously to denoise intensity images exhibiting speckle noise 

[36], [37], [38]. Since we are denoising attenuation coefficient images as opposed to 

intensity images, these modifications are not directly applicable. Instead, the depth-

dependent weights we apply based on the intensity of the standard image allow iwhTV to 

outperform TV.

Additionally, iwhTV denoises by optimizing a convex optimization problem, which presents 

at least two advantages over other types of optimization problems: 1) the availability of 

known algorithms and software that are guaranteed to converge to an optimal solution; and 

2) the ability to attain an optimal solution while accounting for the constraint that the 

attenuation coefficient is non-negative, which is more difficult for other optimization 

formulations. The disadvantage of iwhTV is a higher computational cost. However, this 

disadvantage is overshadowed by the improvement in accuracy obtained when using the 

algorithm. Additionally, iwhTV can be dramatically sped-up by using an alternative 

optimization algorithm (e.g., the Alternating Direction Method of Multipliers [39]).

Currently, iwhTV takes advantage of the layered structure of many tissue types but is best 

suited for horizontal layers. Future modifications to the technique could incorporate the true 

shape of the layers, consider vertical continuity, and exploit other features of biological 

samples. Finally, denoising the original OCT data (prior to estimating the attenuation 

coefficient) could be explored as a means to further improve the accuracy of the results.

In conclusion, DRC with denoising offers a robust way to automatically extract a physical 

parameter from OCT data that will aid in the diagnosis and surveillance of many diseases. 

The elimination of user-defined ROIs and the correction for the confocal function not only 

make the algorithm applicable in a wider variety of situations but also increases the accuracy 

and reliability of the results.
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Fig. 1. 
Overview of algorithm to create a denoised reconstruction of the attenuation coefficient 

from an OCT B-scan.
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Fig. 2. 
(a) Simulated bi-layer sample. The effect of (b) SNR, (c) the focal plane position, and (d)–

(f) error in the specified focal plane position on accuracy of the attenuation coefficient 

measurement. The arrow in (b) represents the value of SNR that corresponds to the noise 

parameter of the restoration filter that was used. In (b), (d), (e), and (f) the focal plane was 

located at a depth of 0.5 mm. In (b), (c), and (e) the Rayleigh range was 106 μm. In (d) and 

(f) the Rayleigh ranges were 50 μm and 238 μm, respectively. The superior performance of 

DRC with iwhTV denoising (●) is evident in all cases excluding (d), where all denoising 

algorithms perform similarly.
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Fig. 3. 
Bi-layer simulations used to investigate the effect of (a) attenuation coefficient contrast and 

(b) layer thickness on the accuracy of various algorithms. The ★ marks the position of the 

boundary between layers as set by the simulation. In all scenarios, DRC with iwhTV (●) 

outperforms all other algorithms.
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Fig. 4. 
(a) OCT B-scan of a 4-layer PDMS phantom; boxed portions mark positions of the 

magnified views shown in the table on the right. Reconstructions were created using (b) 

DRC, (c) DRC with 2D Gaussian smoothing, (d) DRC with TV denoising, and (e) DRC 

with iwhTV denoising. iwhTV denoising reduces noise while retaining the structure of 

scattering particles present in the sample (highlighted in columns A and B on the right). The 

white square in (a) represents 250 × 250 μm2.
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Fig. 5. 
(a) Reconstruction of the attenuation coefficient of a 4-layer PDMS phantom using DRC 

without any additional denoising. (b), (c), and (d) show reconstructions using DRC with 

iwhTV denoising and various values of the regularization parameter, η. Higher η results in 

more lateral blurring. The white square in (a) represents 250 × 250 μm2.
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Fig. 6. 
(a) Original OCT B-scan of ex-vivo porcine bladder tissue used for creating reconstructions 

of the attenuation coefficient; boxed portions mark positions of magnified views shown in 

the table on the right. Reconstructions were created using (b) DRC, (c) DRC with 2D 

Gaussian Smoothing, (d) DRC with TV denoising, and (e) DRC with iwhTV denoising. The 

arrow in (b) indicates a region of high attenuation coefficient not obvious in the original B-

scan. The arrows in columns A and B indicate boundaries that are retained with iwhTV but 

blurred by other techniques. The white square in (a) represents 250 × 250 μm2.

Smith et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
(a) OCT B-scan of ex-vivo porcine colon tissue. (b) Attenuation coefficient map created 

using DRC. (c), (d), and (e) show reconstructions using DRC with iwhTV denoising with 

various values of the regularization parameter, η. The white square in (a) represents 250 × 

250 μm2.
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TABLE I

DRC vs reference

Intralipid Conc. (v/v) DRC μ (mm−1) Reference (mm −1) Abs. difference (mm−1)

1.25% 1.2 ± 0.4 0.5 0.7

2.5% 1.7 ± 0.4 1.0 0.7

5% 2.4 ± 0.4 2.3 0.1

10% 3.8 ± 0.5 3.8 0

15% 4.4 ± 0.5 4.4 0

20% 4.6 ± 0.6 4.7 0.1

Calculated attenuation coefficients for various concentrations of Intralipid in water using DRC. Reference values from literature [30] are provided 
for comparison.
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