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Comparison of experimental data with modeling predictions is essential for making

quantitative measurements of species properties, such as diffusion coefficients and

species concentrations using a T-sensor. To make valid comparisons between

experimental data and model predictions, it is necessary to account for uncertainty

in model predictions due to uncertain values of model parameters. We present

an analysis of uncertainty induced in model predictions of a T-sensor based

competitive diffusion immunoassay due to uncertainty in diffusion constants,

binding reaction rate constants, and inlet flow speed. We use a non-intrusive

stochastic uncertainty quantification method employing polynomial chaos

expansions to represent the dependence of uncertain species concentrations on the

uncertainty in model parameters. Our simulations show that the uncertainties in

model parameters lead to significant spatially varying uncertainty in predicted con-

centration. In particular, the diffusivity of fluorescently labeled probe antigen domi-

nates the overall uncertainty. The predicted uncertainty in fluorescence intensity is

minimum near the centerline of T-sensor and relatively high in the regions with

gradients in fluorescence intensity. We show that using centerline fluorescence in-

tensity instead of first derivative of fluorescence intensity as the system response

for measuring sample antigen concentration in T-sensor based competitive diffu-

sion immunoassay leads to lower uncertainty and higher detection sensitivity.
VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940040]

I. INTRODUCTION

The field of microfluidics has ushered the development of lab-on-a-chip systems wherein

laboratory operations, such as mixing, reaction, and detection of chemical species can be inte-

grated on a single chip.1–3 The T-sensor is one of the simplest microfluidic devices, which

leverages low Reynolds number laminar flow and controlled diffusive mixing of reactants for

chemical sensing.4–8 In a T-sensor, shown schematically in Fig. 1(a), two fluid streams enter

from separate inlets and flow parallel to each other in the main channel. The chemical species

dissolved in these two co-flowing fluid streams diffuse into the adjacent streams creating a

narrow inter-diffusion zone where they react. The reactions in this inter-diffusion zone can be

quantified using several signal transduction mechanisms, including fluorescence4 and electro-

chemical detection.9 T-sensors have found several applications in chemistry and biochemistry,

such as determination of species concentrations,5 diffusion coefficients,6,10 monitoring reaction

kinetics,11 and performing immunoassays.7,12

Early work on T-sensors was limited to qualitative estimation of unknown analyte concen-

trations through basic comparisons. Subsequently, Kamholz et al.4 extended the applicability of

T-sensor for making quantitative measurements through comparison of experimental data

with predictions from a mathematical model for convection, diffusion, and reactions of chemi-

cal species. Kamholz et al.4 performed fluorescence visualization of binding reaction between a
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fluorophore (Albumin Blue 580) and human serum albumin in T-sensor and compared the

experimental data with the mathematical model to determine the diffusivity of fluorophore. In a

following study, Kamholz et al.6 fitted experimental data of species diffusion in a T-sensor

with an analytical model to determine diffusion coefficients of fluorescently labeled biotin, insu-

lin, ovalbumin, and streptavidin. These studies underline the importance of modeling and simu-

lation of physico-chemical processes in T-sensor for extending its usefulness for quantitative

analysis. As is true for other microfluidic systems, modeling and simulations can also help in

optimizing the design of T-sensor to obtain desired results, such as the width of inter-diffusion

zone and signal intensity.

The existing modeling and simulation analyses of T-sensor are based on solving determin-

istic convection-diffusion-reaction equations wherein the model parameters, such as species dif-

fusivities, reaction constants, and flow rates, are assumed to be deterministic constants.4,13 In

practice, these model parameters are not known exactly due to experimental measurement

uncertainty or inherent variabilities. Therefore, deterministic models are unable to quantify

uncertainty in the model predictions due to uncertainty in model parameters. Since experimental

data fitted with model predictions is used for quantitative analysis using T-sensor, neglecting

uncertainty in simulation predictions can lead to errors in estimation of physical quantities such

as species concentrations, diffusivities, and reaction rates. Therefore, to make proper compari-

son between experimental data and modeling predictions, it is necessary to account for uncer-

tainty in modeling and simulation results due to uncertainty in model parameters. Moreover,

uncertainty quantification in simulations of T-sensor can provide valuable information regarding

spatial distribution of uncertainty in measured signals. Such information can be used for choos-

ing the detection location and developing quantification methods to minimize uncertainty in

experimental measurements.

In the current work, we present uncertainty quantification in model predictions of transport

and reactions of chemical species in a T-sensor. As a practical example, we consider the case

of a T-sensor based competitive diffusion immunoassay described by Hatch et al.7 The working

FIG. 1. Schematic illustrating the operation of a T-sensor based competitive diffusion immunoassay. (a) Fluorescently

labeled antigen and unlabeled sample antigen molecules are mixed in the upper stream, whereas the lower stream contains

antibody molecules specific to the antigen. (b) The antigen and the antibody molecules diffuse into the adjacent flow

streams and bind with each other in the narrow inter-diffusion zone. (c) The binding of labeled-antigen and antibody slows

down the diffusive transport of labeled-antigen into the lower stream, resulting in a peak in the fluorescence intensity meas-

ured along the lateral direction (y-direction). Since labeled-antigen and sample antigen compete for the same binding sites

on the antibody, the peak in fluorescence signal decreases with increase in sample antigen concentration.
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principle of a T-sensor based competitive diffusion immunoassay, illustrated in Fig. 1, is based

on the changes in diffusive transport of a fluorescently labeled probe antigen upon binding with

antibody molecules while the probe antigen competes with the unlabeled sample antigen (SA)

for common binding sites. We elucidate the effect of uncertainty in model parameters, such as

inlet flow speed, diffusivities, and reaction rate constants, on spatial variation of uncertainty in

the species concentration and fluorescence intensity. Using the spatial variation of uncertainty

in model predictions, we provide guidelines for performing quantitative measurements in

experiments so as to improve the detection sensitivity and resolution, while reducing

uncertainty.

The uncertainty in model parameters which is associated with measurement errors or inher-

ent variability in experiments can be accounted for using stochastic uncertainty quantification

techniques.14 In particular, we employ a non-intrusive stochastic uncertainty propagation

approach based on Polynomial Chaos (PC) expansions14–17 as described by Reagan et al.17

Unlike deterministic simulations, in this method the model parameters are treated as uncertain.

For each uncertain parameter a new stochastic dimension is used to describe its probability den-

sity function. PC expansions are used to describe the dependence of model predictions on these

stochastic dimensions. The coefficients or the spectral mode strengths of the PC expansions are

then evaluated using numerical quadrature through multiple solutions of the deterministic

model. Such an approach readily provides the uncertainty propagation information in terms of

PC expansions of model predictions. Knowing the PC expansions of model predictions, the

spatial variation of uncertainty and the individual contribution of each uncertain parameter to

the overall uncertainty can be computed. We note that uncertainty propagation analysis

can also be performed through Monte Carlo (MC) simulations, albeit with unacceptably large

number of simulations.18 Moreover, unlike PC expansion based methods, MC simulations do

not provide the coupled contribution of uncertainty in model parameters to the overall uncer-

tainty in model predictions.19

While PC expansions have been used extensively for uncertainty quantification in several

fields, such as structural mechanics,20 gas dynamics,21 aerodynamics,22 and combustion,17 its

potential for designing and improving microfluidic systems has not been fully utilized. Xiu and

Karniadakis18 used the example of pressure-driven microchannel flow with non-uniform random

boundary conditions to illustrate the application of generalized PC expansion for uncertainty

quantification. Debusschere et al.19 analyzed uncertainty in protein-labeling reactions in electro-

kinetic flow in microchannels due to uncertainty in model parameters using PC expansions.

Debusschere et al. simulated a nonlinear system in which electrokinetic transport of bands of a

protein and a dye at different speeds result in band crossing and reaction. Their results provided

interesting insights into the spatial variation of predicted uncertainty in species concentrations.

For a similar electrokinetic system, preceding the work of Debusschere et al.,19 Gleeson23 quan-

tified uncertainty in electroosmotic flows and associated transport of uncharged-solute due to

random zeta potential. Due to the linearity of flow at low Reynolds number, Gleeson23 used

superposition of fluid flows due to different random modes of zeta potential for uncertainty

quantification.

The overall focus of existing work on uncertainty quantification of microfluidic systems

has been on propagation of uncertainty from model parameters to model predictions. However,

these studies do not focus on applying uncertainty quantification for designing or improving a

microfluidic system. In contrast, the focus of current work is to elucidate the spatial variation

of predicted uncertainty in a microfluidic T-sensor and use uncertainty quantification to provide

guidelines for performing quantitative measurements in experiments to minimize uncertainty.

We begin by presenting the deterministic equations for modeling transport and reactions of

chemical species in a microfluidic T-sensor based diffusion immunoassay. Next, we provide a

description of the stochastic uncertainty quantification methodology using PC expansions. We

then present results for uncertainty quantification of convection and diffusion of chemical

species in T-sensor with and without accounting for chemical reactions. Based on the results,

we explain the spatial variation and composition of uncertainty in predicted values of species

concentrations. Thereafter, we present a comparative analysis of uncertainty associated with
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various methodologies for quantifying analyte concentrations in a T-sensor. We also provide

practical guidelines for quantifying analyte concentration in T-sensor to minimize uncertainty

and hence maximize detection sensitivity and resolution.

II. PHYSICAL MODEL FORMULATION

A. T-sensor based competitive diffusion immunoassay

In the current work, we present stochastic uncertainty quantification in simulations of a

microfluidic T-sensor based competitive diffusion immunoassay shown schematically in Fig. 1.

As shown in Fig. 1(a) fluorescently labeled-antigen and unlabeled sample antigen molecules are

mixed in the upper flow stream, while the antibody molecules specific to the antigen are mixed

in the lower flow stream. The low Reynolds number ðRe� 1Þ laminar flow conditions in the

T-sensor result in controlled diffusive mixing of the antigen and antibody molecules into the

adjacent streams forming a narrow inter-diffusion zone. In this inter-diffusion zone, the labeled-

antigen (LA) and unlabeled sample antigen molecules compete to bind with the antibody mole-

cules as shown in Fig. 1(b). Upon binding, the diffusivity of the labeled-antigen bound with

antibody decreases drastically owing to the large size of antibody molecule. This decreases the

downward diffusive transport of the complex of labeled-antigen and antibody, resulting in a

peak in the fluorescence signal as shown in Fig. 1(c). Since labeled-antigen and sample antigen

compete for the same binding sites on the antibody, the peak in fluorescence signal decreases

with an increase in sample antigen concentration.

B. Mathematical modeling

Simulations of T-sensor based immunoassay require mathematical models for fluid

flow, species transport due to convection and diffusion, and binding of antigen and antibody

molecules. Fluid flow in a microfluidic T-sensor is characterized by low Reynolds number

ðRe ¼ quh=l� 1Þ where inertial effects can be neglected. Here, h is the depth of the channel

and u, q, and l, respectively, denote the flow speed, fluid density, and fluid viscosity. Further

simplification comes from the shallow geometry of T-sensor as the depth h is usually signifi-

cantly smaller than the width w of the channel, h=w� 1. For a shallow rectangular cross-

section channel with h=w� 1 the depth-averaged velocity is uniform across the width of the

channel, except for narrow regions of OðhÞ thickness near the side walls where velocity gra-

dients exist to satisfy the no-slip conditions.24 Since the inter-diffusion zone at the centerline of

T-sensor is relatively small compared with the width of channel, it is reasonable to assume in

our analysis that the average flow velocity is uniform.

The transport of antigen and antibody molecules in a T-sensor can be described by three-

dimensional mass conservation equations taking into account convective-diffusive transport and

production (or elimination) terms due to binding reactions. The three-dimensional species trans-

port equations can be simplified noting that the time scale associated with diffusion of species

into the depth of T-sensor ðh2=DÞ is significantly smaller than the convection time scale ðL=uÞ.
Therefore, the concentration of i-th species ci in the T-sensor can be conveniently described

using two-dimensional species transport equations given by

u
@ci

@x
¼ Di

@2ci

@x2
þ @

2ci

@y2

 !
þ Ri: (1)

Here u is the depth-averaged flow speed, Di the diffusivity of i-th species, and Ri the production

or elimination term to account for binding reactions. We assume that flow speed u and diffusiv-

ities Di are spatially constant. In a T-sensor, the lateral gradients in species concentration occur

over narrow inter-diffusion zone with thickness d �
ffiffiffiffiffiffiffiffiffiffiffi
DL=u

p
, whereas the axial gradients in

species concentration occur over longer distance of OðLÞ. Therefore, the ratio of axial diffusion

ðDi@
2
x ciÞ to lateral diffusion ðDi@

2
y ciÞ scales as d2=L2 ¼ D=ðuLÞ ¼ Pe�1, where Pe is the Peclet

number. For a typical T-sensor with u � 500 lm s�1, L � 1 mm, and D � 5� 10�10 m2 s�1,
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the Peclet number Pe � 1000. Since the axial diffusion is three orders of magnitude lower than

lateral diffusion, Equation (1) can be simplified to

u
@ci

@x
¼ Di

@2ci

@y2
þ Ri: (2)

C. Binding kinetics

The production or elimination rate Ri of various species in Equation (1) depends on the

binding kinetics. Following Hatch et al.,7 we assume that each antibody molecule contains two

identical binding sites for the antigens. Moreover, all binding sites are identical and have identi-

cal kinetics for the LA and SA, given by

LAþ Ab�LA–Ab; (3)

SAþ Ab� SA–Ab: (4)

The rates of elimination of labeled-antigen and sample antigen are given by

RLA ¼ �k1 cAbcLA �
cLA�Ab

Keq

� �
; (5)

RSA ¼ �k1 cAbcSA �
cSA�Ab

Keq

� �
; (6)

where k1 is the rate constant for forward reaction and Keq is the equilibrium constant for the

binding reactions (3) and (4). The subscripts LA, SA, Ab, LA-Ab, and SA–Ab, respectively,

denote labeled-antigen, sample antigen, antibody binding sites, complex of labeled-antigen and

antibody, and complex of sample antigen and antibody. We note that cAb denotes the concentra-

tion of antibody binding sites. Since every antibody molecule has two binding sites, cAb is twice

the concentration of antibody molecules. From Equations (3) and (4) we note that the rate of

elimination of binding sites on antibody molecules is ðRLA þ RSAÞ, and the production rates of

the two complexes are RLA–Ab ¼ �RLA and RSA–Ab ¼ �RSA. To quantify the uncertainty in our

simulations, we use the solutions to deterministic governing equations (2) and the above model

for binding kinetics at different values of uncertain model parameters to construct the PC

expansions for species concentrations. Next, we present the methodology for construction of PC

expansions from deterministic simulations.

III. STOCHASTIC MODEL FORMULATION

We use a non-intrusive stochastic uncertainty quantification method based on PC expan-

sions for propagation of uncertainty from model parameters to model predictions. This method

has been presented in detail by Reagan et al.,17 and we briefly summarize it here. In this

technique, we introduce an additional stochastic dimension n corresponding to each uncertain

parameter. For normally distributed model parameters, n � Nð0; 1Þ is chosen as a random

variable with standard normal probability density function. Hence a normally distributed model

parameter, b, can be described in terms of n as

b ¼ lb þ rbn; (7)

where lb is the mean value of parameter b and rb is the standard deviation. The species con-

centrations now have an additional dependence on n besides their spatial variation. The species

concentrations ci are described using spectral PC expansions as

ciðx; y; nÞ ¼
X1
k¼0

ci;kðx; yÞwkðnÞ; (8)
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where wk are the basis functions of PC expansion and ci;k are the corresponding spectral mode

strengths for i-th species. If the model has only one uncertain parameter, the basis functions wk

are one-dimensional Hermite polynomials

w0 ¼ 1; w1 ¼ n; w2 ¼ n2 � 1; w3 ¼ n3 � 3n;…: (9)

In practice, the infinite series in Equation (8) can be truncated to a specific order p, which is

the highest order polynomial used in the PC expansion. Therefore, the total number of terms in

PC expansion for the case of one uncertain parameter is pþ 1.

In general, for d number of uncertain model parameters, a d-dimensional stochastic space

is required for which the basis functions WkðhÞ are d-dimensional Hermite polynomials in

h ¼ fn1; n2;…; ndg,

ciðx; y; n1; n2;…; ndÞ ¼
XP

k¼0

ci;kðx; yÞWkðn1; n2;…; ndÞ: (10)

Here we have assumed that all stochastic dimensions are uncorrelated. The total number of

terms in PC expansion in Equation (10) is ðPþ 1Þ, which depends on the dimensions d and

highest order of polynomial p as

Pþ 1 ¼ d þ pð Þ!
d!p!

: (11)

The d-dimensional Hermite polynomials WkðhÞ are the product of one dimensional Hermite pol-

ynomials involving multi-index mi
k

WkðhÞ ¼
Yn

i¼1

wmi
k
ðniÞ: (12)

For example, for two uncertain parameters (d¼ 2), the first few two-dimensional Hermite poly-

nomials are given by

W0ðhÞ ¼ w0ðn1Þw0ðn2Þ ¼ 1;

W1ðhÞ ¼ w1ðn1Þw0ðn2Þ ¼ n1;

W2ðhÞ ¼ w0ðn1Þw1ðn2Þ ¼ n2;

W3ðhÞ ¼ w2ðn1Þw0ðn2Þ ¼ n2
1 � 1;

W4ðhÞ ¼ w1ðn1Þw1ðn2Þ ¼ n1n2;

W5ðhÞ ¼ w0ðn1Þw2ðn2Þ ¼ n2
2 � 1:

(13)

To describe the effect of uncertain model parameters on the species concentrations ci, we

compute the coefficients ci;k of the corresponding PC expansion using a non-intrusive

approach.17 To this end, we use the orthogonality of Hermite polynomials with respect to the

standard normal probability density function f ðhÞ and project the PC expansions onto the PC

basis to get

ci;k x; yð Þ ¼

ð1
�1

ci x; y; hð ÞWk hð Þf hð Þ dhð1
�1

W2
k hð Þf hð Þ dh

¼ hciWki
hW2

ki
: (14)

The integrals in the numerator and denominator can be evaluated by numerical Gauss-Hermite

quadrature, which approximates the integrals using weighted average of functional values at
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specific points within the domain of integration. For example, for a single uncertain parameter

(d¼ 1), the coefficients (or spectral mode strengths) ci;kðx; yÞ of the PC expansion given by

Equation (8) can be calculated as

ci;k x; yð Þ ¼

PN
j¼1

ci x; y; n jð Þ
� �

wk n jð Þ
� �

w jð Þ

PN
j¼1

w2
k n jð Þ
� �

w jð Þ
: (15)

Here, wðjÞ is the weight corresponding to the quadrature point hðjÞ and N is the total number of

quadrature points required to accurately approximate the integral; integrals consisting of a poly-

nomial integrand of order up to 2N � 1 can be exactly evaluated using N quadrature points.

Therefore, the calculation of coefficients of PC expansion requires solutions for concentration

field using the deterministic model for various realizations of the random model parameters cor-

responding to quadrature points nðjÞ; j ¼ 1;…;N. This approach for uncertainty quantification is

non-intrusive in nature as the numerical solver for deterministic model need not be modified to

account for uncertain model parameters.

In general, for d number of uncertain parameters, the quadrature points at which determinis-

tic calculations are performed are given by the d-dimensional tensor product of one-dimensional

quadrature points. Therefore, as the number of uncertain parameters increases, the number

of solutions of the deterministic model required to perform numerical integration increases

exponentially as Nd. To overcome this limitation, in the current work, we use Gauss-Hermite

quadrature over Smolyak grid,25,26 which requires significantly less number of quadrature points

to perform numerical integration with reasonable accuracy. For example, Gauss-Hermite quadra-

ture with tensor product of quadrature points for N¼ 5 and d¼ 6 requires Nd ¼ 15625 solutions

of the deterministic model, whereas same accuracy of numerical integration can be obtained

using Gauss-Hermite quadrature over Smolyak grid with only 85 solutions of the deterministic

model. We note that, in practice, PC expansions are truncated as large number of computations

is required to accurately calculate higher order terms using numerical quadrature.

Having obtained the spectral mode strengths or the coefficients of PC expansions, we can

compute various statistical moments, such as the mean and standard deviation in species

concentrations. As noted by Debusschere et al.,19 the zeroth-order coefficient ci;0 represents the

mean concentration field for i-th species because the expectations hWki ¼ 0; k > 0, whereas

the higher order coefficients account for the uncertainty around this mean value. The standard

deviation in concentration of i-th species is given by

r2
i ¼ hðci � hciiÞ2i ¼

XP

k¼1

c2
i;khW2

ki: (16)

The PC expansions also provide the contribution of uncertainty of individual parameters to

the overall uncertainty. The contribution of each uncertain parameter to the overall uncertainty

can be obtained by grouping the terms in Equation (16) which correspond to same stochastic

dimension. For example, consider a second order PC expansion of concentration field with basis

functions given by Equation (13) for the case of two uncertain parameters (d¼ 2). The individ-

ual contribution of first uncertain parameter (corresponding to n1) to the overall uncertainty is

given by the sum of terms corresponding to W1 and W3 in Equation (16), whereas the term

corresponding to W4 in Equation (16) accounts for the coupled contribution of both uncertain

parameters to the overall uncertainty. This feature of uncertainty quantification based on PC

expansions can be used to identify the parameters that are major contributors to the overall

uncertainty in model results.

IV. RESULTS AND DISCUSSION

We solved the deterministic convection-diffusion-reaction equations (2) for species concen-

trations numerically using a finite difference method. The governing Equations (2) were
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semi-discretized by approximating the derivatives along the lateral direction (y-direction) using

the second-order central differencing scheme. The resulting ordinary differential equations in

x-domain were solved using the fourth-order Runge-Kutta scheme. The numerical solutions to

the deterministic model were used for calculating spectral mode strengths ci;k using stochastic

collocation method discussed in Section III.

For all our simulations we considered a T-sensor based diffusion immunoassay system

described by Hatch et al.7 The dimensions of T-sensor and the mean values of model parame-

ters were same as those used by Hatch et al. for experimental validation of their theoretical

model. The width of the T-sensor was 1200 lm and the length was 6400 lm. The sample anti-

gen was phenytoin (DSA ¼ 5:8� 10�10 m2 s�1), the labeled-antigen was fluorescein-phenytoin

conjugate (DLA ¼ 3:2� 10�10 m2 s�1), and the antibody was phenytoin-specific polyclonal anti-

body (DAb ¼ 4:3� 10�11 m2 s�1). Since the antibody molecule is significantly larger than the

antigen molecule, we assume that the diffusivities of antibody-antigen complexes are the same

as the diffusivity of unbound antibody. The forward reaction rate k1 for the binding reactions

was 4� 106 M�1 s�1 and the equilibrium constant Keq was 4� 1010 M�1. Both inlet flow

streams of T-sensor were assumed to have same average flow speed u of 0.3475 mm s�1.

For our calculations, we assumed that the model parameters were independent, normally

distributed random variables with above mentioned mean values. We assumed that the standard

deviation of all diffusion coefficients was 5% of their respective mean values. The uncertainty

in species diffusivity is representative of the systematic uncertainty arising from a 62 �C tem-

perature fluctuation, as diffusivity varies with temperature as D1=D2 ¼ T1l2=ðT2l1Þ,27 where l1

and l2 are the viscosity values of water at temperatures T1 and T2, respectively. The standard

deviation of flow speed u was taken as 0.16% of the mean value, which is in accordance with

typical resolution of a syringe pump. Under the assumption that both upper and lower streams

originate from a dual channel syringe pump, the two stream velocities are equal and perfectly

correlated. Hence, we assigned only one stochastic dimension to account for the uncertainty in

inlet stream velocity. We note that uncertainty in microchannel dimensions can also affect the

flow speed. For a typical microchannel fabricated using etching, the tolerance of channel

dimensions is about 0.1% of the channel thickness.28 For a shallow microchannel with fixed

flow rate, this can lead to an uncertainty of 0.1% in the flow speed. This is comparable with

the 0.16% standard deviation in flow speed which we have assumed in our analysis. The stand-

ard deviation in k1 and Keq were taken as 1% of their respective mean values. In our analysis,

we have neglected the uncertainty due to surface roughness as typical surface roughness of

order 10 nm for etched microchannels28,29 has negligible effect on fluid flow.30

We performed simulations in a rectangular domain corresponding to the main channel of

T-sensor shown in Fig. 1(a). The computational domain was discretized using a uniform grid of

1500� 200 grid points. This grid size was chosen, as doubling the grid points in both x and y
directions resulted in a variation of 0.1% in the predicted values of concentrations. For all our

computations, we have represented the species concentrations using third-order PC expansions.

The third-order expansions were sufficiently accurate in describing the uncertainty, as higher

order spectral mode strengths were significantly smaller than the lower order mode strengths.

A. Convection and diffusion of single species

To illustrate the application of uncertainty quantification methodology based on PC expan-

sions, we begin by considering a simple case of convection-diffusion of a single species in

T-sensor. We performed simulations for a T-sensor system in which labeled-antigen with inlet

concentration of 19 nM flows in from the upper inlet and water flows in from the lower inlet.

For this case we assumed that sample antigen and antibody are not present. Therefore, diffusiv-

ity of labeled-antigen and inlet flow speed were the only uncertain parameters. The third-order

PC expansion for antigen concentration consisted of 10 coefficients. Computation of these 10

coefficients required 29 simulations using Smolyak quadrature based stochastic collocation.

Fig. 2(a) shows the mean concentration field of labeled-antigen. The labeled-antigen

flows into the T-sensor from the upper inlet and diffuses into the lower stream. This process is
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analogous to transient one-dimensional species diffusion with the axial direction acting as a

“time-like” variable. The total predicted standard deviation in the concentration field due to

uncertainty in flow speed and diffusivity of labeled-antigen is shown in Fig. 2(b). The uncer-

tainty in concentration field in this case is minimum along the centerline and highest on either

side of the centerline at nearly half the diffusion length. The uncertainty tends to “diffuse”

along y-direction as the zone of uncertainty grows at downstream locations. Fig. 2(c) shows the

lateral variation of mean and standard deviation (63r) of the concentration of labeled-antigen

at the exit of T-sensor (x¼ 6.4 mm). As expected, the mean lateral concentration variation is

sigmoidal in shape. The uncertainties in model parameters induce considerable uncertainty in

the simulated labeled-antigen concentration. For example, at y ¼ 500 lm, the uncertainty in

concentration is nearly 5%.

In Figs. 2(b) and 2(c), we have shown the predicted values of overall uncertainty.

However, the PC formalism described in Section III also provides the contribution of each

uncertain parameter to the overall uncertainty. Fig. 2(d) shows the spatial variation of contribu-

tion of uncertainty in inlet flow speed and diffusivity to the overall uncertainty in exit concen-

tration of labeled-antigen. In the current case, diffusivity of labeled-antigen is the major

contributor to the overall uncertainty at all locations. However, the contribution of diffusivity

nearly vanishes near the center. Such a trend is expected since the variation in diffusivity tends

to flatten or steepen the lateral concentration distribution without affecting the concentration at

the center. The contribution of uncertainty in flow speed follows a similar trend, although its

magnitude is low due to lower uncertainty in inlet flow speed compared with that in diffusivity.

Since the top and bottom stream velocities are equal, variation in inlet flow speed simply

affects the residence time of molecules in the system without affecting the concentration at

the center. Consequently, the overall uncertainty in concentration is minimum near the center.

Fig. 2(d) also shows the contribution of coupled effects of flow speed u and diffusivity of

FIG. 2. Predicted mean and standard deviation of concentration of labeled-antigen for the case when sample antigen and

antibody are absent. (a) Mean concentration field of labeled-antigen for inlet labeled-antigen concentration of 19 nM. (b)

Spatial variation of total standard deviation of labeled-antigen concentration. The uncertainty is minimum along the center-

line and is highest at nearly half of the diffusion length from the centerline. The uncertainty “diffuses” further in the y-

direction at downstream locations. (c) Lateral concentration variation with 63r uncertainty bars at the T-sensor exit

(x¼ 6.4 mm). The sigmoidal shape of concentration profile is characteristic of transient one-dimensional diffusion; here x-

coordinate is the “time-like” variable. (d) Individual contributions of uncertainty in model parameters to the overall uncer-

tainty in concentration at x¼ 6.4 mm. The diffusivity of labeled-antigen DLA is the major contributor to uncertainty. The

contributions of uncertainty in flow speed u and diffusivity of labeled-antigen DLA dip near the centerline resulting in a min-

ima in the overall standard deviation.
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labeled-antigen DLA, apart from their individual uncertainty, to the overall uncertainty. Even

though this coupled contribution is small in comparison with individual contributions of the

uncertain parameters, it reinforces the fact that stochastically independent uncertain parameters

interact and give rise to coupled effects which contribute to the uncertainty in model

predictions.

B. Convection, diffusion, and reaction of multiple species: Competitive diffusion

immunoassay

Next, we quantify the uncertainty in simulation of competitive diffusion immunoassay in a

T-sensor. The simulated system is similar to the T-sensor system described in Section IV A.

However, in this case, in addition to the labeled-antigen in the upper stream, an unlabeled sam-

ple antigen flows into the T-sensor through the upper inlet and an antibody flows in through the

lower inlet. The antibody molecules bind with sample and labeled-antigen molecules, forming

complexes in the narrow inter-diffusion zone leading to accumulation of labeled-antigen-anti-

body complexes. The inlet concentrations of labeled-antigen and antibody binding sites are

19 nM and 74 nM, respectively. In this case, the uncertain parameters are the inlet velocity u,

diffusivities of antibody, sample antigen and labeled-antigen (DAb, DSA, and DLA), forward

reaction rate constant k1, and equilibrium constant Keq. We performed a series of simulations to

analyze the uncertainty in concentration field of labeled molecules for four values of sample

antigen concentration ranging from 0 to 573 nM. For these simulations, we expressed the simu-

lation output using third-order PC expansions in six stochastically independent dimensions;

there were 84 coefficients in the PC expansion. Computation of these 84 coefficients required

389 simulations using Smolyak quadrature.

Fig. 3(a) shows the mean concentration field of labeled molecules (labeled-antigen and

complex of labeled-antigen and antibody) for inlet sample antigen concentration of 32.8 nM.

Here, we have chosen to plot the combined concentration of labeled-antigen and the complex

of labeled-antigen and antibody because in experiments both molecules will contribute to the

measured fluorescence signal. Assuming that the fluorescence signal is proportional to the con-

centration of fluorescently labeled molecules, the results shown in Fig. 3 can also be interpreted

in terms of predicted fluorescence intensity. The binding of antibody and labeled-antigen is

evidenced by the appearance of a high concentration band near the center instead of a smooth

sigmoidal lateral variation in concentration of labeled molecules (see also Fig. 3(d)). The spatial

variation of standard deviation in the concentration field of labeled molecules is shown in

Fig. 3(b). In this case, we observe an asymmetry in the standard deviation across the centerline.

That is, the uncertainty in concentration of labeled molecules is higher on the antibody side

compared with that on the antigen side. This is because, the diffusion of smaller antigen

molecules into the antibody stream is quicker as compared with the diffusion of bulky antibody

molecules into the antigen stream, resulting in higher uncertainty on the antibody side.

However, similar to the case of single species diffusion discussed in Section IV A, the standard

deviation in concentration field near the centerline is conspicuously smaller compared with that

in the neighboring regions.

To get further insight into the physico-chemical processes contributing to uncertainty of

T-sensor based diffusion immunoassay, we separate out the contributions of model parameters

to the overall uncertainty. As shown in Fig. 3(c), the diffusivity of labeled-antigen is the major

contributor to uncertainty in concentration of labeled molecules at all locations except near the

center where its contribution nearly vanishes. The contribution of antibody diffusivity to the

total standard deviation follows a similar bimodal variation, albeit with lower magnitude. In

contrast, the diffusivity of sample antigen has negligible contribution since sample antigen

molecules do not interact directly with labeled-antigen molecules and sample antigen concentra-

tion of 32.8 nM is not large enough to significantly affect the labeled-antigen concentration.

The contribution of uncertainty in inlet flow speed to the overall uncertainty also shows

bimodal lateral variation which nearly vanishes at the center, similar to the case of single

species diffusion discussed in Section IV A. The contribution of forward reaction rate constant
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to overall uncertainty attains a maxima in the antibody stream, due to higher rate of reaction in

that region. Lastly, the contribution of equilibrium constant Keq is negligible since the rate of

dissociation is extremely small as compared with the forward reaction rate. The coupled effect

of uncertainty in different parameters taken two and three at a time, apart from their individual

contributions, to the overall uncertainty is negligible as shown in Fig. 3(c).

In Fig. 3(d) we present the mean and uncertainty in lateral concentration variation of

labeled molecules (or fluorescence signal) at the T-sensor exit (x¼ 6.4 mm) for varying sample

antigen concentrations. The peak in the signal diminishes with increasing sample antigen con-

centration, as less number of binding sites is available on the antibody for labeled-antigen when

faced with competition from higher concentration of sample antigen. Therefore, at high sample

antigen concentrations, such as at 573 nM, labeled-antigen diffuses without notable binding.

That is, at high sample antigen concentrations, the labeled-antigen concentration variation is

similar to the case shown in Fig. 2 when antibody and sample antigen are absent. Irrespective

of the sample antigen concentration, we note that the uncertainty represented by 63r uncer-

tainty bars in Fig. 3(d) is lowest around the center and highest in the neighborhood. The pre-

dicted uncertainty reduces very far from the center where the effects of diffusion and reaction

are absent. This lateral variation in uncertainty is particularly relevant for deciding the method

of quantification in experiments to minimize the uncertainty. In Section IV D, we compare

different quantification methods and show that using centerline fluorescence intensity to

quantify antigen concentration leads to higher detection sensitivity and resolution due to lower

uncertainty in that region, whereas using the first derivative of normalized fluorescence signal

as proposed by Hatch et al.7 leads to lower sensitivity and resolution as uncertainty in signal is

relatively high in the regions where first derivative of signal achieves extreme values.

FIG. 3. Predicted mean and standard deviation of total concentration of labeled molecules (labeled-antigen in bound and

unbound state) in T-sensor based competitive diffusion immunoassay. In these calculations, the inlet concentrations of

labeled-antigen and antibody binding sites were 19 nM and 74 nM, respectively. (a)–(c) show results for the case when sam-

ple antigen concentration is 32.8 nM. (a) Mean concentration field of labeled molecules. The marked departure from

smooth sigmoidal lateral variation in concentration is due to the accumulation of labeled molecules. (b) Total standard

deviation in concentration of labeled molecules. The standard deviation is asymmetrically distributed about the centerline

and is significantly low at the centerline. (c) Individual contribution of uncertainty in model parameters to overall uncer-

tainty in labeled molecule concentration. The diffusivity of labeled-antigen DLA is the dominant contributor to overall

uncertainty throughout the T-sensor. Since small antigen molecules diffuse faster than bulky antibody molecules, the rate

of binding reactions and hence the uncertainties are higher in the antibody stream. (d) Lateral variation of concentration of

labeled molecules with 63r uncertainty bars, at T-sensor exit (x¼ 6.4 mm) for four values of sample antigen concentration.

The accumulation of antigen molecules is evident from the peak near the center which subsides upon increase in sample

antigen concentration.
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C. Effect of sample antigen concentration on uncertainty

We now consider the effect of sample antigen concentration on the spatial variation of pre-

dicted uncertainty. Varying the sample antigen concentration affects the binding interaction of

labeled-antigen and antibody. This in turn affects the convection-diffusion transport of labeled

species. Therefore, the contribution of various uncertain parameters to the overall uncertainty

can vary with the concentration of sample antigen.

In Fig. 4, we compare the lateral variation in contributions of various uncertain parameters

to the total standard deviation at two extreme values of sample antigen concentration (0 nM and

573 nM). Fig. 4(a) shows the lateral variation of standard deviation contributions at the

T-sensor exit (x¼ 6.4 mm) when no sample antigen is added to the T-sensor. The predicted

uncertainty when the sample antigen is absent qualitatively resembles the case shown in

Fig. 3(c) when the sample antigen concentration is low (32.8 nM). That is, the uncertainty in

diffusivity of labeled-antigen and antibody dominates the overall uncertainty in concentration of

labeled molecules. When the sample antigen is present in excess (573 nM), the overall uncer-

tainty in major part of the inter-diffusion region decreases as shown in Fig. 4(b). Moreover,

the contribution of diffusivity of antibody is negligible as opposed to the cases of low sample

antigen concentration shown in Figs. 3(c) and 4(a). At high sample antigen concentration, the

contribution of uncertainty in diffusivity of sample antigen to overall uncertainty increases

appreciably. Interestingly, at high sample antigen concentration, the spatial variation in uncer-

tainty shown in Fig. 4(b) resembles that shown in Fig. 2(d) for the case of convection-diffusion

of labeled-antigen in absence of sample antigen and antibody. This is because, at high sample

antigen concentrations, the sample antigen dominates the competition for binding with the anti-

body. Consequently, very less amount of labeled-antigen binds with the antibody. Therefore,

the labeled-antigen simply convects and diffuses as is the case shown in Fig. 2. Nevertheless,

the results presented in Figs. 3(c), 4(a), and 4(b) show that the overall uncertainty for all values

of sample antigen concentrations is dominated by the diffusivity of labeled-antigen, and the

minimum uncertainty occurs around the centerline of T-sensor.

D. Comparison of analyte concentration quantification methodologies

The results presented in Sections IV A–IV C show that stochastic uncertainty propagation

provides us with valuable information regarding the spatial variation of uncertainty in concen-

tration field in a T-sensor. This information can be employed for devising strategies for quanti-

fication of sample antigen concentration from measured signal while minimizing uncertainty. In

FIG. 4. Effect of sample antigen concentration on uncertainty in T-sensor based diffusion immunoassay. Shown here are

the contributions of various model parameters to the overall uncertainty for two cases: (a) when sample antigen is absent

and (b) when inlet sample antigen concentration is 573 nM. (a) In the absence of sample antigen, the uncertainty variation

is qualitatively similar to the case shown in Fig. 3(c) when antigen concentration is low. (b) At high concentration of sam-

ple antigen, the overall uncertainty decreases in most of the inter-diffusion region. Less binding sites are available for the

labeled-antigen on the antibody, causing the labeled-antigen to diffuse without appreciable binding. Thus the spatial varia-

tion of uncertainty shown in (b) is qualitatively similar to the case shown in Fig. 2(d) where labeled-antigen diffuses in ab-

sence of antibody and sample antigen.
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a typical T-sensor based competitive diffusion immunoassay, the fluorescence signals from the

labeled molecules at known sample antigen concentrations are used to generate a calibration

curve. The fluorescence signal from immunoassay of unknown sample antigen concentration is

then compared with the calibration curve to predict the antigen concentration. In order to accu-

rately determine the unknown analyte concentration in the immunoassay, it is essential that the

fluorescence signals used for calibration and comparison have low uncertainty.

Hatch et al.7 presented a calibration technique for T-sensor based diffusion immunoassay

which employs the first derivative of normalized fluorescence intensity along the lateral

direction. The difference between maxima and minima in the first derivative of normalized fluo-

rescence intensity is plotted against the known sample antigen concentrations to obtain the

calibration curve. We note that here the normalized fluorescence intensity curve is the same as

the normalized concentration curve of labeled molecules since fluorescence intensity of labeled

molecules is assumed to be directly proportional to their concentration. Fig. 5 shows the first

derivative of normalized fluorescence intensity for various sample antigen concentrations, com-

puted from the simulation data presented in Fig. 3(d). Also shown in Fig. 5 is the predicted

uncertainty in the first derivative of normalized fluorescence intensity using 63r uncertainty

bars. We calculated the uncertainty in the derivative of normalized fluorescence intensity by

differentiating the PC expansion for concentration field (Equation (10)) as

@ci x; y; n1; n2;…; ndð Þ
@y

¼
XP

k¼0

@ci;k x; yð Þ
@y

Wk n1; n2;…; ndð Þ: (17)

The uncertainty bars shown in Fig. 5 clearly indicate that significant uncertainty is

introduced in the first derivative of normalized fluorescence intensity due to uncertainty in

model parameters. For example, in absence of sample antigen, Fig. 5 shows that the point of

local minima in the derivative of normalized fluorescence signal has almost four-fold higher

uncertainty than that in the model parameters, whereas the normalized fluorescence intensity

at the center has relatively low uncertainty as shown in Fig. 3(d). This suggests that using the

centerline fluorescence intensity as opposed to the difference in local extrema values of first

derivative in normalized fluorescence intensity for calibration would result in lower overall

uncertainty.

To quantify the uncertainty in the calibration technique proposed by Hatch et al.,7 we

calculate the standard deviations in the difference in local extrema values of first derivative of

FIG. 5. Lateral variation of mean and uncertainty (63r) of first derivative of normalized fluorescence intensity at T-sensor

exit (x¼ 6.4 mm) for four values of inlet sample antigen concentration. Uncertainty in model parameters leads to signifi-

cantly higher uncertainty in the first derivative of fluorescence signal. In particular, the uncertainty is highest at locations of

extrema in the first derivative of normalized fluorescence intensity profile.
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normalized fluorescence intensity for various sample antigen concentrations. We denote the

points of local minima (depletion) and maxima (accumulation) with D and A, respectively, and

the standard deviation in the difference in local extrema values with rDA. To compute rDA, we

replace the PC coefficients ci;k in Equation (16) with the coefficients for PC expansion of the

difference in first derivative of normalized fluorescence intensity at points D and A.

Fig. 6(a) shows the variation in difference in local extrema values of first derivative along

with 63r uncertainty bars for four values of sample antigen concentrations. The coefficient of

variation for these four cases ranges from 4.7% for cSA ¼ 0 nM to 17.5% for cSA ¼ 573 nM.

Clearly, such high degree of uncertainty in the system response will induce equally high inac-

curacy in the prediction of sample antigen concentration. We note that the uncertainty bars for

the cases with cSA¼ 0 nM and 32.8 nM significantly overlap, indicating that the minimum value

of sample antigen concentration that can be unambiguously and accurately quantified (the limit

of detection) is appreciably higher than 32.8 nM. Moreover, relatively high uncertainty for all

sample antigen concentrations leads to reduced detection resolution. Therefore, using the differ-

ence in extrema values of first derivative of normalized fluorescence intensity as a response of

the system to generate the calibration curve is not preferable.

On the other hand, as shown in Figs. 3(d), 4(a), and 4(b), the uncertainty in concentration

of labeled molecules near the center of T-sensor is minimum. In Fig. 6(b) we compare these

central concentration values along with their associated uncertainty ð63rÞ for four values of

sample antigen concentrations. The minimum and maximum coefficient of variations are 0.1%

and 0.4% for cases with cSA¼ 573 nM and 32.8 nM, respectively. As opposed to the case shown

in Fig. 6(a), here the uncertainty bars for cSA¼ 0 nM and 32.8 nM do not overlap. Hence, for a

T-sensor based competitive diffusion immunoassay using the centerline concentration for gener-

ating the response signal improves the detection sensitivity. Moreover, lower uncertainty for all

sample antigen concentrations compared with the calibration scheme involving the first deriva-

tive of signal results in better detection resolution.

V. CONCLUSIONS

We have quantified uncertainty in modeling predictions of a T-sensor based competitive

diffusion immunoassay due to the uncertainty in parameters of the mathematical model. In par-

ticular, we considered individual and coupled effects of uncertainty in species diffusivities,

binding reaction rates, and inlet flow speed on spatial distribution of uncertainty in predicted

concentrations. To quantify uncertainty, we modeled the dependence of solution variables (spe-

cies concentrations) on stochastic dimensions associated with uncertain model parameters using

FIG. 6. Comparison of uncertainties induced in system response between two methods for quantifying sample antigen con-

centration in T-sensor based diffusion immunoassay: (a) using the difference between values of extrema in first derivative

of normalized fluorescence intensity and (b) using centerline fluorescence intensity (or concentration of labeled molecules).

(a) Since the uncertainty is high at the locations of extrema in first derivative of intensity, the uncertainty bars ð63rÞ are

large. The overlapping uncertainty bars indicate low detection sensitivity and resolution. (b) Using centerline fluorescence

intensity (or concentration) as the response signal leads to reduced uncertainty, which improves detection sensitivity and

resolution.
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PC expansions. We then evaluated the coefficients of the PC expansions using Smolyak sparse

grid quadrature, which essentially involved a series of deterministic simulations for different

realizations of uncertain model parameters.

Our simulations of T-sensor based competitive immunoassay show that the uncertainty in

diffusivity of fluorescently labeled analyte has the maximum contribution to the overall uncer-

tainty in predicted fluorescence signal. In practice, the uncertainty in species diffusivities can

arise from even small temperature fluctuations. Therefore, our analysis suggests that precise

temperature control during T-sensor operation can lead to significant reduction in uncertainty.

Our simulations also show that, for all sample antigen concentrations, the uncertainty in fluores-

cence signal is minimum near the centerline of T-sensor, whereas high uncertainty prevails in

the regions with large gradients in fluorescence intensity. Therefore, using the extreme values

of first derivative of fluorescence intensity profile for quantification of antigen concentration

leads to higher uncertainty, thereby reducing the detection sensitivity and resolution. On the

other hand, using centerline fluorescence intensity as the system response yields reduced uncer-

tainty, and hence higher detection sensitivity and resolution. Our simulations results are there-

fore directly applicable for practical T-sensor based assays wherein quantitative analysis is

performed by comparing experimental data with simulation results.

Although the current work is specific to T-sensor based diffusion immunoassay, the non-

intrusive stochastic uncertainty quantification methodology presented here is equally applicable

for analyzing other microfluidic systems. Since the method involves a series of deterministic

simulations, uncertainty propagation in microfluidic systems can be performed by post-

processing simulation data obtained from existing simulation tools. Such analysis would ensure

proper comparison of experimental and simulation data. Moreover, PC expansion based uncer-

tainty quantification can elucidate the individual and coupled effects of uncertainty in model

parameters to the predicted overall uncertainty.
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