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Role of WWOX and NF-κB in lung cancer
progression
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Abstract

It is generally agreed that the pro-inflammatory, pro-survival transcription factor NF-κB is a tumor promoter. Tumor
necrosis factor alpha (TNF-α or TNF) mediates NF-κB activation. Tumor suppressor WWOX (FOR or WOX1) is a
downstream effector of the TNF signaling. Thus, activation of both WWOX (FOR or WOX1) and NF-κB may occur
during TNF signaling and/or under stress conditions. Indeed, the first WW domain of WWOX induces the activation
of NF-κB-responsive promoter without TNF participation. It appears that WWOX counteracts with NF-κB in regulating
cell survival and death. For example, WWOX becomes activated with Tyr33 phosphorylation and relocates together
with NF-κB and many transcription factors to the nucleus to cause neuronal death in sciatic nerve-transected rats. While
WWOX is frequently lost in lung cancer and many other cancers, NF-κB activation-induced cancer promotion probably
requires WWOX-independent signaling networks to induce expression of pro-survival factors. The antagonistic role of
WWOX and NF-κB in the regulation of lung cancer progression is discussed.
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Inflammatory TNF-α/NF-κB pathway in lung
cancer
Inflammatory cytokines are involved in the pathogenesis of
lung cancer progression [1]. The cytokines may drive the
activation of nuclear transcription factors, which fosters
the generation of favorable microenvironment for sustain-
ing the growth of cancerous cells. As a pro-inflammatory
cytokine, tumor necrosis factor alpha (TNF-α or TNF)
participates in many events that lead to oxidative stress,
vasodilatation, edema formation, and fever. Prosurvival
transcription factor nuclear factor-κB (NF-κB), for ex-
ample, is a downstream effector of the TNF-α pathway,
and is being regarded as a crucial factor during cancer
initiation and progression [2,3]. NF-κB could orches-
trate the signals from different pathways, and interacts
with signaling proteins such as transcription factors
STAT3 and p53 or the ETS related gene ERG [4]. The
transcriptional activity of NF-κB could also be affected
by kinases from other signal pathways, such as GSK3-β,
p38, and PI3K [4]. Networking analysis revealed that
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NF-κB directly or indirectly interacts with BCL-3 (B-cell
CLL/lymphoma 3), ESR-1 (estrogen receptor 1), NR3C1
(nuclear receptor subfamily 3, group C, member 1; gluco-
corticoid receptor), ELF1 (E74-like factor 1; ets domain
transcription factor) and many more. Indeed, there are
many binding partners with NF-κB [4,5], the molecular
mechanisms underlying NF-κB integration with these sig-
nals is largely unknown.
NF-κB is a homo- or heterodimeric complex from a

composition of the Rel-like domain-containing proteins
RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and
NFKB2/p52 [4,5]. The heterodimeric p65-p50 complex
can be found in cells in most cases. NF-κB is frequently
localized or sequestered in the cytoplasm. This is mainly
due to the regulatory effect of inhibitor protein IκBα. IκBα
binds and masks the nuclear localization signals of NF-κB.
IκBα can be phosphorylated at Ser32 and Ser36 by a spe-
cific IκB kinase (IKK) complex and is then degraded in a
ubiquitin/proteasome-dependent manner [4-6]. Degrad-
ation of IκBα results in activation or nuclear accumulation
of NF-κB. The IKK complex is composed of two catalytic
components IKKα and IKKβ and a regulatory subunit
IKKγ (NEMO). The aforementioned event has been con-
sidered as a canonical pathway of NF-κB activation. For
the noncanonical NF-κB activation, IKKα binds and
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phosphorylates a p100 complex, in which p100 undergoes
ubiquitination and is degraded to p52. NF-κB interacts
with p52 for relocating to the nucleus and regulates gene
transcription [4-6]. Tax, a viral regulatory protein from
human T-cell lymphotropic virus type 1 (HTLV-1), is a
key inducer of the NF-κB activation pathway and may
contribute to the pathogenesis of viral oncogenesis [7,8].
Cancer initiation and progression can be considered as

a chronic inflammatory process. Constitutive activation of
NF-κB is frequently shown in cancer cells, and the acti-
vated NF-κB affects cancer cell growth, progression and
metastasis. In lung cancer and chronic obstructive pul-
monary disease (COPD), the NF-κB pathway is linked to
the inflammatory signaling, oxidative stress response, and
glycolysis and gluconeogenesis pathways, as revealed by
proteomic analyses [9]. Bromodomain-containing protein
4 (Brd4) maintains the constitutively active NF-κB in lung
cancer cells by binding acetylated RelA [10]. However,
NF-κB activity is needed to activate immune surveillance
for the anti-lung cancer response [11]. In contrast, SOD2
(Superoxide Dismutase 2, Mitochondrial) induces the acti-
vation of NF-κB and increases IKKβ transcription in lung
adenocarcinoma. The event favors the progression of lung
cancer and confers poor prognosis in patients [12].

Unconventional inhibitors of NF-κB
The BCL-3 subfamily protein physically interacts with
NF-κB in the nucleus and thereby functionally controls
its transcriptional activity [13,14]. Like BCL-3, atypical
inhibitors of NF-κB have been identified such as IκBζ
long, IκBζD, IκBζ short, IκBNS, and IκBη [13]. These
proteins possess common structural domains such as
ankyrin repeats, transactivation domains, and nuclear
localization signal [13]. Binding of these proteins with
DNA-anchored NF-κB modulates its transcriptional
function. These atypical inhibitors are not subjected to
degradation even after NF-κB activation by stimuli such
as lipopolysaccharide or Interleukin 1 beta (IL-1β). In-
stead, their levels are raised intracellularly.
Additionally, we have determined that Zfra (zinc finger-

like protein that regulates apoptosis) regulates TNF-α-
mediated cell death by interacting with receptor adaptor
protein TRADD (TNF receptor-associated death domain
protein) and downstream JNK (c-Jun N-terminal kinase),
NF-κB, and WWOX or WOX1 (WW domain-containing
oxidoreductase) [15,16]. Transiently overexpressed Zfra
sequesters NF-κB (p65), WWOX, p53 and phospho-
ERK (extracellular signal-activated kinase) in the cyto-
plasm, and that TNF-α or UV light could not effectively
induce nuclear translocation of these proteins. This
study directly demonstrated a cytoplasmic control of
NF-κB activation by Zfra. Interestingly, missense muta-
tions of caspase-8 activate NF-κB signaling in cancer
cells [17].
TNF-α signaling and programmed cell death
TNF-α-mediated cell death is one of the biological
events in development, aging, and metabolic turnover.
In general, cells are highly organized in multicellular or-
ganism. The number of cells in each organism is strictly
controlled during development. If cells are damaged or
aged, they commit suicide by promoting an intracellular
death program - the so-called programmed cell death.
Apoptosis is one of the physiological death in a “pro-
grammed” manner. It is generally agreed that apoptotic
cells undergo membrane blebbing and then shrinkage,
nuclear condensation, nuclear membrane disassembly,
and chromosomal DNA fragmentation [18-21]. Unfortu-
nately, studies by time-lapse microscopy fail to support
all types of apoptosis acting in this typical manner.
Apoptotic bodies, which are generated from the whole
cell membrane blebbing and fragmentation, are readily
phagocytosed or cleared up by macrophages. Intracellu-
lar machinery responsible for the programmed cell death
goes through a family of cysteine proteases, named
caspases (also known as cysteine-aspartic proteases or
cysteine-dependent aspartate-directed proteases) [20,21].
Caspases also participate in necrosis and inflammation.
Caspases possess a cysteine at the active site, and once
activated, target proteins are cleaved at specific aspartic
acids [20,21]. That is to execute the programmed cell
death.
Numerous intrinsic and extrinsic stimuli lead to signal-

ing cascades that culminate in programmed cell death
[22]. In the extrinsic or death receptor pathway, signals
from extracellular environment such as TNF-α, toxins,
hormones, growth factors, and/or cytokines, interact with
membrane receptors so as to instigate the downstream
cascade of protein/protein interactions and thereby gener-
ate biological effects from gene transcription and new pro-
tein production. These extrinsic signals may positively or
negatively affect the execution of programmed cell death
or apoptosis [23,24]. Several extrinsic signals, including
Fas ligand [25], Apo2 ligand, and TNF-related apoptosis-
inducing ligand (Apo2L/TRAIL), instigate apoptosis by
binding to cognate receptors such as Fas, death receptor 4
(DR4), and death receptor 5 (DR5) [26,27]. By the same
token, TNFα-induced cell death is mediated through spe-
cific cell surface receptors TNF-R1 and TNF-R2 [21,23].
In the intrinsic or mitochondrial pathway, damage to

chromosomal DNA by oxidative stress, UV irradiation, or
therapeutic chemicals may initiate the intracellular death
pathway [28-30]. As a consequence, caspase activation oc-
curs, which leads to cytochrome c release from the mito-
chondria into the cytosol. Cytochrome c binds and causes
the aggregation of the adaptor protein Apaf-1 (Apoptotic
protease activating factor 1), activation of procaspase-9 and
subsequent nuclear DNA damage [28]. Cumulative evidence
has shown that inhibitors of histone deacetylase activate the
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intrinsic/mitochondrial pathway for leading to cell death via
upregulation of a number of proapoptotic BH3-only Bcl-2
family genes, including Bim, Bid, and Bmf [29].
Pro-apoptosis versus anti-apoptosis in TNF-α signaling
TNF-α initiates two counteractive signal pathways -
one for pro-apoptosis and the other for anti-apoptosis
[2]. How TNF-α acts to determine the desired outcome,
either cell death or survival, is largely unknown. Two
different types of transmembrane TNF receptors have
been identified. Upon stimulation of TNF-R1 with TNF-α,
death domain-containing protein TRADD (TNF receptor-
associated death domain) becomes associated with the re-
ceptor and then recruits another death domain protein via
the death domain/death domain binding. These proteins
include FADD (Fas-associated death domain protein), RIP1
(receptor-interacting protein 1), and caspase 8 [2]. When
the adaptor proteins are dissociated from TNF-R1, caspase-
8 becomes activated for leading to the downstream apop-
tosis event including nuclease-induced chromosomal DNA
fragmentation and nuclear condensation.
The kinase RIP1 appears to be a deciding factor for cell

survival or death during TNF-R1 signaling [30,31]. To turn
off TNF-R1 signaling-induced cell death, ubiquitin-editing
enzyme A20 binds Itch via a regulatory TAX1BP1 to pre-
vent recruitment and inactivation of RIP1 [30]. Additionally,
post TNF-α stimulation, RIP1 is conjugated with ubiquitin
chains via K63 and functions as a scaffold to build signaling
complexes and activate kinases for protective gene expres-
sion [31]. Also, K48-dependent linear ubiquitination of RIP1
by LUBAC ubiquitin ligase complex leads to degradation by
the proteasome-dependent mechanism, thus enhancing the
activation of NF-κB pathway and cell survival [32].
TRAF2: an inhibitor of TNF-α-induced cell death
TNF-induced apoptosis can be turned off by activating
NF-κB throughTNF-α receptor-associated factor 2 (TRAF2)
[33]. The molecular action is that TRADD directly in-
teracts with TRAF2, and then activates NF-κB for indu-
cing the anti-apoptotic event [34-38]. In UV-activated
cell apoptosis, TRAF2 promotes cell survival via acti-
vating NF-κB and inhibiting p53 from binding to the
mitochondria and blocking the release of cytochrome C
[39,40]. Additionally, TRAF2 controls the expression of
lung Krüppel-like factor (LKLF) via the mitogen-activated
protein kinase p38 pathway to counteract TNF-induced
apoptosis [41]. The role of TRAF2 in the lung cancer de-
velopment and progression is largely unknown. It has
been determined that endogenous phosphorylated TRAF2
and ribosomal protein S3 confer resistance to irradiation-
mediated death of non-small cell lung cancer (NSCLC)
cells [42]. TRAF2 and RIP1 also participate in suppression
of TRAIL-induced autophagy via activation of JNK1 [43].
In the canonical TNF/NF-κB pathway, activated TNF-
R1 recruits TRADD, which in turn binds adaptor pro-
teins FADD, TRAF2, TRAF5 and RIP1 [44] (Figure 1).
These adaptor protein complexes activate the IKK ki-
nases for IκBα degradation and NF-κB activation [45,46].
Although activated TRADD triggers apoptotic signaling
by recruiting FADD and caspase-8 and prolonging JNK
activation, NF-κB activation leads to the expression of
anti-apoptotic proteins such as cFLIP (cellular FLICE
(caspase-8)-like inhibitory protein) and cIAP (cellular in-
hibitors of apoptosis), which block caspase-8 activation
[47,48]. Lymphotoxin β receptor (LTβR) promotes nonca-
nonical NF-κB signaling pathway bypassing activation of
pro-apoptotic caspase cascades, but directly recruits
TRAF2 and TRAF3, which then activates IKKα homodi-
mers through NIK (NF-κB inducing kinase) (Figure 1).
IKKα induces NF-κB p100 precursor phosphorylation, and
the protein is processed to a p52 form for causing nonca-
nonical NF-κB (RelB/p52 heterodimer) activation [45,46].
TRAF2 is a member of the TRAF family, and is re-

sponsible for activating canonical NF-κB pathways. In
mouse embryonic fibroblasts (MEF), TRAF2 and TRAF5
double knockout suppresses TNFα-induced NF-κB acti-
vation. Conditional knockout of TRAF2 in B cells causes
noncanonical NF-κB pathway activation [49]. That is,
TRAF2 promotes canonical NF-κB pathway, but sup-
presses noncanonical NF-κB pathway [45,46,50,51].
TRAF2 is a 501-amino-acid protein, possessing a RING-

type zinc finger domain, a coiled coil domain, and a
MATH/TRAF domain (Figure 2). The RING-type zinc fin-
ger domain is associated with an E3 ubiquitin-protein ligase
activity. The coiled coil domain mediates TRAF2 homo- or
hetero-oligomerization, and a phosphorylation site at
Thr117 is important for NF-κB activation. The MATH/
TRAF domain binds to receptor cytoplasmic domains. The
RING-type zinc finger domain activates both JNK/c-Jun
and IKK/NF-κB pathways [52]. Deletion of RING-type zinc
finger domain of TRAF2 (TRAF2-ΔR) has been widely
used as a dominant negative inhibitor of TNF-α-induced
activation of JNK and IKK. Stable expression of TRAF2-ΔR
in TRAF2 and TRAF5 double knockout cells efficiently in-
hibits TNF-α-induced prolonged activation of JNK, but fails
to suppress cell death. Moreover, stable expression of
TRAF2-ΔR in TRAF2 and TRAF5 double knockout cells
does not suppress the noncanonical NF-κB pathway [53].

Tumor suppressor WWOX (FOR or WOX1) in signaling
Many outstanding review articles have described the
in vitro and in vivo roles of tumor suppressor WW
domain-containing oxidoreductase, designated WWOX,
FOR, or WOX1, in tumor suppression, metabolic disorders,
immune defects, bone tumors, neurodegenerative diseases
and others [54-63]. Human WWOX gene, containing 1 mil-
lion bases with 9 exons, is located in chromosome



Figure 1 TRAF2 signal pathway networks. TRAF2 promotes canonical NF-κB pathway, and suppresses noncanonical NF-κB pathway
[45,46,50,51]. TNF-R1 activates the canonical NF-κB pathway via recruiting TRADD, which in turn binds adaptor proteins TRAF2, TRAF5 and RIP1
[44]. These adaptor protein complexes activate the IKK (IκB kinase) proteins for NF-κB (p65/p50 heterodimer) activation, following phosphorylation
and degradation of the inhibitory protein IκBα [45,46]. On contrary, LTβR (Lymphotoxin β receptor) promotes noncanonical NF-κB signaling
pathway bypassing activation of the pro-apoptotic caspase cascades, but directly recruiting TRAF2 and TRAF3. IKKα homodimers are then activated
through the upstream NIK (NFκB inducing kinase). IKKα induces NF-κB p100 precursor phosphorylation, followed by partially processing to a p52 form
for leading to noncanonical NF-κB (p52/ RelB heterodimer) activation [45,46].
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16q23.3–24.1. This region is known as a chromosomal
common fragile site FRA16D. The encoded protein con-
tains two N-terminal WW domains, a C-terminal short
chain alcohol dehydrogenase/reductase (ADH/SDR) do-
main, and a D3 tail at the C-terminus. Additionally, an
NSYK (Asn-Ser-Tyr-Lys) motif for binding with sex steroid
hormones, a nuclear localization signal (NLS) (GKRKRV),
and a mitochondria-targeting sequence in the ADH/SDR
domain have been defined in WWOX [60-63] (Figure 3A).
WWOX is located ubiquitously within the cell. It can

be found in the cytoplasm, cell membrane/cytoskeleton,
organelles and nucleus [60-63]. The first WW domain
binds target proteins containing the proline-rich PPXY-
Figure 2 A schematic structure of TRAF2. The full-length TRAF2 is compos
domain possesses an E3 ubiquitin-protein ligase activity through Lys63 (K63) or L
hetero-oligomerization, and phosphorylation at Thr117 (T117) is needed for NF-κB
motif(s) during signal transduction. For example,
WWOX interacts with p73, activator protein 2γ (AP-2γ),
ErbB4, ezrin, small integral membrane protein of the
lysosome/late endosome (SIMPLE), and c-JUN [59-63]
(Figure 3B). Transiently overexpressed WWOX blocks
the nuclear accumulation of p73, AP-2γ, and c-JUN
in vitro [54,60]. However, the observations are not true
in vivo [54,60,64]. In the Wnt/β-catenin pathway, transi-
ently overexpressed WWOX prevents nuclear import of
Dishevelled [65]. Similarly, in the HGF/MET pathway,
ectopic WWOX inhibits the MET C-terminal fragment
for nuclear translocation and suppression of the down-
stream gene expression [66].
ed of 501 amino acids (molecular weight 55 kDa). The RING-type zinc finger
ys48 (K48) activation. The coiled coil domain mediates TRAF2 homo- or
activation. The MATH/TRAF domain binds to receptor cytoplasmic domains.



Figure 3 WWOX/WOX1 and signaling networks. (A) A schematic structure of WWOX/WOX1 (414 amino acids; molecular size 46 kDa) is
shown. Two N-terminal WW domains are encoded by exon 1–4 of the WWOX gene, and the ADH/SDR domain by exon 4–8. There is a NLS
(nuclear localization signal) between the two WW domains, and a NSYK motif in the ADH/SDR domain. The C-terminal tail D3 domain possesses
an apoptotic function. The conserved phosphorylation sites are indicated [54-63]. (B) WWOX interacts with binding proteins via PPXY motifs.
Protein of these categories are p73, activator protein 2γ (AP-2γ), ErbB4, ezrin, small integral membrane protein of the lysosome/late endosome
(SIMPLE), c-Jun [59-63]. WWOX is involved in the Wnt/β-catenin pathway and the HGF (hepatocyte growth factor)/MET pathway. WWOX acts
synergistically with p53 to mediate apoptosis, and that JNK and Zfra block the effect. Complement C1q induces an unconventional apoptosis of
prostate cancer cells [59,60,62]. WWOX prevents neurodegeneration by inhibiting Tau hyperphosphorylation caused by ERK and GSK-3β [59,60,62].
Hyaluronidase Hyal-2 acts as a receptor for TGF-β1. During signaling, WWOX is activated and binds Smad4 and the protein complex is accumulated in
the nucleus, which may lead to cell survival or death [59,60,62].
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Moreover, WWOX is involved in stress and apoptotic
responses (Figure 3B). WWOX is shown to stabilize
tumor suppressor p53 via a direct binding interaction
[64-70]. UV-induced WWOX activation with Tyr33
phosphorylation binds Ser46-phosphorylated p53. The
binding interaction is independent of the WW domain-
PPXY rule [60-63]. The p53/WWOX complex may
translocate to the mitochondria and further to the nu-
cleus to mediate apoptosis in vitro and in vivo. And,
JNK (c-Jun N-terminal kinase) and Zfra (zinc finger-like
protein that regulates apoptosis) inhibit the apoptotic re-
sponse [15,16,68,71-73]. Sex steroid hormones estrogen
and androgen are shown to induce the complex forma-
tion of p53 and WWOX and their accumulation in the
nucleus [74,75]. Complement C1q invokes WWOX acti-
vation via an unconventional pathway of apoptosis for
causing cancer cell death [57,76]. WWOX prevents neu-
rodegeneration by inhibiting Tau hyperphosphorylation
caused by ERK and GSK-3β [54,60,62,77,78]. Hyaluroni-
dase Hyal-2 acts as a receptor for TGF-β1. During sig-
naling, the SDR domain of WWOX physically interacts
with Hyal-2, and the resulting WWOX/Hyal-2 complex
binds Smad4 and is then accumulated in the nucleus,
which may increase cell survival or death both in vitro
and in vivo [60,62,79]. A recent study has demonstrated
that WWOX interacts with an oncoprotein latent mem-
brane protein 2A (LMP2A), via the PPXY motif, in
Epstein-Barr virus, and that this interaction induces acti-
vation of extracellular signal-regulated kinase (ERK), up-
regulation of matrix metalloproteinase 9 (MMP9), and
promotion of cell invasion [80]. Overall, interaction of
WWOX with p53, JNK1, Zfra, c-Jun, CREB, and many
others is WWOX activation-dependent [54,60,62,75].
That is, WWOX undergoes phosphorylation at Tyr33.
CREB is shown to enhance the apoptotic function of
WWOX [64].
Many proteins have one or 2–5 repeats of WW do-

mains. It has been proposed that these domains can
work in a coherent manner [81]. One report has demon-
strated that the first WW domain of WWOX binds
WW-binding protein 1 (WBP1) and WW-binding pro-
tein 2 (WBP2) signaling adaptors via PPXY motifs [82].
It is postulated that the first WW domain is responsible
for the binding interaction, and the secondary WW
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domain fails to interact with the PPXY motifs. By
site-directed mutagenesis using synthetic peptides, co-
immunoprecipitation and physical approaches, the sec-
ondary WW domain appears to act as a chaperone to
stabilize the first WW domain [82]. Nonetheless, the re-
gions flanking the WW domains (e.g. SDR domain and
D3 tail) were not functionally examined and the physio-
logical relevance of WWOX-WBPs interactions is not
known.
Indeed, we have determined that the SDR domain of

WWOX binds tau so as to block enzyme-mediated
hyperphosphorylation [77,78]. Also, the SDR domain in-
teracts with membrane Hyal-2 during TGF-β signaling
[79]. MEK1, a mitogen-activated protein kinase, physic-
ally interacts with the SDR domain of WWOX, and that
dissociation of this complex by phorbol ester induces
apoptosis in leukemia cells [83].

WWOX in tumor suppression and metabolic disorders
WWOX protein expression is frequently downregulated
in invasive cancer cell types [59-63]. Suppression of
WWOX in invasive cells may be due to gene mutation,
deletion, translocation, hypermethylation of CpG island
in the promoter region [84], and mRNA translational
blockade [70]. Restoration of WWOX in lung and other
cancer cells inhibits their growth and tumorigenicity
in vitro and in vivo [59-62]. Although downregulation of
tumor suppresser WWOX expression has frequently been
reported in various types of cancers, Wwox deletion did
not necessarily increase the proliferation or development
of premalignant lesions, suggesting that WWOX is not a
classical tumor suppressor gene. Interestingly, in a spon-
taneous mutant lde/lde (lethal dwarfism with epilepsy) rat
strain, frame deletion of Wwox gene has been shown, and
the rat possesses aberrant Wwox protein expression in the
central nervous system and development of seizure [85].
In knockout mouse model, the animals can only survive
for one month and have defects in bone metabolism,
splenic atrophy, and other deficiencies [59-61,86,87].
Two single nucleotide polymorphisms in MAF (muscu-

loaponeurotic fibrosarcoma oncogene homologue) and
WWOX genes are associated with reduced insulin secre-
tion and hypertension [88]. MafA and c-maf are critical
for the β- and α-cells islet development as well as insulin
and glucagon biosynthesis [89]. However, WWOX gene in-
hibits pancreatic islet development by inactivation the
Wnt/β-catenin pathway [65].

WWOX in lung cancer
Alterations in WWOX genes are associated with lung
cancer development. WWOX is mapped to the chromo-
somal common fragile site FRA16D and several copy
number variations (CNVs) are associated with this gene.
It appears that loss of CNV-67048 genotypes in WWOX
in Chinese predisposes their carriers to lung cancer [90].
Whether this affects WWOX gene expression and loss of
exons is unknown. Similar studies also showed that the
polymorphisms and haplotypes of WWOX gene are asso-
ciated with the risk of lung cancer in southern and east-
ern Chinese populations [91]. Ectopic expression of wild
type WWOX suppresses the growth human non-small
cell lung cancers (NSCLCs) both in cell culture and in
patients in a SDR domain-dependent manner [92,93].
WWOX gene expression may be considered as a prognos-
tic biomarker in surgically resected, early-stage NSCLC.
An epigenetic regulator/polycomb group protein Bmi1 is
more highly expressed in small-cell lung cancer (SCLC)
than in NSCLC, and acts by blocking the expression of
WWOX at the transcriptional level [94]. MicroRNA miR-
134 targeting WWOX expression is associated with head
and neck carcinogenesis [95]. Again, alterations in the
WWOX gene, including hypermethylation of WWOX gene
promoter region and mutations, may contribute to lung
carcinogenesis [96]. A recent study showed that ectopic
WWOX is able to suppress autophagy for inducing apop-
tosis in methotrexate-treated human squamous cell car-
cinoma, and that induction of WWOX expression in SCC
is associated with cure of this cancer in patients [97].

WWOX and NF-κB in the regulation of lung cancer
growth
Substantial evidence has shown that NF-κB is both a medi-
ator of inflammation and a promoter of carcinogenesis
[98-100]. How NF-κB orchestrates inflammation toward
carcinogenesis is largely unknown. A recent report showed
that in the Gprc5a gene knockout mice, NF-κB activation
occurs in airway epithelium, which ultimately leads to lung
inflammation and tumorigenesis [101]. It appears that in-
creased inflammatory autocrine and paracrine interactions
contribute to carcinogenesis. Alternatively, noncanonical
TBK1 and IKKɛ contribute to NF-κB activation and the in-
flammatory responses for carcinogenesis [100].
WWOX has been implicated in the regulation of the ca-

nonical and noncanonical NF-κB pathways in HTLV-I
Tax-mediated tumorigenesis. The viral oncoprotein Tax
suppresses WWOX expression by inhibition of the nonca-
nonical NF-κB pathway [6,8,39,58]. Conversely, WWOX
effectively blocks Tax-induced activation of the canonical
NF-κB pathway, whereas the noncanonical pathway is
not affected [6,8,39,58]. The observations suggest the
role of the noncanonical NF-κB pathway in contribut-
ing to carcinogenesis.
It appears that WWOX can override the pro-survival

effect of NF-κB to apoptosis. We have determined that
overexpression of the first WW domain of WWOX in-
duces the activation of NF-κB-responsive promoter
without the participation of TNF-α in vitro [64]. In sci-
atic nerve-transected rats, Wwox becomes activated with
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Tyr33 phosphorylation and relocates together with NF-
κB and many transcription factors to the nuclei to cause
neuronal death [64]. Wwox binds activated CREB and c-
Jun, but not NF-κB, as determined from both in vivo
and in vitro experiments [64]. Complement C1q, which
belongs to the TNF-α-like family of proteins, activates
WWOX to induce cancer cell death [76]. Whether NF-
κB is also activated is unknown. However, activation of
NF-κB is shown during C1q stimulation of monocytes
[102]. Thus, the functional relationship between WWOX
and NF-κB has yet to be determined. While WWOX is
frequently lost in lung cancer and many other cancers,
NF-κB activation-induced cancer promotion probably
requires WWOX-independent signaling networks to in-
duce expression of pro-survival factors.
Finally, there are intriguing interactions among viral

LMP2A, WWOX and NF-κB. WWOX binds LMP2A to
induce ERK activation, MMP9 upregulation, and promo-
tion of cell invasion [80]. LMP2A, together with NF-κB,
protects B-cells from apoptosis by blocking B-cell receptor
(BCR) signaling [103]. However, the effect of WWOX on
B cell survival is unknown.

Review and conclusions
Activation of NF-κB is crucial for inflammatory re-
sponse, as well as for carcinogenesis. NF-κB is activated
by both canonical and noncanonical approaches. TNF-α
is mainly responsible for the canonical NF-κB activa-
tion, and LTβR and CD40 for the noncanonical NF-κB
activation. Complement C1q activates both WWOX
and NF-κB [57,76,102]. WWOX fails to directly bind
NF-κB. HTLV-I Tax-mediated tumorigenesis is associ-
ated with activation of NF-κB via both canonical and
noncanonical pathways, and that WWOX may interfere
with this pathway [58]. Apparently, there is a functional
antagonism between WWOX and NF-κB. WWOX inter-
acts with Epstein-Barr virus LMP2A, and the interaction
activates ERK. Whether NF-κB becomes activated has yet
to be determined. Nonetheless, the MEK/ERK signaling is
prosurvival. Binding of WWOX with LMP2A may render
functional inactivation of WWOX and thereby enhances
cancer growth and invasion. Conformational and func-
tional alterations of WWOX due to binding with LMP2A
are likely. Phorbol ester is known to activate ERK, and that
this event may lead to NF-κB activation [104]. WWOX
binds MEK and affects ERK activation, which shuts down
NF-κB activation [83]. Taken together, functional antagon-
ism between WWOX and NF-kB is likely to occur during
lung cancer initiation and progression. A balance of both
proteins is critical in controlling cancer formation.
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