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Abstract

The hippocampus is involved in the learning and representation of temporal statistics, but little is 

understood about the kinds of statistics it can uncover. Prior studies have tested various forms of 

structure that can be learned by tracking the strength of transition probabilities between adjacent 

items in a sequence. We test whether the hippocampus can learn higher-order structure using 

sequences that have no variance in transition probability and instead exhibit temporal community 

structure. We find that the hippocampus is indeed sensitive to this form of structure, as revealed 

by its representations, activity dynamics, and connectivity with other regions. These findings 

suggest that the hippocampus is a sophisticated learner of environmental regularities, able to 

uncover higher-order structure that requires sensitivity to overlapping associations.

A growing literature suggests that the hippocampus is important for the rapid extraction of 

temporal structure in the environment (Bornstein & Daw, 2012; Curran, 1997; Harrison, 

Duggins, & Friston, 2006; Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 2014; 

Schapiro, Kustner, & Turk-Browne, 2012; Strange, Duggins, Penny, Dolan, & Friston, 

2005; Turk-Browne, Scholl, Chun, & Johnson, 2009; Turk-Browne, Scholl, Johnson, & 

Chun, 2010). Such temporal structure is typically created in experiments by varying the 

strength of transition probabilities between adjacent items in a continuous sequence. 

Transitions to improbable events can drive prediction error, which has in turn been argued to 

support event segmentation (Reynolds, Zacks, & Braver, 2007; Zacks, Kurby, Eisenberg, & 

Haroutunian, 2011). Relying only on variation in strength of transition probabilities is 

limiting, though, as real world temporal events often involve more complex, higher-order 

relationships. Indeed, a recent study (Schapiro, Rogers, Cordova, Turk-Browne, & 

Botvinick, 2013) demonstrated that humans can learn a form of higher-order structure 

known as temporal community structure (Fortunato, 2010; Newman, 2003), even though 

strength of transition probabilities, and therefore strength of prediction errors, were 

uninformative. Here we show that the hippocampus can learn such higher-order structure, 

extending beyond its known role in statistical learning of transition probabilities. 

Specifically, we demonstrate that representations of items in the hippocampus cluster 

according to community membership, that the hippocampus deactivates at the boundaries 
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between communities, and that the hippocampus selectively couples with other regions 

involved in event learning at different points in the structure.

Detailed methods can be obtained from a prior publication on which this re-analysis was 

based (Schapiro et al., 2013). To summarize, participants were exposed to sequences of 

stimuli generated from a random walk on a graph with three communities (Figure 1A) prior 

to, and during, an fMRI scan (prior to the scan, stimulus duration was 1.5 s with no ISI, and 

during the scan it was 1 s with 1, 3 or 5 s ISI to facilitate estimation of the response to 

individual items). In graph analysis, a community refers to a cluster of nodes that share a 

large number of connections among themselves, relative to the number of outgoing 

connections they share with other graph nodes. Each node was randomly assigned a unique 

abstract visual stimulus, with edges between nodes indicating possible transitions between 

stimuli. The graph never gave rise to moments of prediction error because each node had 

exactly four neighbors and the transition to each neighbor occurred with equal probability (.

25). Despite this, there was strong temporal structure: nodes in the same community were 

preceded and followed by overlapping sets of nodes. In other words, nodes in the same 

community shared neighbors, whereas those from different communities did not. 

Participants were not informed about the structure and performed a cover task of pressing a 

button on each trial to indicate whether or not they thought the image was rotated from its 

usual orientation.

Previous work, by Schapiro et al. (2012), has shown that the patterns of activity in the 

hippocampus evoked by two items become more similar over time if those items are part of 

the same event. In that work, the events were defined by a high frequency of co-occurrence 

of the items within an event and stronger transition probabilities within compared to 

between events. We first tested whether the hippocampus would show an analogous pattern 

similarity effect for items from the same community, despite the fact that co-occurrence 

frequency and transition probability strength were uniform (all sequences of a given length 

occur equally frequently in a random walk on the graph). Previous whole-brain searchlight 

analyses of the present dataset identified the left inferior frontal gyrus (IFG), left anterior 

temporal lobe (ATL), and left superior temporal gyrus (STG) as having representations 

whose similarity reflected this community structure (Schapiro et al., 2013).

We extend these findings with a hypothesis-driven region-of-interest (ROI) analysis of the 

hippocampus, motivated by the growing literature on the role of the hippocampus in basic 

statistical learning. Specifically, we assessed representational similarity in bilateral 

hippocampal ROIs defined from a probabilistic atlas of the medial temporal lobe (MTL; 

Hindy & Turk-Browne, 2015). We calculated the average blood oxygenation level-

dependent (BOLD) activity patterns evoked by each of the 15 stimuli across all voxels in 

each ROI and across 3x3x3 voxel searchlights within these ROIs. We then calculated the 

Pearson correlation between the voxel pattern vector corresponding to each item and the 

vector for each other item, yielding a 15 by 15 similarity matrix. To look for the predicted 

similarity structure, we compared the mean Fisher-transformed correlation between items in 

the same community to that for items across different communities, controlling for distance 

traveled in the graph between items.
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First considering stimulus-specific activity patterns across all voxels in the hippocampus 

(Figure 1B), we found greater within- than across-community similarity in the bilateral 

hippocampus (t[19] = 2.15, p = .045) and left hippocampus (t[19] = 2.14, p = .046; right 

hippocampus: t[19] = 1.32, p = .203). A multidimensional scaling (MDS) plot of the 

bilateral hippocampal representations provides a visualization of this similarity structure 

(Figure 1C), where each dot represents one item and the distance between two dots 

corresponds to the average similarity across subjects between those two items. (Statistics 

were calculated from the full correlation matrix for each subject, not from this scaled 

representation of average distances.) Items from the same community are clustered, 

demonstrating the learning of representations that reflect the community structure of the 

graph.

To explore the possibility of more local pattern similarity, we also ran searchlights within 

each hippocampus ROI, and found one searchlight in the right anterior hippocampus with 

representational structure that reflected the community structure of the graph (p < .001 

uncorrected; Figure 1D). The fact that right but not left hippocampus was revealed in this 

analysis, whereas the reverse was true in the full ROI analysis, could potentially reflect a 

more focal representation in this hemisphere.

To further explore which subregions of the hippocampus might be contributing to these 

effects, we ran the same analyses across all voxels within hippocampal subfields CA1, 

CA2/3/DG, and subiculum, in each hemisphere. Though we did not scan at high enough 

resolution to confidently resolve these subfields, we performed exploratory analyses using 

probabilistic atlas labels (Hindy & Turk-Browne, 2015) derived from a database of manual 

anatomical segmentations. Aly and Turk-Browne (2015) describe the procedures used for 

these segmentations, which involved tracing based on anatomical landmarks in each coronal 

slice of the MTL at .44 x .44 mm in-plane, 1.5 mm thickness resolution. The only subfield 

that had reliably different within- vs. across-community similarity was left CA1 (t[19] = 

2.60, p = .018; all other ps > .286). Though this exploratory analysis is suggestive that CA1 

may be the most involved subfield of the hippocampus, it is important to note that the p 

value does not survive Bonferroni correction for three subregions with two hemispheres 

each (alpha = .05/6 = .008), and, as noted earlier, the CA1 label is only approximate at this 

resolution. Future work will be needed to better understand the contribution of different 

hippocampal subfields.

We also used the probabilistic atlas of the MTL (Hindy & Turk-Browne, 2015) to test 

whether MTL cortex, in addition to hippocampus, might show these pattern similarity 

effects, as had been found in a prior study of pattern similarity during statistical learning 

(Schapiro et al., 2012). We looked at pattern similarity across all voxels in each hemisphere 

of entorhinal cortex, perirhinal cortex, and parahippocampal cortex, and did not find 

evidence for greater similarity in MTL cortex for items within the same community versus 

from different communities (all ps > .137). However, there was a hint of an effect when the 

voxels in these subregions were pooled into one large MTL cortex ROI (p = .066).

We next investigated whether the hippocampus is sensitive to the boundaries between 

events. In previous general linear model (GLM) analyses, we found that the medial 
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prefrontal cortex (mPFC) was active within a community traversal and transiently 

deactivated at community boundaries (Schapiro et al., 2013). Using the same GLM, we 

averaged the beta weights for the regressor coding for community boundaries across voxels 

in the hippocampal ROIs (Figure 2A). The overall level of activity in the hippocampus was 

indeed sensitive to boundaries, in the same manner as mPFC (Figure 2B): The hippocampus 

was relatively active within an event, and then deactivated at event boundaries (bilateral: 

t[19] = 2.27, p = .035; right: t[19] = 2.38, p = .028; left: t[19] = 1.86, p = .079). We 

examined whether this effect was specific to the hippocampus and mPFC by testing for it 

within the other regions we previously found to be involved in this task, including IFG, 

insula, ATL, and STG (Schapiro et al., 2013). The beta weights for the boundary regressor 

were not reliable in any of these other ROIs (ps > .179). These results suggest that the 

hippocampus is not only learning representations of items that reflect community structure, 

but that its overall activity is sensitive to event boundaries.

The fact that the hippocampus is both involved in item representation and shows sensitivity 

to boundaries suggests that it might be an important hub in the network of regions involved 

in learning higher-order temporal structure. To evaluate this idea, we performed a functional 

connectivity analysis in which we contrasted connectivity immediately after a boundary 

event with connectivity during periods within a community traversal. We focused on 

connectivity between the hippocampus (defined anatomically), the mPFC, and the left IFG 

(the latter two defined functionally). We chose the mPFC because it was the region sensitive 

to community boundaries in the whole-brain GLM (Schapiro et al., 2013). We chose the left 

IFG because this region was implicated by two different analyses – the pattern similarity 

analysis, as well as an adaptation analysis, which assessed representational similarity in a 

different way (Schapiro et al., 2013). The left IFG has also been implicated in other 

statistical learning studies (Karuza et al., 2013; Turk-Browne et al., 2009).

To assess functional connectivity, we calculated correlations between the BOLD timeseries 

from these ROIs. We first fit a nuisance GLM to remove sources of noise that induce 

spurious correlations (Fox & Raichle, 2007). The GLM included regressors for head 

movement in six directions, global mean signal, mean signal in ventricles, and mean signal 

in white matter. We excluded voxels with very high variance (more than three standard 

deviations outside of the mean variance), and then averaged the residual timeseries across 

voxels within each ROI.

Functional connectivity was contrasted between two 6-s (3 TR) periods: (1) boundary 

periods, 6 to 12 s after a boundary occurred within a Hamiltonian path (see Schapiro et al. 

(2013) for explanation of Hamiltonians); and (2) within-community periods, 4 s before to 2 s 

after a boundary occurred within a Hamiltonian path (see Figure S1). Taking into account 

the temporal lag of the hemodynamic response, these periods corresponded, respectively, to 

the neural response between the beginning of the boundary stimulus to a few seconds after 

the boundary, and to the same length of neural activity before the boundary.

We used a background connectivity approach (Al-Aidroos, Said, & Turk-Browne, 2012; 

Norman-Haignere, McCarthy, Chun, & Turk-Browne, 2012) to control for the potentially 

spurious contribution of stimulus-evoked activity to functional connectivity. Specifically, for 
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each TR in a period, we subtracted the mean evoked activity for the corresponding timepoint 

across all periods of that type. The remainder thus had an across-period mean of zero at each 

timepoint, preventing evoked responses from confounding functional connectivity on 

average. All periods of a given type were then concatenated to produce a long timecourse. 

The activity left over from this procedure is thought to reflect spontaneous fluctuations. If 

such fluctuations are correlated between regions over time, these regions can be said to be 

part of the same functional network. Insofar as these correlations change according to the 

type of period (i.e., boundary vs. within-community), then different networks may underlie 

processing at these different points in the graph. To test for this kind of effect, we calculated 

the Pearson correlation of the concatenated timecourses across ROIs for each of the period 

types and Fisher transformed the coefficients prior to statistical testing.

We found an interaction in the connectivity profiles in bilateral hippocampus and right 

hippocampus (Figure 3): The timecourses in these regions were more correlated with mPFC 

at community boundaries but more correlated with left IFG within communities (bilateral: 

t[19] = 1.88, p = .076; right: t[19] = 3.13, p = .006); we did not find this interaction in left 

hippocampus (t[19] = .219, p = .829). There was no change in correlation directly between 

mPFC and left IFG for boundary vs. within-community periods (t[19] = .115, p = .910). This 

double dissociation in connectivity is unlikely to be caused by factors such as differences in 

SNR or ROI size, as the hippocampal connectivity with left IFG and with mPFC is similar in 

size but present in different conditions. We ran several additional control analyses, which 

further validated these findings (see Supporting Information). These results therefore 

suggest that the hippocampus may interact more with the mPFC when processing the move 

to a new community (despite the fact that both regions are less active overall at this time), 

and may interact more with left IFG when processing the internal structure of an event.

In summary, we found that the hippocampus was sensitive to higher-order, community 

structure. Neural representations of objects in the same vs. different communities became 

more similar to each other in the hippocampus. Moreover, the hippocampus was more active 

within a community than at a community boundary. When examining functional 

connectivity during the task, the hippocampus interacted more with the left IFG — a region 

with analogous representational similarity — within communities, and it interacted more 

with the mPFC — a region that also detected event boundaries — at the boundaries.

The pattern similarity results suggest that the hippocampus rapidly comes to represent items 

in terms of their temporal context, which is consistent with other recent findings and theories 

(Davachi & DuBrow, 2015; Ezzyat & Davachi, 2014; Howard, Shankar, & Jagadisan, 2011; 

Hsieh, Gruber, Jenkins, & Ranganath, 2014; Schapiro et al., 2012). The present findings 

suggest that this learning is more sophisticated than simply associating adjacent items or 

tracking transition probabilities. A common mechanism that might account for the previous 

as well as present findings is that the hippocampus can learn to represent items in terms of 

the similar predictions that they make about the future – here, communities can be identified 

by the fact that items within them make similar predictions about what items can come next 

(Schapiro et al., 2013).
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The finding that the hippocampus was less active at event boundaries may be related to work 

showing that event boundaries disrupt memory processes (DuBrow & Davachi, 2013; 

Ezzyat & Davachi, 2011; Speer & Zacks, 2005). The hippocampus may bind the 

observations within each event into one episode, and clear its activity as it moves on to the 

next episode. The fact that functional connectivity increases between mPFC and 

hippocampus at boundaries may suggest that this transition phase, despite corresponding to 

lower activity in both areas, is still meaningfully processed.

An important goal for future work will be to understand whether learning happens 

independently and locally in the hippocampus, mPFC, and left IFG, or whether one region 

drives changes in the others. The fact that the hippocampus learns so rapidly compared to 

cortex (McClelland, McNaughton, & O’Reilly, 1995) and that a patient with MTL damage 

cannot learn new temporal structure (Schapiro et al., 2014) suggests that the representational 

similarity effects reported previously in left IFG, ATL, and STG (Schapiro et al., 2013) may 

have been mediated by the hippocampal changes. The functional connectivity finding that 

the hippocampus communicates with left IFG within communities and with mPFC at 

community boundaries lends further support to the idea that the hippocampus is a hub 

driving the effects in other regions. One possibility to explore is that the hippocampus 

mediates these changes initially, but that they can become hippocampally independent over 

a consolidation period (Durrant, Cairney, & Lewis, 2013; McClelland et al., 1995; Squire, 

1992; Yamashita et al., 2009).

In conclusion, our findings provide new insight into the role of the hippocampus in 

statistical learning and event representation. The hippocampus is able to rapidly learn the 

structure in these community-based sequences despite there being no transition probability 

or frequency cues to anchor on. The findings suggest that the hippocampus may be a key 

player in a network of regions involved in new event learning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pattern similarity in the hippocampus
(A) Graph used to generate sequences of stimuli. An abstract visual stimulus was assigned to 

each node and the edges represent possible transitions between stimuli. The three graph 

communities are colored in purple, green, and orange, with community boundary nodes in a 

lighter shade. (B) Mean pattern similarity (Fisher transformed correlation) for within and 

between community pairs of items when defining patterns across all voxels in an ROI. Error 

bars denote ± 1 within-subject SEM (Morey, 2008). * p < .05. (C) MDS for visualization of 

the representational clustering in the bilateral hippocampus. Colors indicate correspondence 

to the nodes in the graph. (D) Voxel centers of searchlights that showed greater similarity 

within- vs. across-community within right hippocampus (outlined with green border). The 

searchlight surrounding the brightest voxel passed a threshold of p < .001 uncorrected.
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Figure 2. Boundary effects in the hippocampus
(A) Illustration of the regressor used in the GLM to examine sensitivity to boundaries, with 

higher activity within a community compared to at event boundaries. (B) The average beta 

weights from the boundary regressor across voxels in hippocampal ROIs. The negative beta 

values reflect lower activity at community boundaries compared to within communities. 

Error bars denote ± 1 SEM. * p < .05; § p < .1.

Schapiro et al. Page 10

Hippocampus. Author manuscript; available in PMC 2016 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Background connectivity with the hippocampus
Connectivity between mPFC and hippocampus and between left IFG and hippocampus 

within a community and at community boundaries. Error bars denote ± 1 SEM. * p < .05; ** 

p < .01; § p < .1.
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