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Abstract

Background—Type 2 cytokine-related (i.e., type 2) immune responses associated with 

development of antigen-specific Immunoglobulin E antibodies (IgE) can contribute to pathology 

in allergic diseases and to fatal anaphylaxis. However, recent findings in mice indicate that IgE 

also can enhance defense against honeybee venom.

Objective—We tested whether IgE antibodies, IgE-dependent effector mechanisms, and a local 

anaphylactic reaction to an unrelated antigen can enhance defense against Russell's viper venom 

(RVV) and determined whether such responses can be influenced by immunization protocol or 

mouse strain.

Methods—We compared the resistance of RVV-immunized wild-type, IgE-deficient, and 

Fcer1a-deficient mice following injection of a potentially lethal dose of RVV.

Results—A single prior exposure to RVV enhanced the ability of wild-type mice, but not mice 

lacking IgE or functional FcεRI, to survive challenge with a potentially lethal amount of RVV. 

Moreover, IgE-dependent local passive cutaneous anaphylaxis in response to challenge with an 

antigen not naturally present in RVV significantly enhanced resistance to the venom. Finally, we 

observed different effects on resistance to RVV or honeybee venoms in BALB/c versus C57BL/6 

mice which had received a second exposure to that venom prior to challenge with a high dose of 

that venom.
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Conclusion—These observations illustrate the potential benefit of IgE-dependent effector 

mechanisms in acquired host defense against venoms. The extent to which type 2 immune 

responses against venoms can decrease pathology associated with envenomation seems to be 

influenced by the type of venom, the frequency of venom exposure, and the genetic background of 

the host.
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Introduction

Venoms are complex mixtures of toxic molecules1-3 employed by many different animal 

species to fulfill functions of deterrence, defense, and/or predation4, 5. Millions of years of 

co-evolution with venomous animals have allowed certain mammals, including those that 

eat or are the prey of venomous creatures, to develop innate defense mechanisms that can 

increase their basal (or “innate”) resistance against venoms and their toxins. Such 

specialized defense strategies include producing circulating serum proteins that efficiently 

neutralize venom components6, 7 and conserving mutations, e.g., in proteins targeted by 

toxins8, which confer increased resistance to that toxin.

We and others have been interested in the possibility that mast cells (MCs) can represent an 

important component of the innate defense of vertebrates to animal venoms. MCs populate 

virtually all vascularized mammalian tissues9-11. When appropriately activated, MCs can 

release cytoplasmic granules containing a broad spectrum of pre-formed mediators into the 

surrounding tissues11. Notably, many components of animal venoms can induce such MC 

degranulation12 and some mediators stored in MC granules have the ability to neutralize the 

toxicity of components of animal venoms13-17. Higginbotham and colleagues showed that 

the venoms of the honeybee15 and the highly poisonous18, 19 Russell's viper14 can induce 

degranulation of mouse MCs in vivo14, 15, and that the toxicity of those venoms was 

significantly reduced upon their ex vivo incubation with heparin, the serglycin proteoglycan 

stored in MC cytoplasmic granules20. More recently, mice deficient in MCs or certain MC-

associated proteases were used to show that MCs can importantly contribute to innate host 

defense against venoms13, 16, 17, 21, or toxic venom components13, 16, 17, of honeybees16, 21, 

two scorpions13, and various reptiles13, 16, 17.

Since IgE antibodies can enhance MC sensitivity and responsiveness against specific 

antigens, and in light of evidence that MCs can enhance innate resistance to 

venoms13, 16, 17, 21, Profet22, Metz et al.16, and Palm et al.23 speculated that IgE antibodies 

may also play a protective role in acquired resistance to venoms. However, it is well known 

that humans and other mammals which develop IgE antibodies to venom components from 

honeybees2, 24, reptiles25-29, or other animals30-33 can exhibit anaphylaxis, a catastrophic 

and potentially fatal acute allergic reaction, upon subsequent venom exposure34, 35. Such 

observations suggested that the development of an acquired T helper cell type 2 (TH2 or 
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type 2) immune response and associated IgE directed against venom components probably 

would increase, not decrease, the pathology associated with envenomation.

Recently, our group21 and Palm et al.36 reported that the development of a type 2 immune 

response to honeybee venom (BV)21 or BV phospholipase A2 (bvPLA2)36 could increase 

the resistance of mice (as quantified by body temperature21, 36 and/or survival21) against a 

near-lethal dose challenge of whole BV21 or bvPLA2
36. This effect was dependent on the 

high affinity IgE receptor (i.e., FcεRIα21, 36) and IgE antibodies21. In addition, we also 

observed that injection of mice with sublethal amounts of Russell's viper venom (RVV), a 

snake venom of high clinical relevance18, 19, induced a type 2 immune response that 

enhanced the survival of mice injected with a potentially lethal amount of that venom21.

In the present study, we aimed to define the importance of IgE antibodies, FcεRIα, FcεRIα+ 

IgE effector cells, and local IgE-mediated MC activation in the orchestration of systemic 

resistance against RVV. In addition, we evaluated the influence of repeated exposure to 

venom and the genetic background of the host on acquired protection against challenge with 

a potentially lethal amount of RVV or BV.

Methods

Mice

All animal care and experiments were carried out in accord with current National Institutes 

of Health guidelines and with the approval of the Stanford University Institutional Animal 

Care and Use Committee. Age-matched 5 to 7 week-old WT C57BL/6J or BALB/cJ female 

mice were purchased from Jackson Laboratories. All transgenic mouse strains were bred and 

housed with the respective (in house-bred) control mice in the Stanford Animal facilities 

under specific pathogen free conditions. Details regarding transgenic strains can be found in 

this article's Online Repository at www.jacionline.org.

Reagents

Russell's viper (Daboia russelii) venom was obtained from Sigma (Lots SLBB5602V and 

SLBK7058V). Details regarding additional reagents can be found in this article's Online 

Repository at www.jacionline.org.

Venom injections

Briefly, mice were shaved at the injection sites 24 h before injections and were consistently 

treated in the morning (without anesthesia) by administering subcutaneous (s.c.) injections 

of 50 μL PBS alone or containing indicated amounts of RVV or BV. Additional details 

regarding injections, mouse handling, quantification of scratching behavior and descriptions 

of experiments involving serum transfer or multiple exposure to venoms prior to high dose 

venom challenge are provided in this article's Online Repository at www.jacionline.org.

Other methods

Detailed descriptions of the following methods are provided in the Online Repository at 

www.jacionline.org: histology and assessment of MC degranulation; analysis of skin and 
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white blood cells by flow cytometry; measurement of RVV-specific IgG1 and IgE, BV-

specific IgG1, bvPLA2-specific IgE and total IgE antibodies; anti-dinitrophenol-conjugated 

human serum albumin (DNP-HSA)-specific IgE-dependent passive cutaneous anaphylaxis; 

antibody-mediated neutrophil depletion; generation and degranulation analysis of bone 

marrow-derived cultured mast cells.

Statistical analysis

Statistical tests were performed using GraphPad PRISM 6 software. Two-tailed Student's t-

test (unpaired), Mann-Whitney test, Mantel-Cox, or Chi-Square tests were performed as 

noted in the figure legends. ns, not significant (P>0.05); *, P < 0.05; **, P < 0.01; ***, P < 

0.001.

Results

Mast cells rapidly degranulate upon injection of RVV and contribute to enhanced innate 
resistance to RVV

Injection of RVV s.c. into naïve C57BL/6 WT mice elicited intense scratching of that site 

(data not shown), rapid degranulation of skin MCs (Fig 1, A), local hemorrhage (Fig 1, B), 

and tissue infiltration with neutrophils and basophils (Fig 1, C,D), whereas the small 

numbers of eosinophils at such sites were not significantly different in sites injected with 

RVV versus PBS (data not shown). Systemically, RVV injection induced an increased 

percentage of blood neutrophils (see Fig. E1 in the Online Repository) and marked 

hypothermia (Fig 1, E). However, almost all mice appeared to recover fully within 24 h (Fig 

1, E-F). Pre-treatment of C57BL/6 and BALB/c mice with the H1 anti-histamine, 

triprolidine, but not with the platelet-activating factor (PAF) receptor antagonist, CV-6209, 

significantly decreased RVV-induced hypothermia without affecting mortality (Fig. 1, G-H 

and see Fig. E2 in the Online Repository). However, in C57BL/6 mice, combined treatment 

with the anti-histamine and PAF receptor antagonist did not protect against RVV-induced 

hypothermia and significantly increased RVV-induced mortality (Fig. 1, G-H), while such 

treatment decreased hypothermia but did not influence mortality in RVV-injected BALB/c 

mice (see Fig. E2 in the Online Repository). These findings suggest that there might be 

strain-dependent differences in the mechanisms contributing to responses to RVV in naïve 

mice.

We next evaluated the possible contributions of MCs, basophils and neutrophils to the type 2 

humoral response induced by RVV. Injection of a sub-lethal dose of RVV in basophil 

deficient Mcpt8-Crehet;DTAfl/− mice or MC- and basophil-deficient Cpa3-Cre+;Mcl-1fl/fl 

mice (which are markedly deficient in MCs and have an ~75% reduction in blood 

basophils37) induced serum levels of IgG1 and IgE antibodies not significantly different 

from those in the corresponding littermate controls (see Fig. E3, B-E in the Online 

Repository). Interestingly, anti-GR-1-treated neutrophil-depleted C57BL/6 mice developed 

similar levels of IgG1 antibodies but significantly higher levels of IgE antibodies than did 

the isotype control antibody-treated mice (see Fig. E3, G-H in the Online Repository). These 

results provide evidence that neither mast cells, basophils nor neutrophils are necessary for 

the induction of a type 2 humoral immune response to RVV.
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We next evaluated the possible contribution of MCs to innate resistance against RVV by 

testing two different types of MC-deficient mice (Fig 2, A). C57BL/6-KitW-sh/W-sh mice 

virtually lack MCs (but exhibit moderately increased numbers of blood basophils38) due to a 

mutation in c-kit, the gene encoding stem cell factor receptor39, 40. The MC deficiency of 

C57BL/6-Cpa3- Cre+;Mcl-1fl/fl mice is independent of c-kit and accompanied by decreased 

blood basophil numbers37. We found that each type of MC-deficient mouse exhibited 

significantly more susceptibility to RVV toxicity, assessed by extent of hypothermia (Fig 2, 

B-E) and/or survival (Fig 2, C-F), than did the corresponding control mice. MC-deficient 

mice also exhibited an almost complete absence of the scratching that was elicited in control 

mice (Fig 2, D-G).

IgE- and FcεRIα-dependent effector mechanisms contribute to increased survival of mice 
challenged with RVV

To assess whether IgE antibodies can contribute to acquired host resistance to RVV21, we 

injected a low dose of RVV into IgE-deficient C57BL/6-Igh7−/− and IgE-sufficient 

C57BL/6-Igh7+/+ mice (Fig 3, A). RVV induced RVV-specific IgG1 antibodies in both 

Igh7−/− and Igh7+/+ mice (Fig 3, B), but no detectable serum IgE in Igh7−/− mice (Fig 3, 

C). When challenged s.c. with a potentially lethal dose of RVV 3 weeks after their first 

exposure to RVV, C57BL/6-Igh7+/+ mice, but not C57BL/6-Igh7−/− mice, exhibited 

enhanced resistance to the RVV-induced hypothermia and mortality (Fig 3, D-E). The same 

was true for the comparison between IgE-deficient and IgE-sufficient BALB/c mice (see Fig 

E4 in the Online Repository).

Serum transfer studies also supported a critical role for IgE antibodies in acquired resistance 

to RVV; enhanced protection could be transferred passively to naive C57BL/6 mice (Fig 3, 

F) by injecting them with 250 μl of serum collected from RVV-exposed WT donor mice 

(RVV-serum) that contained significantly increased levels of RVV-specific IgG1 and IgE 

antibodies (Fig 3, G-H, respectively), but not with the same amount of serum obtained from 

PBS mock-immunized mice (PBS-serum) (Fig 3, F, I-J). Moreover, RVV-serum from WT 

mice lost its protective potential when the contained IgE antibodies were neutralized either 

by heating (which destroys the ability of IgE to bind to FcεRI and induce passive cutaneous 

anaphylaxis without affecting the function of other antibody isotypes41, 42) or treatment with 

an anti-IgE antibody (Fig 3, F, I -J).

Immune functions of IgE are primarily mediated by effector cells, including MCs and 

basophils, which express FcεRI43, 44. Both C57BL/6-Fcer1a−/− mice (that lack the IgE-

binding component of FcεRI [i.e., FcεRIα]) and WT animals developed similar type 2 

humoral responses after s.c. injection of RVV (Fig 4, A-C), but enhanced resistance to RVV 

challenge could only be detected in mice expressing the complete IgE receptor (Fig 4, D-E). 

Furthermore, in passive immunization experiments, C57BL/6-Cpa3-Cre+;Mcl-1fl/fl mice 

exhibited no difference in survival after RVV challenge whether they had received untreated 

RVV-serum from C57BL/6 WT mice (which contained functionally active venom-specific 

IgE antibodies) versus control serum from PBS-mock-sensitized C57BL/6 WT mice (Fig 4, 

F-H).
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Taken together, these results demonstrate that IgE antibodies and FcεRIα-bearing effector 

cells contribute importantly to the acquired resistance of RVV-immunized mice against a 

high dose RVV challenge.

A local anaphylactic reaction to an unrelated antigen can increase survival of mice 
challenged with a potentially lethal amount of RVV

Immunization with honeybee venom-derived PLA2 (i.e., bvPLA2), which represents 

approximately 10% of the dry weight of whole BV45, can reduce the toxicity-related 

hypothermia induced by subsequent challenge of the mice with a high dose of the same 

allergen in an antibody- and FcεRIα-dependent manner36. However, it is not clear whether 

an IgE response to a single constituent of an animal venom would be able to enhance 

resistance to the entire group of toxins contained in that venom.

To investigate this, we used a well-characterized monoclonal mouse anti-dinitrophenol 

(DNP) IgE antibody46, which can sensitize mouse MCs to degranulate in response to 

challenge in vivo with DNP coupled to human serum albumin (DNP-HSA)47, 48. 

Specifically, we passively sensitized WT C57BL/6 and BALB/c mice against DNP-HSA by 

s.c. injections of anti-DNP IgE (or with anti-DNP IgG1 or IgG2b as controls), or mock-

sensitized them with saline, then challenged the mice s.c. at the same site 24 h later by 

injecting a mixture of RVV and DNP-HSA (Fig 5, A). We used amounts of anti-DNP IgE 

and DNP-HSA which were able to induce a local increase in vascular permeability at the 

DNP-HSA injection site without resulting in systemic hypothermia, and showed that the 

amount of DNP-HSA used did not by itself influence the toxicity of RVV (see Fig E5 in the 

Online Repository). We found that pre-sensitization with anti-DNP IgE significantly 

increased the resistance of C57BL/6 (Fig 5, B,C) or BALB/c (see Fig E5, H-I in the online 

repository) mice to challenge with a potentially lethal amount of RVV admixed with DNP-

HSA. However, pre-sensitization of mice with anti-DNP IgG1 or IgG2b, DNP-specific IgG 

isotypes with the capacity to activate effector cells via Fcγreceptors49, not only failed to 

increase protection but also resulted in increased hypothermia at early time points compared 

to vehicle-treated or IgE-sensitized mice (Fig 5, B,C). Compared to passive sensitization 

with a 10 fold higher amount of anti-OVA IgE, anti-DNP IgE significantly enhanced the 

survival of IgE-deficient mice challenged with a potentially lethal amount of RVV admixed 

with DNP-HSA (Fig E6). By contrast, IgE-deficient mice passively sensitized with a 10:1 

mixture of anti-OVA IgE and anti-DNP IgE exhibited a level of survival that was 

intermediate between that observed in mice which received either anti-DNP IgE alone or 

anti-OVA IgE alone (Fig E6, C). This result suggests that the effect on survival of antigen-

specific IgE in this model may depend on the proportion of antigen-specific vs. antigen non-

specific IgE on FcεRI-bearing effector cells.

These findings show that local tissue responses mediated by IgE and antigen can enhance 

host resistance against RVV even when that antigen is not a native constituent of the venom, 

and are consistent with the general idea that the host needs only to generate an IgE response 

against a limited number of the components of a complex venom (perhaps as few as one 

component) in order to manifest enhanced acquired resistance to that venom.
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Influence of venom type, genetic background, and venom exposure protocol on the 
protective effects of type 2 immune responses

IgE-associated type 2 immune responses induced by a single exposure to honeybee venom21 

or Russell's viper venom (this study) can increase the resistance of C57BL/6 or BALB/c 

mice to challenge with a potentially lethal amount of that venom. However, in nature, some 

animals may be exposed to the same venom more than twice. To analyze the potential 

effects of multiple venom exposures on acquired resistance to that venom, we injected mice 

s.c. with RVV (or PBS as a control) once at day 0, then some RVV-injected mice received a 

second RVV s.c. injection on day 21 (or got PBS as a control), and then all mice were 

challenged with a high dose of RVV at day 42 (Fig 6, A). C57BL/6 or BALB/c mice that 

had received 2 prior RVV injections (RVV-RVV mice) had significantly higher levels of 

RVV-specific IgG1 (Fig 6, B-C), total IgE (Fig 6, D-E), and RVV-specific IgE (Fig 6, F-G) 

at day 35 than did the mice that received only a single RVV injection (RVV-PBS mice). 

Both RVV-RVV and RVV-PBS C57BL/6 mice developed less hypothermia upon RVV 

challenge than did control mice that had received two mock immunizations with PBS (PBS-

PBS mice) (Fig 6, H). However, while survival of C57BL/6 mice injected once or twice 

with RVV was similar, the survival of the RVV-RVV mice did not quite achieve statistical 

significance versus that in the pooled PBS-PBS group (P = 0.07) (Fig 6, J). In BALB/c 

mice, animals injected once or twice with RVV were significantly more resistant than the 

PBS-PBS control mice to the hypothermia and the mortality induced by challenge with a 

potentially lethal dose of RVV (Fig 6, I-K).

We also tested the consequences of a second exposure to BV on responses to challenge with 

a potentially lethal amount of BV in C57BL/6 versus BALB/c mice (Fig 7, A). Serum levels 

of BV-specific IgG1 (Fig 7, B,C), total IgE (Fig. 7, D,E) and bvPLA2-specific IgE (Fig 7, 

F,G) were significantly higher in the serum of C57BL/6 mice that had received 2 exposures 

to BV (BV-BV mice) as compared to mice that had received only one (BV-PBS mice), 

whereas the differences in antibody levels in the two corresponding groups of BALB/c mice 

only were statistically significant in the case of bvPLA2-specific IgE. C57BL/6 mice that 

had been injected once with BV prior to potentially lethal challenge showed significantly 

increased survival as compared to PBS-PBS control animals, confirming our prior 

findings21, but this was not true for the C57BL/6 mice which were injected twice with BV 

prior to high dose BV challenge (Fig 7, J). Moreover, these BV-BV C57BL/6 mice exhibited 

a drop in body temperature in response to high dose BV challenge that was significantly 

more profound than that observed in the BV-PBS mice over the entire first 3 h of the 

response and that was even significantly worse than that of the PBS-PBS mice at 15 min 

after BV challenge (Fig 7, H). In contrast to the results with C57BL/6 mice, in BALB/c mice 

challenged with high dose BV, hypothermia was not significantly exacerbated in BV-BV 

versus BV-PBS mice (Fig 7, I) and survival was significantly enhanced by two BV 

exposures whereas the effect on survival did not reach statistical significance in the BVPBS 

mice (P = 0.1) (Fig 7, K). Notably, the strain-dependent differences observed in the 

responses to high dose BV in mice immunized once or twice with low dose BV did not 

appear to reflect differences in the ability of IgE antibodies from these mice to sensitize 

MCs to degranulate in response to BV challenge in vitro (see Fig E7 in the online 

repository).
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Discussion

Antigen-specific IgE antibodies and FcεRI-expressing effector cells constitute a sensitive, 

specific, and powerful module of acquired immunity that can respond within minutes to 

exposure to small amounts of antigen by initiating local or systemic inflammatory 

reactions9, 11. It appears plausible that this rapid and efficient, but also potentially 

dangerous, effector mechanism evolved primarily to operate in situations that represent a 

substantial threat for the organism. In her “toxin hypothesis of allergy”, Margie Profet 

proposed that toxins and venoms represent examples of such substantial threats and that 

“allergic reactions” originally evolved as immune defense mechanisms against such noxious 

substances22.

Recently, our lab21 and others36 provided in vivo experimental evidence that IgE antibodies 

can indeed contribute to protective immunity in mice against either whole BV21 or the 

potentially toxic BV enzyme, bvPLA2
36. The results of the current study indicate that 

acquired IgE-mediated immune resistance is not restricted to BV, but can also be deployed 

as a potent adaptive immune defense mechanism against a reptile venom of high clinical 

relevance19. Notably, the immunization and challenge doses of RVV used in this study (25 

μg and 50-100 μg, respectively), in relation to the body weight of a mouse, are similar to the 

amounts of venom that a human might be exposed to if bitten by a Russell's viper19. Taken 

together, our findings support the idea that IgE antibodies and FcεRIα-bearing effector cells 

may constitute part of a general defense strategy against animal venoms, in addition to 

having roles in host responses to certain macroparasites50.

We also found that a local IgE-dependent reaction to an unrelated antigen (i.e., DNPHSA) 

not ordinarily contained in RVV can enhance the survival of mice subjected to challenge 

with a potentially lethal amount of RVV. Our results thus support the conclusion that 

mounting an IgE-dependent reaction to a single antigen can be sufficient to enhance host 

resistance to the complex mixture of toxins contained in the venom51. The effector 

mechanisms involved in such enhanced resistance remain to be defined, but may include 

MC-mediated venom detoxification13-17 and the local dilution and/or interference with the 

systemic spread of the toxins22, 23.

Ever since it was discovered that IgE antibodies can mediate anaphylactic reactions52-55, the 

development of IgE antibodies specific for certain antigens, including components of 

venoms25, 26, 29, 31, 33, 56, 57, has primarily been regarded as a risk factor for the 

development of deleterious IgE-mediated hyperreactivity upon subsequent antigen exposure. 

Yet a recent survey of more than 7,000 German adults58, 59 showed a prevalence of 22.6 % 

for sensitization (i.e., having specific serum IgE antibodies) against hymenoptera (wasp and 

bee) venom in the general public58, while the lifetime prevalence of diagnosed insect venom 

allergy in that group is only 2.8 %59. Indeed, it is well known from other studies that the 

vast majority (~80%) of people who have demonstrable IgE antibodies specific for 

hymenoptera venoms have no history of manifesting systemic reactions to such venoms56, 60 

and that the presence of antigen-specific IgE antibodies, taken in isolation, is not predictive 

of severe clinical reactivity to the recognized antigens61-66. It is therefore possible that, in 
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some humans, the presence of anti-venom IgE antibodies may be beneficial, e.g., by 

decreasing venom toxicity and tissue damage upon subsequent venom exposure.

It is thought that multiple factors, such as differences in pathogen exposure during 

childhood, the characteristics of the host's microbiome, and many other environmental 

influences, as well as genetic background and the nature and frequency of exposure to 

potential allergens, can contribute to the variation in individual susceptibilities to develop 

clinical allergies67-70. Here we compared the resistance of C57BL/6 and BALB/c mice to 

RVV or BV following one versus two sublethal exposures to the same venom. In contrast to 

BALB/c mice, C57BL/6 mice that were immunized twice with BV rapidly developed 

increased hypothermia upon subsequent BV challenge. Importantly, such twice-immunized 

C57BL/6 mice, in striking contrast to singly immunized C57BL6 mice or twice-immunized 

BALB/c mice, did not exhibit enhanced resistance against high dose BV challenge. Taken 

together, our data indicate that, depending on the mouse strain and the type of venom, a 

second exposure to venom can either increase (BV in BALB/c mice) or eliminate (BV in 

C57BL/6 mice) the enhanced protection to venom challenge that is observed after a single 

exposure to that venom. While many factors might contribute to such strain-dependent 

differences, including genetically-determined differences in end organ sensitivity to MC-

derived mediators71-74, our data suggest that such factors probably don't include differences 

in the ability of IgE antibodies from these mice to sensitize MCs to degranulate in response 

to BV challenge.

Our findings are consistent with the hypothesis that the co-evolution of mammals with 

venomous animals provided positive evolutionary pressure to conserve IgE antibodies and 

IgE-effector cells as survival advantages. However, it seems likely that sustaining the 

beneficial functions of this “allergy module” of immunity critically requires regulatory 

mechanisms which can keep this potentially dangerous effector mechanism under tight 

control. We therefore speculate that anaphylaxis represents only the most extreme end of a 

spectrum of acquired TH2 immunity to venom and that appropriately regulated TH2 immune 

responses can actually enhance resistance, rather than susceptibility, to venoms.

In fact, the occurrence of potentially dangerous allergic TH2 responses in some individuals 

may represent the price paid to maintain, for the species, the benefits of IgE-associated TH2 

immune responses. For example, beekeepers, who are frequently exposed to bee venom, can 

exhibit high levels of BV-specific IgG and IgE antibodies, associated, in some of these 

individuals, with the danger of anaphylaxis75. However, in many beekeepers, exposure to 

multiple bee stings as the season progresses induces the development of BV-specific, IL-10-

producing, inducible type 1 T regulatory (TR1) cells, which suppress T cell responses to BV 

in vitro and which, in vivo, may contribute to the observed reduction in cutaneous late phase 

responses to bee stings which occur as the beekeeping season progresses76. Mechanisms of 

antigen-induced, regulatory T cell-dependent immune tolerance also are thought to 

contribute to the success of venom specific immunotherapy in patients with hymenoptera 

venom allergy77. It is therefore tempting to speculate that IgE-dependent enhanced 

resistance to the toxicity of BV may represent an initial phase of a beneficial adaptive 

immune response to BV which, in individuals frequently exposed to the venom, then can be 

supplemented or supplanted by T regulatory cell-dependent immune tolerance to BV, one 
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important function of which is to restrain the development of an overly excessive, and 

therefore potentially dangerous, IgE response to BV.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Messages

• IgE and IgE effector mechanisms can limit Russell's viper venom toxicity in 

mice.

• A local anaphylactic reaction elicited by an unrelated antigen at the site of 

Russell's viper venom injection can increase resistance against that venom.

• The extent of IgE-associated acquired resistance to venom can be influenced by 

venom type, mouse genetics, and the number of exposures to that venom.
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Capsule Summary

IgE and IgE effector cells, and local anaphylactic reactions, can increase resistance to a 

snake venom in mice. Such acquired venom resistance is influenced by type of venom, 

host genetics, and number of venom exposures.
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Fig 1. 
RVV can induce local MC degranulation, recruitment of innate inflammatory cells, and 

hypothermia. A,B, Toluidine Blue- (A) and Hematoxylin & Eosin- (B) stained back skin 

sections; A, Extent of MC degranulation (mean+SD). C,D, flow cytometry plots (C) and 

quantification (D) (mean+SD, from 3 mice, representative of 2 experiments) of CD45+ skin 

cells. E,F, temperature (E) and survival (F) after RVV injection. G,H, temperature (right 

panel magnifies the area in the dashed box) (G) and survival (H) of RVV-treated mice 

pretreated with anti-histamine and/or PAF-receptor antagonist. P values: Chi-Square test 
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(A); Student's t test (D,E,G); Mantel-Cox test (H). Symbols in (E): comparison of group in 

that color with vehicle-treated mice for that time point. E-H, data pooled from 2-3 

experiments.
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Fig 2. 
MCs can contribute to innate resistance and behavioral responses to RVV. A, Experimental 

outline. B and E, body temperature; C and F, survival; D and G, scratching attempts, of 

MC-deficient Cpa3-Cre+; Mcl-1fl/fl (B-D) and KitW-sh/W-sh (E-G) mice and corresponding 

control mice after RVV injection. P values: (B,D,E,G) Student's t test; (C,F) Mantel-Cox 

test. Data pooled from 2-4 experiments (n=5-21/group).
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Fig 3. 
IgE can contribute to acquired resistance to RVV. A Outline of experiments with IgE-

deficient (Igh-7−/−) and control (Igh-7+/+) C57BL/6 mice (B-E). B,C, Serum RVV-specific 

IgG1 (B) and total IgE (C). D,E, Body temperature (D) and survival (E). F, Outline of serum 

transfer experiments in C57BL/6 mice (G-J). G,H, Serum RVV-specific IgG1 (G) and total 

IgE (H). I,J, Body temperature (I) and survival (J). Data pooled from 3-4 experiments (n= 

9-25/group). P values: Mann-Whitney test (B,C,G,H), Student's t test (D,I) and Mantel-Cox 

test (E,J).
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Fig 4. 
FcεRIα and FcεRIα–bearing cells can contribute to acquired resistance to RVV. A, Outline 

of experiments with Fcer1a−/− and control (Fcer1a+/+) C57BL/6 mice (panels B-E). B,C, 

Serum RVV-specific IgG1 (B) and total IgE (C). D,E, Body temperature (D) and survival 

(E). F, Outline of serum transfer experiments involving MC-deficient C57BL/6 mice (G,H). 

G,H, Body temperature (G) and survival (H). Data pooled from 3 experiments (n=9-17/

group). P values: Mann-Whitney test (B,C); Student's t test (D,G); Mantel-Cox test (E,H).
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Fig 5. 
IgE-dependent passive cutaneous anaphylaxis to an irrelevant antigen can increase 

resistance to a potentially lethal challenge with RVV. A, Experimental outline. B,C, Body 

temperature (B) and survival (C) of C57BL/6 mice treated with 3 s.c. injections of saline 

alone or containing 50 ng anti-DNP IgE, IgG1 or IgG2b antibody and challenged 18 h later 

with 2 s.c. injections, each containing 37.5 μg RVV and 0.5 μg DNP-HSA. Data pooled 

from 2-5 independent experiments (n=10-25/group). P values: Student's t test (B); Mantel-

Cox test (C).
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Fig 6. 
Influence of genetic background and immunization regimen on acquired resistance to RVV. 

A, Experimental outline. B-G, Serum RVV-specific IgG1 (B,C); total IgE (D,E); and RVV-

specific IgE (F,G). H,I, Body temperature. J,K, Survival. Data pooled from 3-4 experiments 

(n=11-16/group). P values: Mann-Whitney test (B-G), Student's t test (H,I) or Mantel-Cox 

test (J,K).
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Fig 7. 
Influence of genetic background and immunization regimen on acquired resistance to BV. 

A, Experimental outline. B-G, Serum BV-specific IgG1 (B,C); total IgE (D,E); and bvPLA2-

specific IgE (F,G). H-I, Body temperature. J-K, Survival. Data pooled from 3 experiments 

(n=9-11/group). P values: Mann-Whitney test (B-G); Student's t test (H,I); Mantel-Cox test 

(J,K).
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