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Abstract

We developed a Poisson-Boltzmann based approach to calculate the PKa values of protein 

ionizable residues (Glu, Asp, His, Lys and Arg), nucleotides of RNA and single stranded DNA. 

Two novel features were utilized: the dielectric properties of the macromolecules and water phase 

were modeled via the smooth Gaussian-based dielectric function in DelPhi and the corresponding 

electrostatic energies were calculated without defining the molecular surface. We tested the 

algorithm by calculating PKa values for more than 300 residues from 32 proteins from the PPD 

dataset and achieved an overall RMSD of 0.77. Particularly, the RMSD of 0.55 was achieved for 

surface residues, while the RMSD of 1.1 for buried residues. The approach was also found capable 

of capturing the large PKa shifts of various single point mutations in staphylococcal nuclease 

(SNase) from PKa -cooperative dataset, resulting in an overall RMSD of 1.6 for this set of pKa’s. 

Investigations showed that predictions for most of buried mutant residues of SNase could be 

improved by using higher dielectric constant values. Furthermore, an option to generate different 

hydrogen positions also improves PKa predictions for buried carboxyl residues. Finally, the PKa 

calculations on two RNAs demonstrated the capability of this approach for other types of 

biomolecules.
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Introduction

Many biological functions of proteins are frequently affected by the ionization states of 

protein side-chains. Changes in the ionization states result in proton uptake/release, proton 

and electron transfer, and may affect protein folding, protein-ligand binding, ion transport 

through the channels and protein-protein interactions1–6. These effects can be quantified by 

calculating the PKa shift of ionizable residues from one state to another7. However, while 

the PKa calculations are essential to understand all these effects, it is still challenging to 

accurately predict the PKa values. The complexity stems from the coupling between 
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ionization and conformational changes that either should be explicitly modeled or implicitly 

mimicked8.

There has been significant progress in the development of computational methods for PKa 

calculations8. Generally, they can be grouped into two major classes: macroscopic and 

microscopic methods. Methods based on continuum electrostatics can be considered as 

being on the border between macroscopic and approaches since they use atomic presentation 

of the macromolecule. Macroscopic methods9–17 are faster while microscopic 

methods1,18–20 provide more details.

Among microscopic approaches, one distinguishes molecular dynamics (MD) and quantum 

mechanics (QM) based approaches. The MD based methods apply either constant-pH MD or 

free energy perturbation techniques to model the ionization states in proteins21–26. The QM 

and QM/MM methods calculate the individual PKa in the context of proteins by solving the 

Schrodinger equation (SE)27–32.

Among the macroscopic methods, one distinguishes continuum electrostatics approaches 

and methods using empirical functions. The Poisson-Boltzmann (PB) equation based 

continuum electrostatics (CE) model allows the calculation of electrostatic potentials with a 

non-uniform distribution of dielectric medium and ionic strength33–35. The Generalized 

Born (GB) based method is an alternative to provide the electrostatic energies via an 

analytical approximation36,37. For the purpose of efficiency, the empirical methods were 

developed38–42. The empirical methods use knowledge-based parameters for optimization 

and large database for training.

In the PB based methods, the macromolecule is described as a homogeneous medium with a 

low dielectric constant immersed in a solvent with a high dielectric constant. In this model 

the two major energy components affecting the pKa calculations are: the energy cost of 

moving a residue from water to protein interior and the screening of charge-charge 

interactions in the protein43–46. In wild-type proteins, these two effects typically oppose 

each other. Thus, the favorable charge-charge pairwise interactions between the ionizable 

residues and neighboring charges and dipoles could compensate for the desolvation penalty 

and stabilize the buried residue in its ionized state. The outcome depends on many factors, 

one of which is the value of the dielectric constant of the macromolecules. Some researchers 

proposed the dielectric constant for proteins is as low as 447–49 while other values from 8 to 

2050–52. However, the appropriate dielectric constant of a protein depends on both the 

polarity of residues and the local protein polarizability. Many approaches were developed to 

improve the accuracy of calculating the electrostatics in proteins, such as using multiple 

dielectric constants for protein representing different types of residues53, adding side-chain 

flexibility54–56, changes in hydrogen bond orientations57,58, multi-conformation and side-

chain rotamers optimized in continuum electrostatics (MCCE)50,51,59 and smooth Gaussian 

function representing the dielectric constant throughout the space60. Among various means 

of approaches, the Gaussian-based method, which generates a smooth dielectric function for 

the entire space (the protein and water phase) was demonstrated to be more accurate60. The 

method, which has been implemented in DelPhi program, shows that the generated smooth 
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dielectric function results in dielectric constant of 6–7 in the protein interior and 20–30 at 

the protein-water interface, which is consistent with previous MD-based work61.

Here we propose a method to calculate PKa s of ionizable groups in proteins, RNAs and 

single stranded DNAs. The method is implemented in an object-oriented C++ program that 

(1) uses Gaussian-based smooth function to mimic conformational changes associated with 

ionization changes and (2) calculates the electrostatic energies without defining the 

molecular surface. Several study cases are discussed for the validity of the program and two 

large dataset with different properties are used to test and benchmark the approach.

Methods

The PKa value of an ionizable residue i in a macromolecule can be calculated either from the 

shift of the residue solvent reference PKa (Eq.1), or from the one-half point of the 

probability of protonation states as a function of pH (titration curve).

(1)

However, in both approaches, calculating the electrostatic free energy of the ionizable 

residue in its protonated and deprotonated states is essential. Here the electrostatic energies 

are calculated via the modified DelPhi as a built-in module with the input structure as a 2-

dimensional vector and output energy terms as an energy matrix. Below we describe the 

corresponding modules within the algorithm.

Protonation

Most of available structural files do not have protons and hydrogens must be generated in 

silico. Here a residue topology based approach is applied to generate the hydrogen positions. 

For each residue, the corresponding heavy atom bond connectivity, hydrogen positions and 

residue types are labeled in the topology file, as well as the reference PKa value for each 

ionizable residue group. For PKa calculations of RNA and single stranded DNA, the 

structural information of nucleic acids is also included in the topology. The structural 

modification for each residue or nucleic acid upon user request is allowed by revising the 

topology information. The adjustment of reference PKa value for each ionizable residue can 

be done via editing the topology. Taking into account that the extra hydrogen of carboxyl 

groups (glutamic acid and aspartic acid) can be bound to either oxygen, two conformations 

are provided for each of those residues. An option is provided such that users are allowed to 

choose either of them but the default choice is set to be OE1 (Glu) and OD1 (Asp), which is 

selected based on the benchmarking results (Attaching the extra hydrogen to OD2/OE2 

results in about 10% worse performance for both PPD and pKa-cooperative data sets). The 

His neutral form was considered to have proton bound at ND1.

The atomic charges and radii are accessed from pre-calculated force-field parameters. In 

order to be consistent with Delphi, it is designed to read the same force-field parameters as 

Delphi uses. Currently it supports AMBER, CHARMM and PARSE force-fields (the 

corresponding files can be downloaded from http://compbio.clemson.edu/delphi). The 
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protonated structure with atomic charges and radii is not only the intermediate structure that 

is being subjected to the PKa calculation, but we also provide an option to output standard 

Position Charge Radius (PQR) format for the setup of Poisson-Boltzmann electrostatics 

calculations, e.g. applied as the input of Delphi calculations.

Electrostatic free energy calculation

Smooth Gaussian based dielectric model—The smooth Gaussian function based 

model has been described in the previous work60. Here we provide just the summary of the 

corresponding methodology. The density of the atoms is modeled as:

(2)

where ρi(r) is the atomic density at position r generated by atom i, Ri is the radius of atom i 

determined by the empirical force field parameter, ri is the distance between the center of 

atom i and position r, and σ is the variance of Gaussian distribution.

The total atomic density can be expressed as:

(3)

where the left term ρmol(r) represents the total atomic density at position r generated by the 

entire molecule, ρi(r) is the atomic density generated by the single atom i. And the dielectric 

distribution is calculated with the atomic density as:

(4)

where ε(r) represents the dielectric distribution of the molecule, εref is the reference 

dielectric constant for protein and εwater is the dielectric constant for water.

Determining the electrostatic free energy of each microstate—The electrostatic 

interactions are calculated with the Poisson-Boltzmann equation by using Delphi with 

smooth Gaussian dielectric function. To calculate the electrostatic energy of the ith ionizable 

residue, we first charge the side-chain atoms of the ith residue only and leave the rest of the 

structure uncharged (including the backbone of the ith residue). The electrostatic potentials 

generated by the charged side-chain of ionizable residue i at each atom of the protein are 

obtained by invoking the “site potential” (FRC) function of Delphi energy module. In this 

procedure, atomic charges and radii are assigned with corresponding force-field parameters. 

According to the input parameters εref, εwater and variance of Gaussian distribution σ, the 

Gaussian dielectric distribution is generated over the macromolecule with avoiding defining 

the molecular surface. Then three focusing calculations are performed to reach a final 

resolution of 4 grids/Å.

Several energy terms are calculated. The charge-charge pairwise interaction energy between 

the side-chain of ith residue and other ionizable residues (Fig.1A) is obtained as:
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(5)

where qj,sidechain and ∅ j,sidechain represent the atomic charges and electrostatic potentials for 

the side-chain atoms of ionizable residues (excluding the ith residue itself).

The polar energy term of the electrostatic interactions between the charged residue i and 

other residues is obtained as:

(6)

where qj,backbone and ∅ j,backbone are atomic charges and electrostatic potentials for 

backbone atoms of ionizable residues including the ith residue itself (Fig.1B). And qj and ∅j 

are atomic charges and electrostatic potentials for the backbone and side-chain atoms of 

non-ionizable residues, respectively.

The reaction field energy  of the ionizable residue i embedded in the 

protein is calculated as the total grid energy generated by DelPhi energy module as 

previously described62. In order to obtain the desolvation energy (Fig.2), we move the 

charged side-chain of the ith residue to the water and apply the same computational box with 

the same grid resolution to perform three focusing calculations again. Thus, the reaction 

field energy  of the ionizable residue ith in the water is obtained as the total 

grid energy difference from DelPhi calculation. Thus, the desolavtion energy of the residue i 

in its charged state is expressed as:

(7)

Next, turning the side-chain of ith residue to its neutral state (neutral state refers to zero net 

charge while atoms still have partial charges) and following the same protocol, another three 

energy components  and  are calculated. By extracting them 

from the energies of charged state, 

(8)

(9)

we obtain the total electrostatic energy shift due to the change of protonation state, which is 

expressed as:

(10)
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If the protein consists of many ionizable residues, the computational demand will be 

significant, while the calculations for each ionizable residue are independent. Thus, 

parallelizing these computations is a necessity to improving the efficiency. Here we report 

an approach that the calculation for each ionizable residue is distributed on dedicated CPUs 

with MPI implementation. We show that it significantly improves the performance (see 

performance benchmark in Result section).

Determining the probability of protonation states

The distribution of microstate electrostatic energy is used to determine the probability of 

ionization of the ith residue at the given pH. If the system has M microstates and with 

energy Gm(pH) at its mth microstate, the probability of ith residue to be ionized at particular 

pH is given by the Boltzmann distribution formula:

(11)

χ(i)is 1 if the ith residue is ionized and 0 if it is neutral. k is the Boltzmann constant. Then 

the Boltzmann distribution of ionized states is calculated as a function of pH, resulting a 2D 

titration curve where the residue i possesses 50% probability of being protonated is 

designated as the ith value. Each ionizable residue has two microstates: protonated and 

deprotonated. For the system with N ionizable residues, the total microstates the system 

possesses is M = 2N . The Boltzmann sum needs to be calculated 2N times per ionizable 

residues and 2N for the entire system. If the system has more than 30 ionizable residues, 

even for the modern computer and computing clusters, it is still extremely computationally 

intensive and inefficient. An alternative approach is required to simplify the modeling, as 

described below.

Network Partition

Networking is a geometrical distance based clustering protocol, which allows duplicate 

ionizable residues to appear in more than one partition. This eliminates the errors associated 

with wrong partitioning of strongly interacting groups. To partition the macromolecule with 

N ionizable residues into groups, we first label the geometric center of the side-chain of each 

ionizable residue as the representing point (RP) to obtain N RPs. The cartoon presentation 

(Fig. 3) demonstrates the system with 9 RPs grouped into 9 networks. Each RP locates its 

neighboring RPs within a given radius (a threshold that is set up by the input parameter, 

default value 10A) and constitutes a network. For efficiency, the ordering within each 

network is maintained based on the distance and the amount of RPs within a network is 

limited to be 20. If two networks consist of the same elements, one of them will be 

eliminated. The duplicate RP is tolerable within different networks. For example, P2 appears 

in five networks (N2, N3, N4, N6, N8). For these networks, the change of P2 protonation 

states will be explicitly taken into account. For the RP not in the network, its protonation 

state is identified by the previous calculation and the microstate is fixed with a particular 

energy configuration. By this protocol, the system results in 104 microstates, which is far 

less than the 29 microstates without a partitioning algorithm.
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Results and Discussion

Test case of hen egg-white lysozyme

The crystal structure of the lysozyme (PDB ID: 4lzt) is used to test the approach. Lysozyme 

is a small molecule with several salt-bridges and pockets. Although there are already many 

methods applied to calculate the PKas of ionizable residues59,63 and were shown to have 

good agreement with experimental values, still several residues are difficult to predict 

including buried residue Glu35 in the deep pocket and surface exposed residue Asp66.

The parameters used in DelPhiPKa are σ = 0.7, εref = (optimal values obtained from the 

benchmark, see below), with PARSE force field for protonation and energy calculation. For 

comparison, two additional calculations with DelPhi homogeneous dielectric model64 were 

performed with εprotein as 4 and 8 with PARSE force-field parameter as well.

Results from homogenous dielectric model with εprotein = 4 show that there are 14 

predictions with greater than 0.5 pK units shift against experimental data (Table 1), which 

includes 11 residues which pKa’s are underestimated. By increasing the dielectric constant 

to 8, the number of outliers decreases to 10 including 8 residues with underestimated pKa’s. 

The results from DelPhiPKa show significant improvement over the homogenous dielectric 

models (Fig.4) by resulting in only 4 predictions with greater than 0.5 pK shift compared 

with the experimental results. Further investigations show that for buried residue Glu35 

(75% buried), the PKa value is underestimated (the calculated value as 4.6 vs. the 

experimental value of 6.2). However, if one increases σ to 9.0, the calculated PKa value is 

5.8, which is very close to the experimental data. In contrast, for residue Asp66 that is 

located on the surface, DelPhiPKa predicted PKa value of 1.8 while other two homogeneous 

models both resulted in zero. However, if we decrease σ to 0.65, the prediction becomes 1.4, 

which is in better agreement with the experimental result. These observations show that the 

accuracy of predictions depends on the local dielectric constant that the Gaussian function 

assigns. For buried residues like Asp66, the buried side-chain and the surrounding 

environment make the residue less flexible and not capable in response to the local 

electrostatic field. Thus, the dielectric constants for those residues should be low and 

increasing σ causes the Gaussian function to assign a lower dielectric value. In contrast, 

surface residues are much more flexible and decreasing σ results in those residues being 

modeled with high dielectric values. Another reason that resulted in 0.7 pK of Asp66 is the 

hydrogen conformation. As the aspartic acid side-chain has two positions that hydrogen 

could be bound in its protonated state, the electrostatic energy (especially electrostatic polar 

energy component) is affected by this fact. Taking into account of this and assigning the 

proton position accordingly the predicted pKa is 1.5, which is very close to the experimental 

value.

Benchmarks on two large datasets

We performed benchmarks on two large datasets in order to test the accuracy of the 

predictions. The first dataset contains 36 proteins with total 340 residues from Protein PKa 

Database (http://pka.engr.ccny.cuny.edu/). We used only X-ray structures which are 

available from PDB Bank65, which results in 32 proteins with total 302 titratable residues. 
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All PDBs are obtained from PDB bank and fixed for missing atoms and residues by using 

PROFIX66. All substrates (e.g. PO4 and SO4 groups, solvent exposed ions) and crystal 

waters are removed. The experimental PKa values are from NMR measurements67–69. The 

second dataset used here for benchmarking is PKa -cooperative dataset from Garcia-

Moreno’s lab70–73, which contains a large number of PKa values for mutants at various 

positions in the highly stable Δ+PHS variant of staphylococcal nuclease (SNase). There are 

19 measured PKa values from the wild-type SNase structure (PDB ID: 1stn)74 and its variant 

Δ+PHS (PDB ID:3bdc)72. For other experimentally determined 20 PKa values there are X-

ray structures of SNase with mutations. And the rest 70 structures are artificially modeled 

mutants from the structure of Δ+PHS by using the SCAP program from Jackal package66 

with its built-in CHARMM heavy atom model. Among theme, 8 structures resulted in total 

side-chain energies greater than 1000kt due to overlaps between the mutated residue side 

chain and surrounding atoms, which are removed from the benchmark dataset. Thus, total 

101 residues were used in the second benchmark. All structures were optimized using 

NAMD75 with 5000 steps energy minimization for side-chain relaxation to reduce the 

clashes resulting from in silico generated mutations.

Determining optimal parameters—Since smooth Gaussian dielectric model has two 

adjustable parameters, the reference dielectric constant for protein (εref) and the Gaussian 

variance (σ), the optimal values for these two parameters were investigated. The testing was 

performed on both datasets with AMBER, CHARMM and PARSE force-field parameters. 

The εref was varied from 4 to 10 with an increment of 2, while σ was varied from 0.65 to 1.0 

with an increment of 0.01. Total calculations generated 144 PKa values for each individual 

ionizable residue and were used to compare with the experimental data. Thus, the optimal 

parameters were obtained by finding the set with the lowest RMSD between calculated and 

experimental values.

The results for PPD dataset with the AMBER force field are shown in Table 2. As εref varies 

from 4 to 10, the calculated PKa s become in better agreement with experimental data 

(smaller RMSD). With εref =8, we obtained the best RMSD against experimental values. 

The Gaussian variance was also found to significantly affect the results (varying σ from 0.6x 

to 0.9x). However, the effect becomes negligible when it is varied from 0.65– 0.75. Similar 

investigation was done for pKa-cooperative dataset. Combining the results from three force 

fields, the optimal parameter σ =0.70 is found for the PPD dataset, and σ=0.93 is found for 

the PKa -cooperative dataset, which is consistent with the previous work60. The different 

optimal σ obtained for PPD and pKa-cooperative datasets, perhaps, indicates that σ=0.70 

should be used for modeling naturally occurring titratable groups, while σ=0.93 for 

artificially designed mutants. These parameters will be used as default values for later 

benchmarks and future calculations.

Statistics and benchmark results—With the above-determined optimal parameters, 

the calculated PKa results achieved a total RMSD less than 0.8 (Fig 5) on the PPD dataset 

with three force fields (RMSD=0.77 for AMBER; RMSD=0.78 for CHARMM and 

RMSD=0.76 for PARSE) (individual pKa’s are reported in SI). Each individual type of 

titratable residue achieved similar RMSD as well (RMSD≈0.6 for ASP; RMSD≈0.7 for 
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GLU; RMSD≈0.9 for HIS; RMSD≈0.6 for LYS). The correlation coefficients were 0.94, 

0.93, and 0.94 for AMBER, CHARMM and PARSE force field, respectively.

Out of 302 calculated PKa values with PARSE force field, 180 (59.4%) RMSDs are less 

than 0.5 pK units (Table 3A) and 271 (89.7%) RMSDs are less than 1.0 pK unit compared 

with the experimental data. With other two force fields, it achieved similar results, which are 

85.4% and 91.1% of predictions for the dataset are less than 1.0 pK compared with the 

experimental data. With all three force fields, it results in equal or less than 5 residues with 

calculated greater than 2.0 pK units shift against experimental values.

In PPD dataset, 218 out of 302 (72.2%) residues are located on the surface and exposed to 

the solvent whose PKa predictions result in an average RMSD≈0.55 with three force fields 

(Table 4B). However, for 31 residues (10.3%) with more than 50% of side-chain per residue 

buried, the average RMSD results in 1.14, which is 40% greater than the total RMSD of the 

dataset. Further investigations show that for buried residues, increasing σ value to 0.95 

results in a slight improvement of the predictions. Although a few predictions remain 

unchanged or get worse, there are 20 predictions with 0.5–2.0 pK units shift towards the 

experimental values, which results the average RMSD of total 31 buried residues in 0.98. 

Histidine residues are most difficult to obtain accurate predictions. The average RMSD for 

His is obtained as 0.88 with three force fields, while RMSDs for other residues are between 

0.6 and 0.7. Further analysis buried histidine residues with pK units shift greater than 2.0 

against experimental values indicated that most of them are overestimated. Thus, an 

adjustment of 1.0 pK unit to the reference PKa value of histidine residue would improve the 

predictions.

In the PKa -cooperative dataset, 66% (Table 4B) of residue side-chains are more than 50% 

buried in the protein and only 14% of residues in the dataset are on the surface. We obtained 

the lowest total RMSD for this dataset with the optimal Gaussian variance of 0.93. Although 

the total RMSDs with three force fields are close (RMSD=1.60 for AMBER; RMSD=1.63 

for CHARMM; RMSD=1.58 for PARSE), the RMSD for individual residue type is quite 

different as it is shown in Fig 6 (individual pKa’s are reported in SI). The RMSDs for ASP 

residues with PARSE and CHARMM achieved 1.33 and 1.45 respectively, while it is 1.75 

with AMBER. The RMSDs for GLU residues with AMBER and PARSE achieved 1.14 and 

1.18 respectively, but it is as large as 1.81 with CHARMM. With AMBER, the PKa 

calculations for LYS achieved the best RMSD, which is 1.46. However, poor results were 

obtained with PARSE (RMSD=2.21) and CHARMM (RMSD= 2.32).

About 55% of calculations on this dataset result in the RMSD less than 1.0 pK unit, however 

15% to 23% of prediction are found to result in the RMSD greater than 2.0 pK (Table 4A). 

For 67 out of 101 (66.3%) residues buried in proteins, the RMSD is found to be 1.86 with 

AMBER force field and about 1.6 with CHARMM and PARSE. Since buried residue side-

chains are less flexible than the ones exposed to solvent, the corresponding dielectric 

constants should be larger. It is found that increasing the Gaussian variance effectively 

favors the predictions for the buried residues, however, degrades the predictions for the 

exposed residues. Thus, future development of the present method could include variable 

Gaussian variance depending of the degree of burial of the titratable groups.
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Further investigation of predictions with greater than 2.0 pK error shows that about 70% of 

these predictions are mutations involving carboxyl residues, such as F34D/E, L36D/E, 

V66D/E, V99D/E, L103D/E and V104D/E. Most of them are completely buried in the 

protein. Adjusting the position of hydrogen for these carboxyl residues affects the calculated 

PKa values. However, until an effective protocol of determining the hydrogen conformation 

due to the surrounding environment is developed, it is unfair to include this “artificial” 

correction in the benchmark. Extending the capabilities of DelPhiPKa algorithm to include 

alternative hydrogen positions will alter the Gaussian-based dielectric map, even for buried 

residues, and because of that, such an option was not considered.

PKa calculations for RNA

In order to make DelPhiPKa capable of calculating PKa values of RNAs and single stranded 

DNAs, we extended the topology file with a new set of atomic parameters that include 

protonated and unprotonated structures of adenosine and cytidine (Fig.7) (similarly, one can 

include other nucleic bases). To validate the approach, we benchmarked the calculated PKa 

values against experimental measured results of two RNAs. We also compared results with 

the data obtained from the previous study76 that was calculated with DelPhi using the non-

linear correction for the Poisson-Boltzmann equation. The first one is branch-point helix 

(BPH), which is a 21-nucleotide stem-loop structure that contains an internal asymmetric 

loop. In the asymmetric loop, A6 and A7 residues are stacked within the helix opposite a 

single uridine U16. The experiment measured the PKa value of A7 is 6.1, while other 

adenosine residues in the structure have PKa values less than 5.5 (Table 5). The second 

structure is lead-dependent ribozyme (LDZ), which is a 30-nucleotide stem-loop structure 

that also has an internal asymmetric loop. The experimental measurement shows 6 

adenosine residues that have PKas of less than 4.3 and one adenosine (A25) has PKa value 

of 6.5.

Calculated PKa values are shown in Table 5. The mean±standard deviation of the calculated 

PKa values are given for 12 NMR structures for BPH (PDB ID: 17ra) and 25 NMR 

structures for LDZ (PDB ID: 1ldz). The two nucleotides in BPH with high measured PKa 

values (A7 for 6.1 and A13 for 5.5) were calculated as 5.3 and 4.9, respectively. Although 

the absolute pKa values calculated from DelPhiPKa were slightly different compared with 

the experimental data and results calculated with the non-linear correction (A7 for 6.8 and 

A13 for 5.3)76, the pKa shifts are in the correct direction and the predicted PKa values are 

within 1.0 pK unit compared with the experimental data. For adenosine residues in LDZ, 

although the prediction for A25 results in about 1.2 pK unit error (compared with 0.8 pK 

unit error calculated previously with the non-linear correction76), the A25 was successfully 

identified as the residue with the highest PKa value. All predictions for other residues are 

within less than 0.6 pK units from experimental data.

Speed performance benchmark on large-scale protein sample

A large protein, 6-Phosphogluconate Dehydrogenase (6PGDH, PDB ID: 2zyg), is used for 

the speed performance benchmark. It contains 467 residues and 128 ionizable residues with 

a dimension of 119x113x113Å. This resulted in 1536 DelPhi runs. The benchmark was 

performed on the nodes with specification of AMD Opteron 2356 (8 cores and 2.3GHz) on 
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the Palmetto cluster (http://citi.clemson.edu/palmetto/). Two parallelized modules are 

benchmarked, the energy calculation and the titration with the network partition. Each 

Delphi calculation was set for 3 focusing runs and convergence of 0.0001. The threshold 

value for each network was set to be 15 Å and maximum 15 residues in each network. Each 

calculation was performed 5 times and then we took the average runtime for benchmarking.

It is found that with 10 or less CPUs, both energy and titration modules achieve very good 

linear speedup (Fig 8). However, the memory usage of Delphi calculations and the 

communications between CPUs increased significantly with increasing the number of 

processors. In contrast, the speedup of parallelized titration module was only slightly 

affected by the increase of CPUs.

Conclusion

An efficient method is proposed and implemented in DelPhi C++ code for PKa calculations 

of proteins, RNAs and DNAs. The smooth Gaussian function based dielectric model is used 

for the electrostatic energy calculations instead of homogeneous dielectric model and the 

algorithm does not need to define molecular surface. Benchmarks were performed on two 

widely known datasets of experimental PKa measurements and the predictions on both 

datasets showed very good agreements with experimental data. The statistics showed that 

PKa predictions achieved as low as a RMSD of 0.6 for ionizable groups located on the 

surface. In contrast, an average RMSD of 1.8 for buried ionizable groups was obtained.

The reported approach is fast while retaining atomic information in the modeling process. 

This allows for analysis of the energy components and structural details causing the 

calculated pKa shifts. Since DelPhiPKA models proteins, RNAs and DNAs, the method can 

be used to study various molecular systems, including protein-DNA and protein-RNA 

complexes.
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Figure 1. 
Cartoon presentations for (A) Pairwise interaction energy of the ionizable residue ASP side-

chain interacted with ionizable residue side-chains of GLU and LYS. (B) Polar energy of the 

residue ASP side-chain interacted with side-chains of non-ionizable residues and backbones 

of all residues (including the backbone of ASP itself).
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Figure 2. 
Thermodynamic cycle shows the calculation of the desolvation energy of the ionizable 

residue side-chain. (1-a) The side-chain is protonated and embedded in the protein interior. 

(1-b) The side-chain is protonated in the water. (2-a) The side-chain is deprotonated and 

embedded in the protein interior. (2-b) The side-chain is deprotonated in the water.
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Figure 3. 
A pseudo protein molecule contains 9 ionizable residues. A representing point (RP) with 

labeled index represents the center of mass of each ionizable residue side-chain. Network 

partitioning algorithm is applied to the system and generates 9 networks based on the 

geometrical distance. For the residues within a network, their protonated and deprotonated 

states are taken into account explicitly, which results in 2N microstates if N residues 

possessed by that network. For residues out of the network, the fixed microstate of 

protonation obtained from the previous calculation is applied.
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Figure 4. 
Calculated pKa shifts compared with experimental measurements for 16 ionizable residues 

of lysozyme.
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Figure 5. 
Benchmark of calculated pKa values with DelPhiPKa (302 residue pKa values) with 

AMBER, CHARMM and PARSE force fields against experimental measured values of the 

PPD dataset. Total RMSD along with individual residue RMSD with each force field are 

marked. Red lines are +/− 1.0 pK shift compared with experimental values.
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Figure 6. 
Benchmark of calculated pKa values using DelPhiPKa with AMBER, CHARMM and 

PARSE force fields against experimental values of the pKa-cooperative dataset (101 residue 

pKa values). Total RMSD along with individual residue RMSD with each force field are 

marked. Red lines are +/− 1.0 pK shift compared with experimental values. Yellow lines are 

+/− 2.0 pK shift compared with experimental values.
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Figure 7. 
Adenosine and cytidine structures in their protonated and unprotonated states.
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Figure 8. 
Benchmark of the speed performance. The speedup vs. the number of processors utilized 

with the MPI parallelization.
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Table 1

pKa calculations with DelPhiPKa and DelPhi homogeneous dielectric model with epsilon=4 and epsilon=8 on 

Lysozyme (4lzt) 16 titratable residues. (Bold fonts represent that the difference between the calculated result 

and the measured value is greater than 0.5 pK units.)

Residue exp. PKa Homogeneous Delphi with εprotein = 4 Homogeneous Delphi with εprotein = 8 DelPhiPka

ASP018 2.7 1.8 2.5 3.1

ASP048 1.6 0.6 1.8 3

ASP052 3.7 3.1 2.7 3.5

ASP066 1.1 0 0 1.8

ASP087 2.1 0 0 2.2

ASP101 4.1 6.1 5.1 4.1

ASP119 3.2 2.1 2.8 3.2

GLU007 3.1 1.9 2.7 3.5

GLU035 6.2 5.93 5.2 4.6

HIS015 5.4 4.6 6.3 6.2

LYS001 10.4 9.8 9.8 10.1

LYS013 10.5 8.9 9.5 10.1

LYS033 10.4 11.5 10.8 10.4

LYS096 10.8 10.9 10.7 10.5

LYS097 10.3 10.8 10.6 10.5

LYS116 10.2 9.1 9.3 9.9
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Table 2

Results of benchmarking on the PPD dataset with AMBER force field. The reference dielectric constant for 

the protein (εref) is adjusted from 4 to 10 with an increment of 2 and the Gaussian variance (σ) is adjusted 

from 0.65 to 1.0 with an increment of 0.01. The lowest total RMSD of each set of parameters is listed in 

ascending order. For each εref value, first 5 results are listed.

εref Gaussian Variance (σ) RMSD (TOTAL)

10 0.73 0.7947

10 0.67 0.7961

10 0.71 0.7983

10 0.70 0.7983

10 0.66 0.8002

8 0.68 0.7679

8 0.69 0.7694

8 0.70 0.7712

8 0.67 0.7725

8 0.71 0.7731

6 0.66 0.8277

6 0.69 0.8281

6 0.67 0.8287

6 0.71 0.8304

6 0.73 0.8321

4 0.65 0.8713

4 0.67 0.8746

4 0.66 0.8778

4 0.71 0.8804

4 0.69 0.8811
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Table 5

Comparison of calculated pKa values for adenosine residues in RNAs with NMR measured results.

Nucleotide NMR measured PKa Calculated PKa

Branch-point helix (BPH)

A6 <5.0 4.5±0.6

A7 6.1 5.3±0.7

A10 <5.0 4.1±0.5

A13 5.5 4.9±0.7

A17 <5.0 4.1±0.5

Lead-dependent ribozyme (LDZ)

A4 ≤3.1 3.9±0.8

A8 4.3±0.3 4.7±0.5

A12 ≤3.1 4.0±0.3

A16 3.8±0.4 4.3±0.7

A17 3.8±0.4 3.8±0.7

A18 3.5±0.6 4.1±0.3

A25 6.5±0.1 5.7±0.5
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