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Abstract

Inborn errors of metabolism (IEM) are not unlike common diseases. They often present as a 

spectrum of disease phenotypes that correlates poorly with the severity of the disease-causing 

mutations. This greatly impacts patient care and reveals fundamental gaps in our knowledge of 

disease modifying biology. Systems biology approaches that integrate multi-omics data into 

molecular networks have significantly improved our understanding of complex diseases. Similar 

approaches to study IEM are rare despite their complex nature. We highlight that existing common 

disease-derived datasets and networks can be repurposed to generate novel mechanistic insight in 

IEM and potentially identify candidate modifiers. While understanding disease pathophysiology 

will advance the IEM field, the ultimate goal should be to understand per individual how their 

phenotype emerges given their primary mutation on the background of their whole genome, not 

unlike personalized medicine. We foresee that panomics and network strategies combined with 

recent experimental innovations will facilitate this.
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Introduction

The term ‘inborn errors of metabolism’ (IEM) was first coined in 1902 by Archibald Garrod, 

who is attributed to being the first to connect a human disorder with Mendel’s laws of 

inheritance (Garrod, 1902). It describes a class of inherited genetic diseases caused by 

mutations in genes coding for proteins that function in metabolism. The disease may be the 

result of the accumulation of toxic substrates or essential products being intolerably low. 

Although IEM occur in every biochemical pathway, historically they have been grouped in 

specific classes such as amino acidemias, organic acidurias and lysosomal storage disorders. 
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An example of the latter is Gaucher disease (GD), which is caused by deficient activity of 

the lysosomal enzyme beta-glucocerebrosidase due to mutations in the encoding gene 

(GBA). As a consequence the substrate of GBA, glucosylceramide accumulates in the 

lysosome, especially of tissue macrophages of the liver, bone marrow and spleen thereby 

causing damage in hematological, skeletal and nervous systems (Baris et al., 2014). The 

incidence of IEM varies greatly and depends on the population. Some of the more frequent 

IEM are phenylketonuria (PKU) and medium-chain acyl-CoA dehydrogenase (MCAD) 

deficiency with respective incidences of 1 in 10,000 and 1 in 20,000 (Schulze et al., 2003; 

Wilcken et al., 2003). Most other IEM are much rarer with sometimes only a few or even 

one unique case diagnosed. Treatment has improved but often remains insufficient (Vernon, 

2015).

IEM are not unlike complex disease

In a bird’s eye view IEM are Mendelian traits caused by single-gene mutations, which has 

led to the one gene-one disease paradigm. Garrod alluded to this by concluding that an 

individual with alkaptonuria, would either have the disease or not, and that there were 

essentially no shades of grey (Garrod, 1902). However, time has shown that IEM are also 

not unlike common diseases for the major reason they often present as a spectrum of disease 

phenotypes in which a clear correlation between the severity of mutation at the affected 

locus and the phenotype (genotype-phenotype correlation) is lacking (Dipple and McCabe, 

2000a, b; Lanpher et al., 2006; Scriver and Waters, 1999).

The classic autosomal recessive disease PKU illustrates this oversimplification. Initially, 

mutations at the human phenylalanine hydroxylase locus (PAH) were deemed sufficient to 

explain the impaired function of the enzyme PAH, the associated metabolic phenotype, 

elevated plasma phenylalanine levels, and the resultant clinical phenotype, mental 

retardation (Scriver and Waters, 1999). However, PKU was subsequently found to arise 

from different genetic defects (e.g. tetrahydrobiopterin homeostasis), be influenced greatly 

by diet (e.g. protein intake) and importantly the PAH genotype and predicted effect on 

enzymatic function, often failed to consistently predict the extent of cognitive and metabolic 

phenotypes in the PKU patient. Importantly, PKU was not an exception to the rule as this 

oversimplification of one gene-one disease paradigm was also challenged in many other 

monogenic diseases. In summary, the prevailing view of the last two decades is that 

monogenic traits do conform to long-accepted ideas about the expression of major loci and 

their importance in determining parameters of phenotypes however, the associated features 

(such as cognitive behavior in PKU) are complex in nature and not unlike those in so-called 

complex traits (Scriver and Waters, 1999).

It has been over fifteen years since IEM have been viewed as complex traits (Dipple and 

McCabe, 2000a, b; Scriver and Waters, 1999). It is therefore surprising that despite avid 

application of unbiased systems biology and omics approaches to unravel complex diseases 

(Ritchie et al., 2015) there are few examples of their use in the IEM field. It appears as if 

complex methodologies are deemed not needed or not applicable. This is also despite the 

elegant words of Scriver and Waters, who pointed out that “genomes function in vivo, where 

much more than the major gene is expressed and where the whole organismal phenotype is 
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more than the sum of the parts; it is an emergent property” (Scriver and Waters, 1999). This 

sentiment was also reinforced by Dipple et al, who stated that genotype to phenotype 

prediction would improve not just by understanding the individual modifying factors but 

also how they assembled into functional modules and how the system dynamics were 

affected (Dipple and McCabe, 2000b; Dipple et al., 2001). What better way to assess this 

emergent property than through multi-scale integrative network systems approaches (Figure 

1A)?

The abandonment of the one gene-one disease idea has meant considering alternative 

explanations, such as the contribution of modifying factors (Dipple and McCabe, 2000a, b; 

Lanpher et al., 2006; Scriver and Waters, 1999). These modifying factors could include 

environmental, epigenetic, and microbiome factors as well as additional genes. In this 

review we focus on modifying genes and their associated biology (Figure 1A). The modifier 

gene concept was introduced already in 1941 by Haldane (Haldane, 1941) and several 

definitions have been given since then. We use the term to reflect a gene that can impact the 

phenotypic expression of the primary affected locus (Genin et al., 2008). Importantly the 

biological pathways affected by the modifying genes are not necessarily the same ones as 

that affected by the primary disease gene.

The lack of genotype to phenotype correlation greatly impacts the ability to predict a 

patient’s disease course. It also illustrates the existence of a fundamental gap in our 

knowledge of IEM disease pathophysiology, which impacts drug discovery. Thus the 

primary motivation for finding these modifiers and understanding their associated biology is 

the potential to improve clinical care and provide novel potential targets of therapeutic 

intervention beyond the primary disease-causing gene. Furthermore, genes that modify 

monogenic disease related phenotypes likely contribute to the development of common 

diseases in the general population and their identification will benefit understanding 

common disease pathophysiology (Blair et al., 2013; Lupski et al., 2011). These genes may 

have small effect size and go undetected in healthy individuals whereas their contribution to 

disease may be more easily unmasked on the background of a monogenic disorder (Cutting, 

2010).

Current approaches and successes in finding modifier genes of IEM

The strategies used to date to identify genetic modifiers have included linkage and 

association studies. These studies have been approached either systematically where the 

whole genome is scanned or in a candidate gene way where focus is on known disease-

associated biology (Genin et al., 2008). For example, candidate modifier genes in IEM could 

encode for other enzymes that function in the same biochemical pathway as the primary 

affected gene. In GD glucosylceramide synthesis enzymes are relevant candidate modifiers 

genes as they could theoretically modulate the substrate levels of the GBA enzyme thus 

potentially impacting on disease severity (Alfonso et al., 2013). Examples of diseases where 

modifiers have been successfully identified include the more common monogenetic diseases 

such as cystic fibrosis (Cutting, 2010; Gallati, 2014), sickle cell anemia (Lettre, 2012), 

thalassemias (Lettre, 2012) and most recently Huntington disease (Becanovic et al., 2015; 

Consortium, 2015b), which have incidences between 1:2,000 and 1:10,000. There are 
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relatively fewer success stories in IEM, many of which have been by identified using 

candidate gene approaches such as in Smith-Lemli-Opitz syndrome (Lanthaler et al., 2013), 

inherited hemochromatosis (Ala and Schilsky, 2011) and GD (Alfonso et al., 2013; Lo et al., 

2012; Mistry et al., 2002). Inherent challenges exist in successfully applying association or 

linkage approaches to genetic modifier discovery in IEM. First, many of the IEM are much 

rarer, yielding insufficient power to do unbiased, whole genome screens. In a recent 

unbiased GWAS study in GD which has an incidence of 1:50,000, not a single candidate 

gene met genome wide significance (Zhang et al., 2012). This limits the search to candidate 

gene approaches and genes of known disease relatedness. The generation of uniformly 

defined clinical phenotypes relevant for finding genetic modifiers is also problematic (Genin 

et al., 2008). Many patients are treated either through dietary interventions or enzyme 

replacement therapies thus impacting disease severity. Finally, population stratification 

greatly affects the ability to discover genetic modifiers of IEM (Genin et al., 2008) as it 

impacts chances of replication. Thus for reasons of a lack of power and statistical 

stringency, relieving candidate gene bias, expanding phenotype definitions, managing 

population stratification, and providing realistic frameworks to interpret IEM disease 

biology, we suggest that complementary approaches are needed to find genetic modifiers 

and modifying biology of IEM.

Studying IEM like complex disorders: A complementary approach to find 

genetic modifiers and modifying biology of IEM

The pursuit of genetic modifiers has established that IEM are more than just monogenic and 

not unlike common disease in complexity. This viewpoint has been further extended such 

that IEM phenotypes do not just form a spectrum within a specific disorder but that common 

diseases and IEM are actually part of a metabolic disease spectrum. In this view “genetic 

diseases represent a continuum with diminishing influence from a single primary gene 

influenced by modifier genes, to increasingly shared influence by multiple genes” (Dipple 

and McCabe, 2000a) (Figure 1B). In the allelic series hypothesis these variants can cause a 

disease phenotype at both ends of the spectrum (Blair et al., 2013; Lupski et al., 2011). A 

commonly used example of this phenomenon is familial hypercholesterolemia that occurs in 

two forms. Heterozygous familial hypercholesterolemia is relatively common and has an 

autosomal dominant inheritance pattern. It is caused by one mutated LDLR allele. 

Homozygous familial hypercholesterolemia is extremely rare and much more severe with 

cardiovascular disease in early childhood. It is caused by two mutated LDLR alleles and 

thus follows a recessive inheritance pattern (Brown and Goldstein, 1986). In support of this 

is the detection of significant comorbidities between common and Mendelian disorders 

determined through the mining medical records of over 110 million patients (Blair et al., 

2013). These authors show that each common disease was comorbid with a diverse and 

unique combination of Mendelian diseases implicating this “Mendelian code” of loci in 

common disease pathogenesis (Blair et al., 2013). Indeed, they further show that common 

variants associated with common disease in GWAS are globally enriched for Mendelian 

loci, a finding previously reported by Lupski et al (Blair et al., 2013; Lupski et al., 2011).
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Further rationale for this is driven by the fact that biochemical variation exists in each 

individual regardless of IEM diagnosis. For example in a recent GWAS performed on 

plasma metabolite levels in a healthy population, single nucleotide polymorphisms (SNPs) 

at the ACADM locus were found to associate with blood C8-carnitine levels (Shin et al., 

2014), the same metabolite used for diagnosis of MCAD deficiency. The same GWAS study 

highlighted several other examples, such as an association between phenylalanine levels at a 

locus near PAH, which is mutated in PKU (Shin et al., 2014). Overall these observations 

highlight that a continuum of biochemical phenotypes is always present, where common 

variation at IEM loci may give rise to more subtle phenotypes, with variants in the middle of 

the spectrum falling just short of causing a recognizable IEM as found with rare/extreme 

variants (Figure 1B).

If IEM are like common disorders then we should also study IEM as common disorders, by 

taking advantage of the same approaches like multi-scale omics technologies and integrative 

network analysis or even the same datasets (Figure 2A). The vast array of omics 

technologies could greatly expand phenotypes of IEM beyond clinical portrayals to include 

different intermediate molecular phenotypes (Figure 2B). Network-based approaches that 

integrate these data could then provide the framework to connect the various phenotypes to 

their genetic modifiers. This is critical for understanding the clinical expression of the IEM 

beyond a single-gene level but rather as a consequence of a set of molecular interactions 

(subnetwork) (Dipple and McCabe, 2000a; Scriver and Waters, 1999). It is these 

subnetworks that are sensing DNA variations (rare and common) as well as environmental 

stimuli, and responding to these perturbations (either appropriately or not) through changes 

in individual biochemical (intermediary) phenotypes that ultimately influences the expressed 

clinical phenotype (Schadt, 2009). We propose that by identifying these subnetworks and 

their associated key molecular drivers, we can greatly impact our understanding of IEM 

disease biology in a similar way to that demonstrated for complex diseases (Schadt, 2009). 

A welcoming way to overcome the “rare disease rare data” hurdle in order to build these 

networks is actually repurposing the data collected from the general population and the 

molecular networks derived from them as the background to study molecular changes 

associated with IEM (Figure 2C). For the remainder of this review, we highlight how omics 

technologies and integrative network approaches can be advantageous to the IEM field.

Data-driven characterization of IEMs through multi-scale omics 

technologies

Metabolomics

Omics technologies provide a detailed and unbiased view on the changes within the 

biological layers between DNA and the ultimate presentation of the clinical phenotype. Thus 

application of these technologies to IEM experimental models, for example, would provide 

an efficient means to rapidly expand IEM biology beyond what is already known. Of the 

different omics technologies available, metabolomics would be most amenable to study 

IEM. Metabolomics is the comprehensive and systematic identification and quantification of 

metabolites in a biological sample. Such analysis would not only allow for measuring the 

primary accumulating and often diagnostic metabolites, it will also reveal all other ensuing 
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changes in the metabolome such as those resulting from activation of alternative 

biochemical reactions. Those alternative biochemical reactions are important candidate 

modifiers as they can either assist in degrading an accumulating toxic metabolite or 

contribute to the production of unwanted toxic intermediates.

Biofluids such as plasma and urine are commonly used for these studies and are relatively 

easy to obtain in the context of a scientific experiment involving human subjects. In fact, 

measuring metabolites in body fluids is the domain of the clinical biochemist that performs 

diagnostic test for IEM. It is therefore surprising that untargeted metabolomics received little 

attention within the IEM field. Recently untargeted metabolomics was evaluated for its 

clinical utility in IEM diagnosis (Miller et al., 2015). In this retrospective study of samples 

from patients with a confirmed IEM, the diagnostic biomarker and many other disease-

related metabolites were reliably detected in plasma (Miller et al., 2015). Such approaches 

when fully validated, will not only expedite diagnosis, but at the same time enable the 

identification of novel biomarkers and potential metabolites associated with phenotypic 

heterogeneity within a particular IEM (Miller et al., 2015) that signify modifying biology. 

Metabolomics can also play a crucial role in defining function of novel uncharacterized IEM 

genes. For example, exome sequencing identified SERAC1 mutations in MEGDEL 

syndrome, an IEM characterized by dystonia and deafness with Leigh-like syndrome, 

impaired oxidative phosphorylation and 3-methylglutaconic aciduria. Only a few clues on 

the function of SERAC1 were available. The presence of a conserved lipase sparked 

lipidomic analysis, which revealed that SERAC1 was crucial for phosphatidylglycerol 

remodeling, a phospholipid that is essential for both mitochondrial function and intracellular 

cholesterol trafficking (Wortmann et al., 2012).

Transcriptomics

Transcriptome analysis through microarray or RNA sequence analysis have evolved into 

powerful techniques to profile genome-wide changes in gene expression in a tissue of 

interest in either patient material where available or experimental model organisms such as 

knockout (KO) mice. In such assays tens of thousands of variables can be measured 

simultaneously, providing insights into a vast array of known and unknown biological 

processes. Computational approaches such as the generation of lists of differentially 

expressed genes when comparing diseased to non-disease samples, the construction of 

classifiers to predict membership into disease groups, the construction of gene networks to 

tease apart the relationships among the many variables, are then employed to translate the 

data into pathophysiological insights through identification of key pathways associated with 

the disease (Sieberts and Schadt, 2007; Wang et al., 2012). Given the potential mass of 

information generated from a single experiment, it is surprising that there are only few 

reports on the use of these methods to understand pathophysiology of IEM.

GD is one of the IEM that exemplifies the power of omics strategies to revealing novel 

insights (Mistry et al., 2010). Motivation for this stems from the challenge of the 

macrophage-centric view to explain unusually prevalent manifestations such as 

gammopathies, cancer risk pulmonary hypertension, cholesterol gallstones and Parkinson 

disease (PD) (Mistry et al., 2013). GD patients have an almost 37-fold greater risk of 
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multiple myeloma as compared to the general population (Mistry et al., 2013) and 

approximately 5-10% of PD patients have GBA mutations making it one of the most 

important genetic predisposing risk factors identified to date (Beavan and Schapira, 2013). 

In an effort to determine the widespread effect of GBA deficiency on various immune cell 

populations, a mouse model with a conditional Gba deletion in cells of the hematopoietic 

and mesenchymal lineages was generated (Mistry et al., 2010). Importantly this mouse 

model recapitulated the human GD type 1 almost in its entirety, including differences in 

phenotypic severity as there were varying degrees of splenomegaly and hepatomegaly. 

Immunophenotyping and transcriptomic profiling revealed not only the dysfunction of 

macrophages but also aberrations in thymic T cell and dendritic cell development, 

suggesting that mechanisms other than macrophages may be worthwhile therapeutic targets 

(Mistry et al., 2010). The transcriptome dataset was further paired with the Connectivity 

Map (CMAP) in order to computationally perform drug-disease pairing, which is a strategy 

for repurposing existing therapies to new disease areas (Yuen et al., 2012). Not surprisingly, 

perhaps, CMAP ranked chemicals utilized in acute and chronic infections as the most 

relevant (Yuen et al., 2012).

Overall these studies demonstrate how omics approaches can be applied in terms of using 

detailed molecular and phenotypic characterization of experimental model systems to 

understand IEM, we likely just need to encourage more of them on other existing IEM 

models and where possible on IEM patient-derived material. A survey of the literature 

reveals that transcriptome datasets are available for only a handful of IEMs including 

methylmalonic acidemia and glycerol kinase deficiency (MacLennan et al., 2006; Manoli et 

al., 2013). Several datasets have been generated to study mitochondrial disorders, which 

represent a fairly common class of IEM characterized by respiratory chain defects (Skladal 

et al., 2003). A recent study of the transcriptome of muscle and fibroblasts of humans 

affected by a respiratory chain defect revealed common dysregulation of a nutrient-sensing 

signaling network (Zhang et al., 2013b). A meta-analysis of all mitochondrial transcriptome 

datasets identified several commonly dysregulated genes across diverse mitochondrial 

disease etiologies, models, and tissue types (Zhang and Falk, 2014).

Integration of omics data by network approaches to explain complex 

phenotypes

While potentially useful for prioritizing new candidate modifier genes of IEM, a list of 

biological entities altered in the IEM versus non-diseased state falls short of revealing its 

emergent properties. As the IEM phenotype is not just the sum of the parts, it is necessary to 

use additional methodologies to determine how the individual modifying factors assemble 

into functional modules and how the system dynamics are affected. Network models are one 

such framework amenable to exploring the context in which genes, gene products, 

metabolites and other components operate.

Different approaches to network modeling

There are several possible representations of biological networks and a diverse array of 

mathematical models and datasets making those representations possible. For example, 
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biological representations can be as simple as interaction networks where nodes are proteins 

and edges connecting the nodes represent physical interactions (Stelzl et al., 2005) to 

complex process descriptions where the networks are directed, sequential and mechanistic 

such as in a kinetic model, which describe the catalysis of substrates into products of a 

biochemical pathway (Le Novere, 2015). Although interaction type networks give a 

comprehensive view of a system such as genome transcriptional regulation in gene 

interaction networks (Neph et al., 2012), the process descriptions are generally on more 

focused biology, offering mechanistic insights and can be suitable for dynamic modeling (Le 

Novere, 2015). Thus the selection of modeling approaches to employ depends on a number 

of factors such as extent of prior knowledge required, dimensionality of the data to be 

modeled, the scale of data available to model, and the insight one is looking to derive from 

the data and the model (Figure 3).

At present, not all approaches are amenable to the IEM field, as some are highly dependent 

on large data-sets. However, for the reasons described above we can take advantage of 

existing datasets generated in complex diseases and use those network derived models in 

conjunction with IEM datasets as described below. Although an extensive review of the 

different types of network modeling approaches which could be applied to IEM data 

presently or as relevant datatypes become available is beyond the scope of this review, we 

nonetheless provide a brief synopsis of common methods followed by a case-study using 

one of these methods in order to ignite curiosity. Importantly, networks have already shown 

the potential to model disease relevant biology, whether from IEM or complex disease 

leading to novel, testable hypotheses. For example, a human disease network revealed that 

most disease genes are nonessential and do not have a tendency to encode hub proteins (Goh 

et al., 2007). Genome-scale networks were used to predict the phenotypic consequences of 

SNPs (Jamshidi and Palsson, 2006) and reveal known and novel biomarkers of IEM 

(Pagliarini and di Bernardo, 2013; Shlomi et al., 2009; Thiele et al., 2013).

Overview of biological network types

As summarized in Figure 3, network models can be defined as a spectrum that ranges from 

those models assuming the most complete knowledge of biological pathways (e.g. process 

descriptions) to those assuming no prior knowledge preferring instead to infer the network 

structures directly from the experimental data (e.g. interaction networks). The correlation 

based models are at the most extreme end of the distribution, requiring no prior knowledge. 

They are more exploratory in nature, seeking to understand the relationships that may exist 

between variables by elucidating the correlation structures in extensive datasets as a way to 

help understand key processes involved in complex phenotypes of interest. One draw-back 

is that they only reflect connections and influences on those connections; they do not 

explicitly infer causality and are not mechanistic. For example, correlation between genes 

using weighted coexpression network analysis (WGCNA) methods reveals whether genes 

are connected, such that if two genes are consistently up or down-regulated the chance that 

they share some regulatory feature or belong to the same biological process is higher (Le 

Novere, 2015; Zhang and Horvath, 2005).
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Kinetic models are at the other extreme end of the distribution with respect to requiring 

extensive prior knowledge. They are typically represented as systems of ordinary differential 

equations and are thus fixed to the connectivity structure among the variables being 

modeled. A series of parameters are then fit from the data to define the model precisely. 

With these parameter estimates, the behavior of the system can be directly explored via 

simulations run on the model and thus provide for granular mechanistic insights such as 

predicting changes in protein or metabolite levels (Le Novere, 2015). The modeling of 

metabolic pathway flux and drug response are examples using this approach. Constraint-

based modeling is a related approach as it also relies extensively on prior knowledge, 

however, it is much larger in biological scale and allows for genome-scale modeling of 

metabolism. In the case of metabolic networks no kinetic information is required, only 

network topology and uptake and secretion rates (Bordbar et al., 2014). Logic models 

represent another class of models that while requiring significant prior knowledge, includes 

an adaptive component that can be learned from the data thereby reducing the dependency 

on prior knowledge. They also maintain a simple and intuitive framework for understanding 

complex signaling networks yet still enable direct mechanistic insights to be derived from 

simulations on these models (Morris et al., 2010). Overall, kinetic, constraint-based and 

logic models are representative of bottom up modeling approaches which start with strong 

prior knowledge as to how pathways are put together with the flow of information through 

the system then being defined by the parameters on those pathways.

An intermediate type of network in terms of being a more flexible framework are Boolean 

networks that model biomolecules as binary variables that directly relate to state information 

such as activated or inhibited that is relevant to downstream biological processes (Albert and 

Thakar, 2014). The regulation of the different states represented are described in a 

parameter-free way, not by kinetic parameters thus providing for an approach that enables a 

more exploratory characterization of the dynamics of a complex system. Although the trade-

off is providing less mechanistic insights compared to kinetic models, Boolean networks can 

represent many more variables.

Bayesian networks

An even more flexible framework for modeling complex biological processes is Bayesian 

networks. Bayesian networks are able to incorporate prior knowledge if so desired, yet are 

not dependent on it, and at the same time provide a way to learn regulatory relationships 

directly from the data. For example, genotype, gene expression, metabolomic data as well as 

literature-based knowledge can be integrated as priors into causal network models, which 

leads to an improvement in the accuracy of reconstructed networks (Zhu et al., 2012; Zhu et 

al., 2007; Zhu et al., 2008). Heuristic searching is used to construct networks comprised of 

many thousands of variables but equally large sets of data are required to effectively 

construct this type of model. Another draw-back is the ability to derive mechanistic insights 

since the causal relationships represented in these models are statistically inferred and not 

process defined. Another limitation of Bayesian networks relates to their ability to 

distinguish causal structures that have equivalent joint probability and conditional 

independence structures, known as the Markov equivalence. As statistically 

indistinguishable structures may reflect completely contradictory causal relationships, the 
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severity of this problem is not minor. The Boolean and Bayesian network modeling 

approaches are examples of structure-based learning or top-down modeling approaches that 

seek to learn relationships directly from the data.

For the purposes of understanding complex systems where the relationships among the 

constituent components of the system are largely unknown, out of the broad spectrum of 

methods, Bayesian networks have emerged as a state-of-the-art approach (Chang et al., 

2015; Zhu et al., 2012; Zhu et al., 2008). Bayesian networks strike a nice balance between 

being able to resolve mechanisms and structure and more broadly reflecting connections and 

their influences thus providing an efficient path for understanding information flow. The 

cohorts from which we and others have scored omics data and built networks are population 

based and have been derived in experimental model systems (e.g. F2 crosses of yeast or 

mice) or in humans and from many different tissue types. Importantly Bayesian networks 

have demonstrated to capture fundamental properties of complex systems in states that give 

rise to complex (diseased) phenotypes (Jansen et al., 2003; Lee et al., 2004; Schadt et al., 

2008; Zhong et al., 2010; Zhu et al., 2004; Zhu et al., 2012; Zhu et al., 2007; Zhu et al., 

2008). Furthermore several disease areas have successfully applied Bayesian network 

modeling approaches including chronic obstructive pulmonary disease, cancer, obesity, 

diabetes, inflammatory bowel disease, longevity, cardiovascular diseases and Alzheimer’s 

disease. From these a large number of novel targets have been identified and validated and 

the new insights considered to have greatly increased our understanding of these complex 

diseases (Argmann et al., 2009; Chen et al., 2008; Emilsson et al., 2008; Jostins et al., 2012; 

Lamb et al., 2011; Tran et al., 2011; Yang et al., 2009; Yoo et al., 2015; Zhang et al., 

2013a).

A case study: Finding candidate genetic modifiers and modifying biology 

of GD using common population datasets and networks

The utility of Bayesian networks from common disease datasets to inform on IEM relies on 

demonstrating that IEM disease-oriented pathophysiology arises from molecular pathways 

that are not markedly atypical and actually reflect some extreme or alternate form of 

common physiology. We tested if this was the case for GD. For this we used a network 

generated from the F2 offspring of several inbred strains of mice including C57BL/6 and 

C3H mice (Figure 4A). These F2 populations are unlike KO mouse models, in that they 

have subtle genetic diversity at multiple loci and therefore mimic the natural range of DNA 

variation seen in humans (Argmann et al., 2005). The liver transcriptomes of these 

individual F2 mice were combined with their genetic information and organized into causal, 

predictive molecular interaction networks using the Bayes theorem (Chen et al., 2008; 

Schadt et al., 2005; Yang et al., 2006). We tested whether in this network there is a non-

random, tight interconnection of genes affected in the Gba KO mouse model, which would 

indicate that the molecular pathways ascertained under complete ablation of Gba are related 

to common physiology. This is in contrast to finding that the interconnectivity is diffusely 

distributed across the whole network which might imply significant ‘new biology’ arises 

when Gba expression is depleted.
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Of the 1161 genes that were found differentially expressed in the livers of Gba KO mice 

(Mistry et al., 2010), 584 were represented in our mouse liver Bayesian network. For these 

genes we calculated the pair-wise shortest path within the network and compared that to the 

average shortest path of 104 randomly selected sets of 584 genes. On average, the shortest 

path for the genes in the Gba KO-associated gene set were much lower than expected by 

random chance(P < 0.001) (Figure 4B). In network terms, the low average shortest distance 

for the GD disease signature set, relative to random chance, indicates a non-random, tight 

interconnection of genes in the network. In biological terms, this means that a significant 

part of the GD pathophysiology is indeed related to common physiology.

In order to demonstrate that our observations are not restricted to GD, we applied the pair-

wise shortest path algorithm to a differentially expressed gene set obtained from livers of 

mice with a defect in mitochondrial fatty acid oxidation (FAO, long-chain acyl-CoA 

dehydrogenase KO mice)(Houten et al., 2013; Kurtz et al., 1998). We also observed a low 

average shortest distance for this FAO gene set relative to that of randomly derived gene sets 

indicating strong connectivity of this gene set in the same liver mouse Bayesian network (P 

< 0.001, Figure 4B). Combined these data show that we can employ data-driven approaches 

and re-purpose existing causal predictive networks that have shown benefit to the common 

metabolic disease field for use in the IEM field. Networks based on mouse models serve an 

advantage in that material of all sorts can be profiled in controlled ways that make 

generation of the networks, as well as signature sets from models that represent the IEM, 

feasible. We do however suggest in the next section that molecular characterization of IEM 

patient material should be explored in a systematic way and could be used similarly.

Given the above, we now demonstrate that Bayesian networks can be used to inform on key 

molecular drivers of the pathophysiology associated with the IEM, in our case GD. Within 

the identified GD subnetwork (Figure 4C), some of the predicted key drivers include 

lysosomal-associated proteins such as Cathepsin S (Ctss) (Hsing and Rudensky, 2005), a 

Rab GTPase, Rab7b (Yao et al., 2009) and the PD associated gene Atp13a2 (Dehay et al., 

2012). Importantly these genes and their subnetwork could be directly used to formulate 

novel hypotheses in terms of GD pathophysiology and set the stage for understanding 

modifying disease biology in a data-driven approach.

Gaining insight into disease through studying rare disease-associated 

subnetworks

Omics and network approaches in IEM also have clear translational value. By intersecting 

IEM-associated subnetworks with databases of other disease and drug-related signatures, we 

can better characterize and subtype diseases and gain insights into the full gamut of 

metabolic disease. In our example, querying the GD subnetwork against other disease 

databases revealed a significant enrichment in the genes of the macrophage enriched 

molecular network (MEMN) module (Chen et al., 2008; Emilsson et al., 2008)(>4-fold, 

p<0.05). The MEMN is associated with macrophage-related function and is significantly 

enriched for genes testing statistically causal for various complex metabolic disease traits 

including adiposity, lipid levels and insulin sensitivity (Chen et al., 2008). The MEMN has 

been subsequently shown as relevant for a great diversity of diseases including 
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inflammatory bowel disease, Alzheimer’s disease, asthma, chronic obstructive pulmonary 

disease, and heart disease (Emilsson et al., 2008; Jostins et al., 2012; Wang et al., 2012; 

Zhang et al., 2013a). Canonical pathway enrichment analysis showed that the MEMN is 

indeed enriched in lysosomal genes and human phenotypes related to hepato- and spleno-

megaly. The MEMN showed further relevance to GD as it is enriched for a liver 

transcriptome signature derived from mice treated with a compound that reduces the 

synthesis of glucosylceramide, the precursor of the more complex glycosphingolipids and 

the metabolite that accumulates in GD. Interestingly, this compound essentially normalizes 

gene expression of a genetically obese (ob/ob) mouse to one of a lean (C57BL/6) mouse 

(Bijl et al., 2009).

Overall, we isolated a subnetwork that could recreate the known associations of GD with 

macrophage and lysosome function and glycosphingolipid biology. Importantly, this 

subnetwork could shed light on the potential mechanisms for the clinical diversity seen in 

GD patients and highlights novel candidate modifier genes, given the associations of these 

genes with other complex diseases. These findings also serve to highlight the potential of an 

IEM to shed light on common disease biology. By associating a GD-derived molecular 

signature to a module of genes linked to common diseases (MEMN), we could reinforce the 

importance of macrophage function as well as assign lysosomal dysfunction as 

pathophysiological processes. Indeed glycosphingolipid synthesis inhibitors are anti-diabetic 

(Aerts et al., 2007) and lysosomal dysfunction has been associated with obesity (Gabriel et 

al., 2014; Xu et al., 2013).

Moving beyond genetics of gene expression based datasets and networks

Genetics of gene expression is widely used in the common disease world. However, models 

that incorporate information from other scales of biology such as that captured by 

metabolomics, proteomics, phenomics and kinomics are not yet common place in any 

disease area. This is despite the fact that these intermediate phenotype levels are considered 

to be equally important with respect to informing on the how the genetic variants ultimately 

impact on the clinical phenotype (Ritchie et al., 2015). Thus while our strategy in Figure 2 

begins with a differentially expressed gene set derived in a GD mouse model, projected onto 

a molecular-based Bayesian network, an alternative strategy could be to use differentially 

expressed metabolites that associate with GD severity in conjunction with other biological 

networks. The delay in incorporating other omics data layers into integrative approaches has 

in part been caused by technological challenges, but several resource initiatives are now 

demonstrating feasibility. For example in the BXD mouse genetic reference population, 

dozens of strains have been co-characterized at the genomic, transcriptomic, proteomic, 

metabolomic and phenomic level (Andreux et al., 2012; Civelek and Lusis, 2014; Wu et al., 

2014), with data being made publically available through GeneNetwork (Rosen et al., 2007). 

In humans large scale metabolomics datasets are starting to accumulate (Shin et al., 2014) 

and tissues are being collected as part of consortiums for the potential of panomics to be 

added (Consortium, 2015a).
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The next generation outlook for IEM: Understanding the phenotype of the 

individual patient

While understanding disease pathophysiology in general will advance the IEM field, the 

ultimate goal should be to understand per individual how their phenotype emerges given 

their primary mutation on the background of their whole genome, not unlike personalized 

medicine. This essentially means working on a case by case manner and solving for an n of 

1 case each time. In our next generation outlook for IEM, we argue that studying individual 

cases will become feasible by using multi-scale omics approaches and network models. This 

is because deep molecular profiling using an array of all available omics technologies 

combined with recent experimental innovations will yield results that depend less on de 

novo discovery of associations by providing a more comprehensive and holistic context in 

which to figure out a given case.

Whole exome sequencing is extremely powerful at detecting a Mendelian disease gene in a 

single patient (Bamshad et al., 2011) and has become more common place in the diagnostic 

arena and being applied especially in cases of unknown etiology. This is useful in IEM 

where many genes can cause similar disease phenotypes such as mitochondrial disorders 

(Carroll et al., 2014; Lieber et al., 2013), but also aids in finding the molecular cause when a 

phenotype is atypical for a known disease gene (Ratbi et al., 2015), or when a disease gene 

is associated with an unexpected metabolic pathway (Houten et al., 2014). Many of the new 

IEM genes however, encode sparsely or uncharacterized proteins, which offer limited 

disease insight and no treatment options. At the same time, newborn screening has identified 

many cases in IEM where the clinical significance of the defect is uncertain (Andresen et al., 

2001; Gallant et al., 2012). Thus while not yet greatly contributing to our molecular 

understanding of IEM, newborn screening and genomics is currently impacting the IEM 

field with respect to increasing the number of IEM and patients to study.

Novel developments will help to understand the individual IEM patient

Although it may appear as if omics approaches are currently creating more questions than it 

answers there is hope. Enthusiasm for omics approaches and network frameworks in IEM 

medicine is derived from evidence in the cancer arena, which has demonstrated that present 

day technology is sufficiently advanced to tackle individual cases in order to understand the 

molecular drivers of those cases. In this sense, there are several cases now in which 

molecular profiling of a given individual cancer patient highlighted driver genes that 

indicated treatments that in turn were given and helped or even cured the patient (Schadt et 

al., 2014). Of course, cancers are not IEM, however, from a genetic standpoint; there is 

some similarity to IEM given the occurrence of variants with big effect sizes that make for 

profound perturbations leading to significant physiological changes. Similar to the initiatives 

of the cancer field then, we will need to start investing in the generation of panomic and next 

generation type of phenotyping data of existing patients in order to better understand disease 

(Weaver et al., 2014).

While in the case of cancers, tumor samples are readily available for multi-omics profiling, 

technology has evolved so that profiling of relevant disease tissues, outside of tumor biology 
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is also feasible. With induced pluripotent stem cell (iPSC) technology we now have the 

ability to take patient fibroblasts, reprogram them into iPSC cells and then re-direct the cell 

lineage towards relevant disease cell types from which detailed molecular profiling can be 

performed (Inoue et al., 2014). For example, in a recent study iPSC-derived cardiomyocytes 

were used to study the pathophysiology underlying the cardiomyopathy observed in Barth 

syndrome, a mitochondrial disorder caused by a defect in cardiolipin synthesis due to 

mutations in TAZ. The iPSC-derived cardiomyocytes were used for a series of state-of-the-

art assays including a heart-on-chip model that assesses contraction force (Wang et al., 

2014). With single cell technologies we also now have the ability to do transcriptomics 

measures when biopsy material is available in limiting quantities (Macaulay and Voet, 

2014). From a translational sense, these resources as well as advanced genome editing 

techniques such as CRISPR/Cas9 and modified RNA strategies facilitate downstream 

validation assays of hypotheses and potential therapeutic interventions (Hsu et al., 2014). 

Alternative data types such as metabolomics are also now feasible on large scale and on 

many tissue types. Thus in the elucidation of the molecular and biochemical basis of new 

IEM, multi-scale approaches such as genomics and metabolomics that are layered into 

informative networks will play synergistic roles (Figure 2).

Another way by which omics will be impacting on IEM is through the recently launched 

Resilience Project (http://resilienceproject.me/), whereby large scale genetic screening of 

general populations for a panel of rare disease causing mutations is hoping to uncover 

healthy individuals harboring rare genetic disease and the genetic modifiers that make them 

resilient to this disease (Friend and Schadt, 2014). The screening panel includes at least 195 

genes known to cause a variety of IEM, such as PKU and MCAD deficiency. The premise 

of this approach is the ability to identify those mutations, which potentially have bigger 

effect sizes in the modifying genetics given a more extreme phenotype (i.e. absence of 

clinical symptoms) (Figure 1B). This is one potential way to solve the issue of lack of power 

using GWAS approaches in IEM patients as highlighted at the beginning of this perspective. 

Overall, these systems approaches are expected to provide insight in pathophysiology by 

identifying potential modifiers and their associated biology as well as offer new treatment 

options (Friend and Schadt, 2014). The initiative of resilience is not unlike the solving 

unique cases. Thus there is seemingly a paradigm shift happening towards individualized 

medicine that will undoubtedly benefit many disease areas (IEM to common disease to 

cancers) in terms of being able to understand the molecular drivers of those cases like never 

before.

Finally as in the case of cancer, our ability to make sense of the various scored data types 

will require a more network oriented view whereby a single patient is studied in the context 

of many. For this we will need to tackle organizing the digital universe of information from 

the IEM by building models as a way to capture knowledge and understanding from the vast 

seas of data as is done in cancer through the use of the cancer genome atlas datasets (TCGA 

Research Network: http://cancergenome.nih.gov/). We will for example need to construct 

predictive disease network models that can (i) render subtypes of IEM, leading towards 

biomarkers that can accurately stratify patient populations, and (ii) provide insights into 

disease networks that help resolve causal relationships among genes and phenotypes, 
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leading to potential therapeutic targets. There are many network formats possible as 

described above and their use will depend on their performance and may ultimately require 

hybrid type models. With all these networks in hand, the final step is to use them to inform 

individual IEM cases in terms of prediction of disease severity, pathophysiological 

mechanisms and potential therapies.

Potential limitations and future directions

While we predict that pathophysiology associated with IEM is not necessarily a new form of 

biology and therefore minable in the general population, we do not know whether this holds 

for all IEM, even more so for different aspects of their pathophysiology. Another potential 

limitation is that the range of gene expression for an enzyme does not directly reflect 

metabolic flux through that enzyme. This is because enzymes do not work in isolation, but 

are kinetically linked to other enzymes via their substrates and product (Kacser and Burns, 

1981). In a network framework dominated by gene expression datasets this could be 

problematic. Therefore network refinement by incorporating knowledge and other datatypes 

will be needed for the purpose of investigating IEM when using general population datasets.

To interrogate the reference networks we will rely on signatures derived from the 

characterization of the IEM preferably at multiple scales of biology. The rationale for this is 

that intermediate phenotypes are more proximal to the expression of the disease and help in 

making mechanistic links. At present however, we do not know which layers of information 

will reveal the most impactful biomarkers or modifiers so we need to aim to be as broad as 

possible. Although the IEM field has realized that collecting natural history is crucial to 

gather more phenotypic data on these diseases, they are often not collected in conjunction 

with other multiscale layers, even as basic as keeping a repository of DNA from such a 

cohort, which would be essential for the validation of the predicted modifiers. This means 

populating biobanks with various samples from IEM patients is imperative followed by 

expanding clinical characterizations to include other omics layers on these samples. Finally, 

we would like to modernize what Garrod conveyed to his medical students. He often assured 

them that they do not all need to become biochemists but rather they needed to know 

something of the biochemical approach to disease, we would suggest one also now needs to 

know something of the multi-scale biology approach to disease.
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Figure 1. Inborn errors of metabolism (IEM) are increasingly viewed as complex diseases
(A) IEM are not unlike common diseases as they often present as a spectrum of disease 

phenotypes that poorly correlate with the severity of the disease-causing mutations 

(genotype). The abandonment of the one gene-one disease idea implies that modifying 

factors such as environmental, epigenetic, and microbiome factors as well as additional 

genes contribute to the disease. It also means that IEM phenotypes are emergent properties 

of biological networks rather than the result of changes to single genes, metabolites or 

phenotypes alone. Thus we have to expand our understanding of the clinical expression of 

Argmann et al. Page 22

Cell Metab. Author manuscript; available in PMC 2017 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the IEM beyond a single gene level to that of a consequence of a set of molecular 

interactions (subnetwork). (B) IEM are being considered more and more alongside common 

disease as part of a spectrum of ‘errors’ in metabolism. In this spectrum, ‘classic’ IEM are 

on the on extreme and arise from a primary genetic variant influenced by modifier genes, 

while the common metabolic diseases are on the other extreme and are caused by multiple 

genetic variants with relatively small effect sizes. The variants in the primary disease locus 

in the context of the individual’s background such as genome, epigenome, and 

environmental exposures will ultimately determine the molecular state of the individual and 

an individual’s risk of disease and spectrum of phenotypic presentation. This view is 

highlighted by the Resilience project, whereby large scale genetic screening of general 

populations for a panel of rare disease causing mutations is hoping to uncover healthy 

individuals harboring rare genetic disease and the genetic modifiers that make them resilient 

to this disease.
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Figure 2. Studying IEM like complex disorders through adopting multi-scale omics technologies 
and network approaches
We can study IEM as common disorders by taking advantage of approaches like multi-scale 

omics technologies and integrative network analysis and even by sharing datasets. (A) 
Omics data generated from samples collected in common populations of humans or model 

organisms can be integrated alongside public database information to generate predictive 

molecular networks. (B) We propose these networks can be repurposed and used as a 

reference or framework to associate the various IEM phenotypes, scored through multi-

omics approaches on samples from IEM models and patients, to identify candidate genetic 

modifiers and modifying biology. For example, disease signature sets generated by various 

omics technologies on material derived from patients, patient-derived cells (iPSCs) or 

experimental model systems can be used to probe a reference network to reveal disease-

associated subnetworks. (C) As these Bayesian networks have a causal predictive 

component they can be used to inform on key molecular drivers of the pathophysiology 

associated with the IEM. Genes within subnetworks can be nominated as key molecular 

drivers through statistical algorithms and functional and therapeutic insight can be derived 

through annotation of subnetwork gene members. Potential impacts of such network 

approaches to IEM include improving the presently poor correlation between disease 

severity and the primary mutated locus as well as overcoming the fundamental gap in our 

knowledge of disease modifying genes and biology.
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Figure 3. A summary of different classes of mathematical modeling approaches that can be 
applied to biological data
Networks represent a way to uncover relationships in data that may help elucidate causal 

relationships among molecular traits and biological processes and derive mechanistic 

insights into the causes of disease and other phenotypes of interest. They may also enable 

predictions of phenotypes.
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Figure 4. An example of a predictive molecular network, the mouse liver Bayesian network
(A) A predictive molecular network generated from genomic and hepatic gene expression 

data scored in several hundred offspring from different F2 crosses of inbred strains of mice. 

The utility of networks from common disease datasets to inform on IEM relies on 

demonstrating that IEM disease-oriented pathophysiology arises from molecular pathways 

that are not markedly atypical and actually reflect some extreme or alternate form of 

common physiology. We tested if this was the case by probing the network with two 

different IEM model derived disease signature sets (seed set). One signature set was derived 

from the liver transcriptomic data generated in a Gba KO conditional mouse, an 

experimental model for Gaucher Disease (GD, green nodes) and the second was from the 

liver transcriptomic data generated in an Acadl KO mouse, a fatty acid oxidation deficient 

experimental model (FAO, blue nodes). (B) A histogram of the shortest path calculation for 

104 randomly generated gene sets, of the same size as the disease signature sets, on the 

network in A. The arrow in the histogram represents the average shortest path of the GD 

signature gene set. The average shortest path for the FAO signature gene set was also 

significantly lower relative to random chance (data not shown). The low average shortest 
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distance for the two disease signature sets relative to that of randomly derived gene sets 

indicates in network terms, a non-random, tight interconnection of genes in the network. In 

biological terms, this is suggestive that a significant part of the pathophysiology associated 

with IEM is indeed related to common physiology. (C) Key molecular drivers were 

nominated amongst the genes within the isolated GD subnetworks through statistical 

algorithms. The isolated Gba KO subnetwork highlights one nominated key driver, 

Cathepsin S (Ctss) in red.
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