Skip to main content
. Author manuscript; available in PMC: 2016 Dec 1.
Published in final edited form as: Proteins. 2015 Nov 17;83(12):2293–2306. doi: 10.1002/prot.24948

Table 1. Eigenvector centrality reconciles results for various co-evolution analyses.

For each pair of algorithms, non-parametric correlation coefficients (Spearman R2) are shown for pairwise co-evolution and eigenvector (EVC) scores, using either the unsubtracted (“Initial”) or subtracted (“Sub”) networks. As discussed in Methods, ZNDAMI is used in place of subtracted ZNMI.

Algorithms Coefficient of determination (Spearman R2)
Aldolase LacI/GalR

Pairwise EVC Pairwise EVC

Initial Sub Initial Sub Initial Sub Initial Sub
ELSC vs McBASC 0.48 0.51 0.71 0.74 0.09 0.11 0.27 0.50
ELSC vs OMES 0.64 0.65 0.78 0.78 0.37 0.42 0.66 0.73
ELSC vs SCA 0.19 0.23 0.40 0.43 0.02 0.14 0.14 0.32
ELSC vs ZNMI 0.44 0.46 0.78 0.79 0.23 0.25 0.45 0.60
ELSC vs TEA-O 0.30 0.54
McBASC vs OMES 0.59 0.63 0.72 0.75 0.14 0.20 0.14 0.38
McBASC vs SCA 0.20 0.23 0.22 0.26 0.08 0.13 0.12 0.36
McBASC vs ZNMI 0.48 0.52 0.65 0.69 0.18 0.28 0.05 0.34
McBASC vs TEA-O 0.26 0.38
OMES vs SCA 0.25 0.25 0.31 0.31 0.31 0.34 0.43 0.55
OMES vs ZNMI 0.50 0.54 0.77 0.85 0.46 0.50 0.51 0.69
OMES vs tEA-O 0.26 0.70
SCA vs ZNMI 0.35 0.37 0.60 0.61 0.18 0.18 0.33 0.47
SCA vs TEA-O 0.25 0.42
ZNMI vs TEA-O 0.34 0.77

Median improvement 0.03 0.19 0.23 a 0.05 0.12 0.29a
a

Median improvement does not include the TEA-O comparisons.