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Abstract

The large amount video data produced by multi-channel, high-resolution microscopy system 

drives the need for a new high-performance domain-specific video compression technique. We 

describe a novel compression method for video microscopy data. The method is based on 

Pearson's correlation and mathematical morphology. The method makes use of the point-spread 

function (PSF) in the microscopy video acquisition phase. We compare our method to other 

lossless compression methods and to lossy JPEG, JPEG2000 and H.264 compression for various 

kinds of video microscopy data including fluorescence video and brightfield video. We find that 

for certain data sets, the new method compresses much better than lossless compression with no 

impact on analysis results. It achieved a best compressed size of 0.77% of the original size, 25× 

smaller than the best lossless technique (which yields 20% for the same video). The compressed 

size scales with the video's scientific data content. Further testing showed that existing lossy 

algorithms greatly impacted data analysis at similar compression sizes.

Index Terms

biomedical image processing; data compression; image analysis

INTRODUCTION

High-speed, high-resolution and high-content microscopy systems are increasing the rate 

and amount of video data being acquired more rapidly than the rate of increase in affordable 

data storage (Wollman 2007). This forces the bench scientist either to be very selective in 

which data sets they store or to greatly compress their data (Oh et al., 2003). At the same 

time, funding agencies and journals are increasingly requiring all data from published 

experiments be retained to enable re-analysis by others. Our goal was to develop a method 

that obtains high compression while preserving the information needed to perfectly 

reproduce analysis results.

There are a number of lossless compression techniques available that reduce the size of a 

data set while enabling exact reconstruction of the original file (Christopoulos et al., 2000; 

Wiegand, 2003; Vatolin et al., 2007; Burrows et al., 1994). Some have been developed 

specifically for use on images (Christopoulos et al., 2000) and video data (Wiegand, 2003; 

Vatolin et al., 2007). Noise in the video images combines with the requirement that every 

pixel be exactly reproduced in every frame to limit compression rates for these techniques.
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Several high-quality image compression techniques are tuned specifically for the human 

visual system to produce image artifacts that are not easily seen (they are “perceptually 

lossless”). They achieve far greater compression rates without visible quality loss 

(Christopoulos et al., 2000). Similarly, a number of video-compression techniques exist, also 

finely tuned to avoid introducing visible artifacts (Wiegand, 2003). However these 

techniques are not ideal for compressing microscopy videos because of two reasons. First, 

human visual system and the microscopy video analysis procedure are sensitive to different 

sets of features in a video. Those compression techniques are designed only to address the 

sets of features that human visual system is sensitive to. Second, the noise in natural scene 

videos and microscopy videos does not have the exact same characteristics. Those 

compression techniques are designed in accordance with the noise in natural scene videos.

The use of three new compression techniques for single confocal fluorescence microcopy 

images of cells was explored by Bernas et al. (2006) to determine how much compression 

could be achieved based on the signal to noise ratio (SNR) of the images. They used two 

techniques to estimate SNR for the images (Amer et al., 2005; Nowak et al., 1999). Their 

spatial downsampling approach reduced image resolution to match the frequency at which 

the spatial intensity contrast passed below the estimated noise floor in the images. Their 

intensity downsampling approach reduced the number of intensities per pixel to the number 

of distinguishable levels based on the noise floor. Their wavelet compression approach 

removed wavelet coefficients that were expected to represent only noise. They achieved 

compression ratios of between 3 and 9 without significant reduction in three quality tests. 

We seek compression ratios of up to 100..

With the goal of decreasing the transmission bandwidth for time-series of confocal optical 

microscopy image transmission, Avinash looked at the impact of different quality levels of 

JPEG compression (compared to lossless compression) on the image intensity variance in 

single 2D images (Avitash 1995). He compared this to estimates of image noise based on the 

variance in visually uniform background regions. He hypothesizes that adding only slight 

compression noise compared to the already-present background noise may not impede 

quantitative analysis (20% increase in noise). He compared time-averaged versions of the 

same region to simulate images with different noise levels. He found that at a JPEG quality 

setting of 75/100, the noise variance was much higher than the difference variance (22–32× 

greater); at this value, the compression ratio varied between around 3 (noisy image) and 5 

(less-noisy image). The compression ratio was never more than 11, even for images with 

significant degradation.

We describe a new method for microscopy video compression that achieves up to 100× 

compression, enabling high-throughput video-acquisition experiments to be stored in the 

same space as conventional experiments. The compression has no impact on analysis results. 

It achieves this by storing only the information in a video that analysis can use and 

averaging out noise in the background. It first separates every frame into foreground (pixels 

that carry information) and background (pixels that change only as a function of instrument 

noise) and then losslessly compresses the foreground regions. This successfully keeps all 

relevant data while achieving a better compression ratio. In testing, it achieved a best 

Shao et al. Page 2

Microsc Res Tech. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compressed size of 0.77% of the original size (over 100× compression) whereas the best 

standard technique yields 20% (~5× compression) for the same video.

The key problem is to decide whether each pixel in each video frame is foreground or 

background. For microscopy video, the noise behavior is well understood to be independent 

between neighboring pixels, whereas blurring (convolution with the point-spread function 

(PSF)) will spread image brightness changes in one pixel to its neighbors (Sheppard et al., 

2006). Making use of this property, we designed a correlation-based method that separates 

foreground from background. Fig. 1 summarizes the steps, which are further detailed below 

and in the Methods section.

The method first generates a binary segmentation of each frame into foreground and 

background pixels by thresholding on the maximum magnitude of the Pearson’s correlation 

coefficient (Stigler, 1989) between each pixel and its eight neighbors. This coefficient is 

computed over all frames of the video, selecting pixels whose brightness changes are 

correlated with those of their neighbors.

Because even independent random variables have nonzero correlations with some 

probability, a number of pixels are falsely labeled as foreground. These pixels are likely to 

be spread evenly across the image, whereas true foreground pixels will be grouped into 

clusters that are at least as large as the main lobe of the PSF. To remove these false 

positives, the binary segmentation is refined by the mathematical morphology erosion 

operation.

Because analysis methods make use of pixels near the foreground pixels, the resulting set of 

foreground pixels is dilated to include pixels that are close enough to affect analysis (this 

radius depends on the parameters of the analysis algorithm).

Using the refined binary segmentation, the original video has each pixel in its background 

regions replaced by that pixel’s time-averaged value. This removes noise, which makes the 

video more suitable to be compressed by a common lossless compression technique. Here 

we choose to use lossless H.264 compression.

To verify that the compression had no impact on analysis, the compressed video is processed 

by the same analysis pipeline to make sure the results exactly match those of the original 

video.

METHODS

The central problem in this method is to find the separation between foreground pixels 

(which carry information) and background pixels (which contain only noise) in microscopy 

video.

In general, noise can be introduced into a video at multiple stages including video 

acquisition, recording, processing and transmission (Amer et al., 2005). For microscopy 

videos, noise can be modeled by a shot noise added by white noise. Shot noise is due to the 
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statistical variation in the number of detected photons and it obeys a Poisson distribution 

(Sheppard et al., 2006). White noise can be modeled by a zero-mean Gaussian distribution.

The background noise in the video can be well modeled by a Gaussian distribution with zero 

mean and standard deviation σ plus a Poisson distribution with mean and variance λ:

Importantly, neither of these terms depends on the values of neighboring pixels: they are 

identically randomly distributed among the pixels in the image (Sheppard et al., 2006).

Another important property of microscopy video is the mixture of values from neighboring 

pixels caused by the point-spread function. This causes changes in each pixel’s intensity 

over time to be correlated with those of neighboring pixels. As a result, in a microscopy 

video, time correlation of the intensity of a pixel and its neighbors tends to become nonzero 

whenever it is caused by changes in intensity due to specimen motion.

As detailed below, we use a sequence of steps to generate a foreground/background mask 

for pixels in the video. We use this map to generate another version of the video. In this new 

video, the foreground pixels are the same as in the original, but each background pixel is 

replaced in all frames by its mean value over time. The resulting video has every 

background pixel’s intensity constant over time, enabling it to be better compressed by 

lossless H.264 compression.

Step 1: Compute Correlation Scores

For each pixel in a video, we consider its intensity value over time as a vector. For a video 

with dimensions m×n and with k frames, we have m×n vectors. The score for each pixel is 

computed based on the absolute value of the Pearson’s correlation between that pixel’s 

intensity value vector and each of its neighbors’ vectors. We denote this value as Ri and 

compute it as:

where xj is the pixel intensity value for the center pixel at jth frame, x̄ is the mean pixel 

intensity value for the center pixel. yij is the pixel intensity value for the neighbor pixel at jth 

frame; ӯi is the mean pixel intensity value for the neighbor pixel. σx is the standard deviation 

of the pixel intensity value for the center pixel and σyi is the standard deviation of the pixel 

intensity value for the neighbor pixel.

We compute this value for all eight neighboring pixels. To be conservative in our estimate 

of foreground pixels, we compute the maximum of all neighboring pixels and use this score 

to determine which pixels are in the foreground.
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Step 2: Determine Threshold

After every pixel has a score assigned to it, we must select a threshold such that all pixels 

whose score are above the threshold are considered foreground pixels. Fig. 3 shows the 

impact on compression size as this threshold is increased; fewer pixels are selected as 

foreground and the compression ratio improves. However, at some point this causes 

foreground pixels in the image to be missed, which impacts the data analysis and the 

compression begins to change the results of analysis. Because there is no general solution to 

the question “how much change to analysis values is too much”, we stop at this level we 

select the threshold that has the best compression without impacting analysis.

Step 3: Remove False Positives

Even independent random variables have nonzero correlations with some probability, 

resulting in a number of pixels being falsely labeled as foreground. These pixels are likely to 

be spread evenly across the image, whereas true foreground pixels will be grouped into 

clusters that are at least as large as the main lobe of the PSF. To remove these false 

positives, the binary segmentation is refined by the mathematical morphology erosion 

operation (Serra, 1982).

This operation effectively places a disk on each of the foreground pixels. If all of the pixels 

in the disk are also foreground, the pixel is left as foreground. Otherwise it is background. 

We used a disk of diameter of 3 pixels for all of the videos tested. This is motivated by the 

extension of the point-spread function of the microscope used to collect the video.

Step 4: Include All Pixels Used by Analysis

Image analysis routines often use pixels beyond the foreground in their calculations. To 

ensure that they produce identical results on the compressed video, it is necessary to extend 

the region of foreground pixels to include these neighboring pixels. Our compression 

therefore expands the region by a distance in pixels specified by the scientist based on their 

analysis routine. This is done using the mathematical morphology dilation operation, which 

marks all of the pixels within a specified radius of an existing foreground pixel as also being 

foreground.

Our collaborators evaluate their data using the CISMM Video Spot Tracker (2015). This 

program uses trackers with a fixed radius. The dilation operator determines the size of 

neighborhood. To fit the spot tracker’s radius, a radius of 51 pixels is used. An example of a 

binary map before refinement and after refinement is given in Fig.1.

Software

We wrote a C++ program to implement the algorithm used to perform the experiment. 

Multiple publicly available compression software libraries were used. The source code of 

the C++ program can be obtained from https://github.com/CISMM/data_reduction. The 

experiment is detailed in the Results section. In the experiment, the version of the 

implementation of the standard libx265 is 1.3+861−86ca1de606e3. The H.264 

implementation used libx264 version 0.142.50. For JPEG2000, libopenjpeg version 1.5.2 

was used.
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RESULTS

This method achieved much better compression than existing lossless techniques with 

identical analysis results in more than half of the cases tested. Perceptually-tuned lossy 

algorithms greatly impacted analysis when forced to achieve the same compressed size.

The data used for testing consists of six cases (Fig. 2). The first four (two fluorescence and 

two bright-field imaging) have 1000 frames of moving beads attached to cell membranes. 

The beads in the fluorescence videos have diameters of 1 µm and 500 nm. (The video with 

500 nm beads has many more beads.) The fifth video shows cells moving in bright-field 

imaging. The sixth video consists of beads that stay mostly still for the first half of the video 

and then move rapidly in one direction.

TABLE 1 compares the performance of our method against lossless H.264 compression. 

The usage of a more recent video compression standard H.265 was also explored and 

compared with H.264. Firstly, we used the two compression techniques to compress the data 

listed in the second column in TABLE 1, namely the fluorescence video with 1 µm-diameter 

beads. The data was pre-processed with our methods. In this test, H.264 outperforms H.265 

by having a 0.1MB-smaller compressed video size. The same experiment was done on the 

cells video (Fig. 2, fifth from left). This time H.265 has a 0.1MB-smaller compressed data 

comparing against H.264. We are interested in the ratio between the size of compressed files 

with and without our method. We noticed that this ratio stays almost the same for both H.

265 and H.264. More precisely, the difference stays within 1% of the range of the data size. 

Because H.265 does not always yield a better compression, we did most experiments using 

the more stable H.264 implementation. We also compared against lossless JPEG2000 and 

lossless JPEG, which did not perform as well.

The size achievable before analysis is impacted scales with the information content of the 

video: videos with information in every pixel see no improvement. For the 500 nm video 

(which has more foreground) we achieve a compressed size of 19.6%, only slightly better 

than lossless H.264 alone. For the video with little foreground, the compressed size reaches 

0.77%, 25 times better than lossless H.264 alone and an overall reduction factor of 100×.

Fig. 3 plots the compressed size vs. threshold on the scores and the maximum lossless 

correlation threshold in all four cases. The compression ratios using standard techniques are 

also displayed as horizontal lines. TABLE 1 compares our best compression ratios against 

those achieved by standard compression techniques. TABLE 5 shows the compression ratios 

for different methods for all cases.

In all the experiments described above the erosion diameter was 3 pixels (this depends on 

the microscope point-spread size). The dilation diameter was set to 51 pixels, which is the 

size of the search radius for our tracking algorithm when it is testing for beads that disappear 

during tracking. For experiments without disappearing beads, the diameter can be set to be 

24 pixels to achieve higher compression. Dilation radius depends on how many pixels the 

analysis algorithm looks at beyond the pixels that are part of the objects being analyzed.
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We investigated the question of how much the quality factor of H.264 lossless compression 

can be reduced before we saw changes in the analysis. We intended to show the relative 

sizes of the compressed video at the smallest H.264 lossy-compressed size that did not 

induce changes in the tracking compared to the size of our analysis-aware compression. 

However, in the four test cases (two fluorescence videos and two brightfield videos), the H.

264 lossy compression changed the analysis results even at the setting that provided the least 

compression and gives the best video quality. This indicates that H.264 lossy compression at 

any level introduces changes in analysis.

We then investigated the question of how much impact the H.264 lossy compression has on 

tracking. This was done using a lossy compression level that matched the size of the 

compressed video produced by our analysis-aware compression with no loss. The metric we 

use for comparison is specific to our particular analysis mode, and is reported in units of 

fractions of the noise floor in our instrument.

TABLE 2 and TABLE 3 compare our compressed videos to videos compressed using the 

perceptually-tuned H.264 with its quality parameter set to make the file size match ours. 

(JPEG2000 was also tested and had results similar to H.264.) It is not possible to determine 

the impact of individual pixel-brightness values on an arbitrary analysis routine; doing this 

comparison requires running a particular analysis routine to see the impact. We used the 

video spot-tracking algorithm employed by our collaborators on both compressed and 

uncompressed videos and report the difference in centroid locations between the original 

and the compressed videos. In TABLE 2, the error metric is the squared maximum distance 

(in units of 0.1 pixels, which is the noise floor of the instrument) between points along bead 

traces, reported in units of the experiment noise floor. In TABLE 3, the error metric is the 

per-track mean error along with the standard deviation of the points along bead traces. Our 

method (by design) achieves 0 error, the perceptually-tuned videos had errors ranging from 

2–50 times the noise floor and sometimes lost beads entirely.

To test the generality of the method on non-bead-based specimens, we compressed a 

microscopy video of moving cells (Fig. 5). Edge-length analysis was performed on this 

video as follows: Given a video, every frame in the video is filtered by a gauss gradient filter 

with a Gaussian stand derivation 1 pixel to find the high response locations that suggests 

existence of an edge. After thresholding, connected components analysis is run on the binary 

map. To remove the noise, the connected components with fewer than 90 pixels were 

removed.

This process was performed on both original video and compressed video. We compare the 

edge detection result in all frames. With the exact same edge detection result, our 

compression method achieved 3.5× better compression than lossless H.264 encoding alone

Even non-high-throughput cell-motion videos often use low frame rates to reduce the 

amount of video storage required. This causes large motion in between frames, which is 

challenging for vision-based tracking algorithms to handle. An increased frame rate enables 

storing a much finer time resolution in the same file size, potentially improving the resulting 

analysis.
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Fast-Moving Beads Analysis

In some microscopy videos, foreground objects move quickly over time and can cover most 

of the frame throughout the course of the entire video. In cases such as this, our basic 

method does not work well because most pixels are marked as foreground. We applied our 

method to one such case: a microscopy video that contains 250 frames. Starting in the 100th 

frame, the beads in the video start to be move rapidly over the frame. One frame of the video 

is shown in Fig. 4. The resulting map has most of the pixels as foreground (as expected).

To achieve a better compression ratio in cases like this, we added a sliding-window 

extension to the technique. We slide a fixed length (in time) window from the beginning of 

the video to the end and update the foreground and background pixels using only frames 

within the window.

For a video of length l and window size s, we get (l−s) different binary maps. By 

segmenting out only pixels with beads moving over them in a short time period, the sliding-

window version of the method marks fewer pixels as foreground in each frame.

TABLE 4 shows the additional compression provided by the sliding-window technique for a 

video with fast-moving beads. With longer windows, the beads moved across essentially 

every pixel in the image, so the method produced almost no improvement over lossless H.

264 alone. With very short windows, noise suppression was slightly reduced. The optimal 

window size for this video was 20 frames, resulting in an approximately 2× improvement in 

file size. A resulting map is shown in Fig. 4.

Comparison with Other Techniques

TABLE 5 shows the results of doing compression tests with algorithms other than H.264 

lossless. The first and sixth columns of this table match TABLE 1. Column five shows the 

result of using Bzip2 compression on the original files, which is usually slightly worse and 

in one case slightly better than lossless H.264. Column four shows the result of using 

lossless JPEG2000 on the original videos, which is never better than lossless H.264. 

Columns two and three show the results of using Bzip2 and lossless JPEG2000 on the 

images after our algorithm has been applied, which were always worse than using H.264 

after our algorithm.

Limitations and Future Work

For the videos that were analyzed in this paper, we selected the largest threshold value that 

still produced analysis output identical to that from the original videos (the compression 

included all of the steps described below). This requires running the compression and 

analysis pipelines a number of times for each video, so is not efficient.

In future work, we are seeking a closed-form approach to selection of the threshold value. 

Ostu’s method (1979) fails in the case where there is either no foreground or no background 

in a given video. (Because it is forced to generate two classes, it wrongly classifies a certain 

portion of number of background and foreground in all cases.) We are investigating camera-

noise-estimation methods to automatically determine an appropriate threshold.
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CONCLUSION

In summary, we have described a new method for microscopy video compression based on 

correlation and mathematical morphology. Experiments on several real video data sets show 

that it can achieve compression ratios of >100, reducing file size by 99+%. These 

compression ratios correspond to file sizes that are 25× smaller than those generated by 

lossless compression techniques.
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Fig. 1. 
Algorithm overview.
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Fig. 2. 
Example frame from each of the videos tested, each named as in the description and tables.

361×61mm (300 × 300 DPI)

Shao et al. Page 11

Microsc Res Tech. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Plots of compression ratio (in percentage) vs. correlation magnitude threshold on scores for 

four

videos. Four plots shows the result for four test videos. Four plots share the same vertical 

axis. A horizontal flat line indicates the compression ratio on that video with H.264 lossless. 

The curves become dashed when the analysis results on compressed videos differs from the 

analysis result on the original, indicating the limit compression without impacting analysis 

results.results.
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Fig. 4. 
left: one frame of Fastbeads video before beads move; middle: foreground/background 

segmentation on whole video right: fore-ground/background segmentation within a 20-frame 

window.
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Fig. 5. 
left to right: first frame of the original video, edge detection results: original video, video 

with 3.5× compression, video with 4.6× compression, video with 6.8× compression
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TABLE 2

Maximum tracking error when using lossy compression techniques and using our method in four cases (in 

units of the experiment noise floor, which is 1/10th of a pixel). In one video, a bead track was lost, indicated 

here as infinite error. When they are forced to achieve the same compression ratios, perceptually-tuned 

compression techniques have a large maximum impact on analysis results.

Beads
1µm

Beads
500nm

Brightfield
1

Brightfield
2

Lossy H.264 4.6 ∞ 50.3 2.6

Our method 0 0 0 0
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TABLE 3

Mean and standard deviations of tracking error when using lossy compression techniques and using our 

method in four cases (in units of experiment noise floor, which is 1/10th of a pixel).

Beads 1µm Beads
500nm

Brightfield 1 Brightfield 2

Lossy H.264 (0.1269, 0.0568) (∞, ∞) (0.0468, 0.0502) (0.1019, 0.0734)

Our method (0, 0) (0, 0) (0, 0) (0, 0)

Microsc Res Tech. Author manuscript; available in PMC 2016 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shao et al. Page 18

T
A

B
L

E
 4

C
om

pr
es

si
on

 r
at

io
 u

si
ng

 th
e 

sl
id

in
g 

w
in

do
w

 m
et

ho
d 

an
d 

us
in

g 
lo

ss
le

ss
 H

.2
64

 a
lo

ne
 f

or
 th

e 
F

as
tb

ea
ds

 v
id

eo
. W

ith
 lo

ng
er

 w
in

do
w

s,
 th

e 
be

ad
s 

m
ov

ed
 

ac
ro

ss
 e

ss
en

tia
lly

 e
ve

ry
 p

ix
el

 in
 th

e 
im

ag
e,

 s
o 

th
e 

m
et

ho
d 

pr
od

uc
ed

 a
lm

os
t n

o 
im

pr
ov

em
en

t o
ve

r 
lo

ss
le

ss
 H

.2
64

 a
lo

ne
. W

ith
 v

er
y 

sh
or

t w
in

do
w

s 
no

is
e 

su
pp

re
ss

io
n 

w
as

 s
lig

ht
ly

 r
ed

uc
ed

, c
au

si
ng

 a
n 

in
cr

ea
se

 in
 f

ile
 s

iz
e.

 T
he

 o
pt

im
al

 w
in

do
w

 s
iz

e 
fo

r 
th

is
 v

id
eo

 w
as

 2
0 

fr
am

es
, r

es
ul

tin
g 

in
 a

n 
ap

pr
ox

im
at

el
y 

2×
 

im
pr

ov
em

en
t i

n 
fi

le
 s

iz
e.

 A
s 

ex
pe

ct
ed

, s
m

al
le

r 
di

la
tio

n 
re

su
lts

 in
 b

et
te

r 
co

m
pr

es
si

on
 (

le
ss

 f
or

eg
ro

un
d)

.

D
ila

ti
on

 D
ia

m
et

er
 8

 P
ix

el
s

D
ila

ti
on

 D
ia

m
et

er
 2

0 
P

ix
el

s

W
in

do
w

 s
iz

e
W

it
h 

sl
id

in
g 

w
in

do
w

N
o 

sl
id

in
g 

w
in

do
w

W
it

h 
sl

id
in

g 
w

in
do

w
N

o 
sl

id
in

g 
w

in
do

w
L

os
sl

es
s 

H
.2

64

10
0 

fr
am

es
16

%

35
%

21
%

39
%

39
%

50
 f

ra
m

es
15

%
21

%

20
 f

ra
m

es
14

%
19

%

10
 f

ra
m

es
15

%
20

%

5 
fr

am
es

20
%

24
%

Microsc Res Tech. Author manuscript; available in PMC 2016 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shao et al. Page 19

T
A

B
L

E
 5

C
om

pa
ri

so
n 

of
 m

ul
tip

le
 c

om
pr

es
si

on
 m

et
ho

ds
 o

n 
fo

ur
 o

f 
th

e 
vi

de
os

 s
ho

w
n 

in
 th

e 
m

ai
n 

te
xt

. T
he

 le
ft

 a
nd

 r
ig

ht
 n

um
be

rs
 m

at
ch

 th
os

e 
in

 T
A

B
L

E
 1

. B
zi

p2
 

an
d 

lo
ss

le
ss

 J
PE

G
20

00
 c

om
pr

es
si

on
 o

n 
th

e 
or

ig
in

al
 f

ile
 s

eq
ue

nc
e 

w
er

e 
us

ua
lly

 w
or

se
 a

nd
 n

ev
er

 m
uc

h 
be

tte
r 

th
an

 lo
ss

le
ss

 H
.2

64
. L

os
sl

es
s 

JP
E

G
20

00
 a

nd
 

B
zi

p2
 o

n 
th

e 
fi

lte
re

d 
im

ag
e 

se
t w

er
e 

al
w

ay
s 

w
or

se
 th

an
 lo

ss
le

ss
 H

.2
64

.

T
ec

hn
iq

ue
s 

ap
pl

ie
d 

w
it

h 
ou

r 
ap

pr
oa

ch
T

ec
hn

iq
ue

s 
ap

pl
ie

d 
w

it
ho

ut
 o

ur
 a

pp
ro

ac
h

V
id

eo
H

.2
64

lo
ss

le
ss

B
zi

p2
JP

E
G

20
00

 lo
ss

le
ss

JP
E

G
20

00
lo

ss
le

ss
B

zi
p2

H
.2

64
 lo

ss
le

ss

B
ea

d 
1µ

m
0.

77
%

0.
79

%
1.

3%
24

%
19

%
20

%

B
ea

d 
50

0n
m

20
%

21
%

23
%

31
%

29
%

28
%

B
ri

gh
tf

ie
ld

 1
44

%
49

%
46

%
47

 %
51

%
47

%

B
ri

gh
tf

ie
ld

 2
7.

3%
26

%
29

%
50

%
54

%
50

%

Microsc Res Tech. Author manuscript; available in PMC 2016 December 01.


