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Summary

A treatment regime formalizes personalized medicine as a function from individual patient 

characteristics to a recommended treatment. A high-quality treatment regime can improve patient 

outcomes while reducing cost, resource consumption, and treatment burden. Thus, there is 

tremendous interest in estimating treatment regimes from observational and randomized studies. 

However, the development of treatment regimes for application in clinical practice requires the 

long-term, joint effort of statisticians and clinical scientists. In this collaborative process, the 

statistician must integrate clinical science into the statistical models underlying a treatment regime 

and the clinician must scrutinize the estimated treatment regime for scientific validity. To facilitate 

meaningful information exchange, it is important that estimated treatment regimes be interpretable 

in a subject-matter context. We propose a simple, yet flexible class of treatment regimes whose 

members are representable as a short list of if-then statements. Regimes in this class are 

immediately interpretable and are therefore an appealing choice for broad application in practice. 

We derive a robust estimator of the optimal regime within this class and demonstrate its finite 

sample performance using simulation experiments. The proposed method is illustrated with data 

from two clinical trials.
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1. Introduction

Treatment regimes formalize clinical decision making as a function from patient information 

to a recommended treatment. Proponents of personalized medicine envisage the widespread 

clinical use of evidence-based, i.e., data-driven, treatment regimes. The potential benefits of 

applying treatment regimes are now widely recognized. By individualizing treatment, a 

treatment regime may improve patient outcomes while reducing cost and the consumption of 

resources. This is important in an era of growing medical costs and an aging global 
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population. However, the widespread integration of data-driven treatment regimes into 

clinical practice is, and should be, an incremental process wherein: (i) data are used to 

generate hypotheses about optimal treatment regimes; (ii) the generated hypotheses are 

scrutinized by clinical collaborators for scientific validity; (iii) new data are collected for 

validation and new hypothesis generation, and so on. Within this process, it is crucial that 

estimated treatment regimes be interpretable to clinicians. Nevertheless, optimality, not 

interpretability, has been the focal point in the statistical literature on treatment regimes.

A treatment regime said to be optimal if it maximizes the expectation of a pre-specified 

clinical outcome when used to assign treatment to a population of interest. There is a large 

literature on estimating optimal treatment regimes using data from observational or 

randomized studies. Broadly, these estimators can be categorized as regression-based or 

classification-based estimators. Regression-based estimators model features of the 

conditional distribution of the outcome given treatment and patient covariates. Examples 

include estimators of the regression of an outcome on covariates, treatment, and their 

interactions (e.g., Su et al., 2009; Qian and Murphy, 2011; Tian et al., 2014), and estimators 

of point treatment effects given covariates (e.g., Robins, 1994; Vansteelandt et al., 2014). 

Regression-based methods rely on correct specification of some or all of the modeled 

portions of the conditional distribution of the outcome. Thus, a goal of many regression-

based estimators is to ensure correct model specification under a large class of generative 

models (Zhao et al., 2009; Qian and Murphy, 2011; Moodie et al., 2013; Laber et al., 2014; 

Taylor et al., 2014). However, as flexibility is introduced into the model, interpretability 

tends to diminish, and in the extreme case the estimated treatment regime becomes an 

unintelligible black box.

Classification-based estimators, also known as policy-search or value-search estimators, 

estimate the marginal mean of the outcome for every treatment regime within a pre-specified 

class and then take the maximizer as the estimated optimal regime. Examples include 

marginal structural mean models (Robins et al., 2008; Orellana et al., 2010); robust marginal 

mean models (Zhang et al., 2012); and outcome weighted learning (Zhang et al., 2012; Zhao 

et al., 2012, 2015). Classification-based estimators often rely on fewer assumptions about 

the conditional distribution of the outcome given treatment and patient information and thus 

may be more robust to model misspecification than regression-based estimators (Zhang et 

al., 2012,?). Furthermore, because classification-based methods estimate an optimal regime 

within a pre-specified class, it is straightforward to impose structure on the estimated 

regime, e.g., interpretability, by restricting this class. We use robust marginal mean models 

with a highly interpretable yet flexible class of regimes to estimate a high-quality regime 

that can be immediately understood by clinical and intervention scientists.

To obtain an interpretable and parsimonious treatment regime, we use the concept of 

decision list, which was developed in the computer science literature for representing 

flexible but interpretable classifiers (Rivest, 1987; Clark and Niblett, 1989; Marchand and 

Sokolova, 2005; Letham et al., 2012; Wang and Rudin, 2014); see Freitas (2014) for a recent 

position paper on the importance of interpretability in predictive modeling and additional 

references on interpretable classifiers. As a treatment regime, a decision list comprises a 

sequence of “if-then” clauses that map patient covariates to a recommended treatment. 
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Figure 1 shows a decision list for patients with chronic depression (see Section 4.2). This 

decision list recommends treatments as follows: if a patient presents with somatic anxiety 

score above 1 and retardation score above 2, the list recommends nefazodone; otherwise, if 

the patient has Hamilton anxiety score above 23 and sleep disturbance score above 2, the list 

recommends psychotherapy; and otherwise the list recommends nefazodone + 

psychotherapy (combination). Thus, a treatment regime represented as a decision list can be 

conveyed as either a diagram or text and is easily understood, in either form, by domain 

experts. Indeed, decision lists have frequently been used to display estimated treatment 

regimes (Shortreed et al., 2011; Moodie et al., 2012; Shortreed et al., 2014; Laber and Zhao, 

2015) or to describe theory-based, i.e., not data-driven, treatment regimes (Shiffman, 1997; 

Marlowe et al., 2012).

Another important attribute of a decision list is that it “short circuits” measurement of 

patient covariates; e.g., in Figure 1, the Hamilton anxiety score and sleep disturbance score 

do not need to be collected for patients with somatic anxiety score above 1 and retardation 

score above 2. This is important in settings where patient covariates are expensive or 

burdensome to collect (e.g., Gail et al., 1999; Gail, 2009; Baker et al., 2009; Huang et al., 

2015). We provide an estimator of the treatment regime that minimizes an expected cost 

among all regimes that optimize the marginal mean outcome.

2. Methodology

2.1 Framework

We assume that the observed data are , which comprise n independent 

identically distributed observations, one for each subject in an experimental or observational 

study. Let (X, A, Y) denote a generic observation. Then X ∈ ℝp are baseline patient 

covariates; A ∈ A = {1, …, m} is the treatment assigned; and Y ∈ ℝ is the outcome, coded so 

that higher values are better. A treatment regime, π, is a function from ℝp into A, so that 

under π a patient presenting with X = x is recommended treatment π(x).

The value of a regime π is the expected outcome if all patients in the population of interest 

are assigned treatment according to π. To define the value, we use the set of potential 

outcomes {Y*(a)}a∈A, where Y*(a) is the outcome that would be observed if a subject were 

assigned treatment a. Define Y*(π) =Σa∈A Y*(a)I {π(X) = a} to be the potential outcome 

under regime π, and R(π) = E{Y*(π)} to be the value of regime π. An optimal regime, say 

πopt, satisfies R(πopt) ≥ R(π) for all π. Let ∏ denote a class of regimes of interest. 

Classification-based estimation methods form an estimator of R(π), say R̂(π), and then 

estimate πopt using π̂ = arg maxπ∈∏ R̂(π). The success of this approach requires: (i) a high-

quality estimator of R(π); (ii) a sufficiently rich class ∏; and (iii) an efficient algorithm for 

maximizing R̂(π) over ∏. We discuss these topics in the next three sections.

2.2 Estimation of R(π)

We make several standard assumptions: (A1) consistency: Y = Y*(A); (A2) no unmeasured 

confounders: {Y*(a)}a∈A are conditionally independent of A given X; and (A3) positivity: 

there exists δ > 0 so that ℙ(A = a∣X) ≥ δ for all a ∈ A. Assumption (A2) is automatically 
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satisfied in a randomized study but is untestable in observational studies (Robins et al., 

2000). Under (A1)–(A3), it can be shown (Tsiatis, 2006) that

(1)

where ω(x, a) = ℙ(A = a∣X = x) and μ(x, a) = E(Y∣X = x, A = a). Alternate expressions for 

R(π) exist (Zhang et al., 2012); however, estimators based on (1) possess a number of 

desirable properties (see below).

To construct an estimator of R(π) from (1) we replace ω(x, a) and μ(x, a) with estimated 

working models and replace the expectation with its sample analog. If treatment is randomly 

assigned independently of subject covariates, then ω(x, a) can be estimated by 

. Otherwise, we posit a multinomial logistic regression model of the form 

, a = 1, …, m – 1, where u = u(x) is a known 

feature vector, and γ1, …, γm–1 are unknown parameters. Let ω̂(x, a) denote the maximum 

likelihood estimator of ω(x, a), where γ1, …, γm–1 are replaced by maximum likelihood 

estimators γ̂
1, …, γ̂

m–1. We posit a generalized linear model for μ(x, a), g{μ(x, a)} = zTβa, 

where g(·) is a known link function, z = z(x) is a known feature vector constructed from x, 

and β1, …, βm are unknown parameters. We use μ̂(x, a) = g−1 (zTβ̂
a) as our estimator of μ(x, 

a), where β̂
1, …, β̂

m are the maximum likelihood estimators of β1, …, βm.

Given estimators ω̂(x, a) and μ̂(x, a), an estimator of R(π) based on (1) is

(2)

For any fixed π, R̂(π) is doubly robust in the sense that it is a consistent estimator of R(π) if 

either the model for ω(x, a) or μ(x, a) is correctly specified (Tsiatis, 2006; Zhang et al., 

2012). As a direct consequence, R̂(π) is guaranteed to be consistent in a randomized study, 

as ω(x, a) is known by design. Furthermore, if both models are correctly specified, then R̂(π) 

is semiparametric efficient; i.e., it has the smallest asymptotic variance among the class of 

regular, asymptotically linear estimators (Tsiatis, 2006).

2.3 Regimes representable as decision lists

Gail and Simon (1985) present an early example of a treatment regime using data from the 

NSABP clinical trial. The treatment regime they propose is

where age (in years) denotes the age of the patient and PR denotes the progesterone receptor 

level (in fmol). The simple if-then structure of the foregoing treatment regime makes it 

immediately interpretable.
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Formally, a treatment regime, π, that is representable as a decision list of length L is 

described by {(c1, a1), …, (cL, aL), a0}, where cj is a logical condition that is true or false for 

each x ∈ ℝp, and aj ∈ A is a recommended treatment, j = 0, …, L. As a special case, L = 0 is 

allowed. The corresponding treatment regime {a0} gives the same treatment a0 to every 

patient. Hereafter, let ∏ denote the set of regimes that are representable as a decision list. 

Clearly, the regime proposed by Gail and Simon (1985) is a member of ∏.

Define T(cj) = {x ∈ ℝp : cj is true for x}, j = 1, …, L; R1 = T (c1), Rj = {∩ℓ<jT (cℓ)c}∩ T(cj), j 

= 2, …, L; and , where Sc is the complement of the set S. Then a regime π ∈ 

∏ can be written as , which has structure

(3)

In principle, the conditions cj, and hence the sets T(cj), can be arbitrary. To ensure 

parsimony and interpretability, we restrict cj so that T(cj) is one of the following sets:

(4)

where j1 < j2 ∈ {1, …, p} are indices and τ1, τ2 ∈ ℝ are thresholds. We believe that the 

conditions that dictate the sets in (4), e.g., xj1 ≤ τ1 and xj2 ≤ τ2, are more easily interpreted 

than those dictated by linear thresholds, e.g., α1xj1 + α2xj2 ≤ α3, as the former are more 

commonly seen in clinical practice.

In the proposed setup, at most two variables are involved in any single condition. Having a 

small number of variables in each clause yields two important properties. First, the resulting 

treatment regime is parsimonious, and the most important variables for treatment selection 

are automatically identified. Second, application of the treatment regime allows for patient 

measurements to be taken in sequence so that the treatment recommendation can be short-

circuited. For example, consider a decision list described by {(c1, a1), (c2, a2), a0}. It is 

necessary to measure the variables that compose c1 on all subjects, but the variables 

composing c2 need only be measured for those who do not satisfy c1.

2.3.1 Uniqueness and minimal cost of a decision list—For a decision list π 

described by {(c1, a1), …, (cL, aL), a0}, let Nℓ denote the cost of measuring the covariates 

required to check logical conditions c1, …, cℓ. Hereafter, for simplicity, we assume that this 

cost is equal to the number of covariates needed to check c1, …, cℓ, but it can be extended 

easily to a more complex cost function reflecting risk, burden, and availability. The expected 
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cost of applying treatment rule  is 

, which is smaller than 

, the cost of measuring all covariates in the treatment regime. 

This observation reflects the benefit of the short-circuit property.

A decision list π described by {(c1, a1), …, (cL, aL), a0} need not be unique in that there 

may exist an alternative decision list π′ described by  such that 

π(x) = π′ (x) for all x but L ≠ L′ or L = L′ but  or  for some j ∈ {1, …, L}. This 

is potentially important because the expected costs N(π) and N(π′) might differ substantially. 

Figure 2 shows two representations, π and π′, of the same decision list both with L = L′ = 2 

but with different clauses. The cost of the decision list in the middle panel, π, is N(π) = 

N1ℙ(X1 > τ1) + N2ℙ(X1 ≤ τ1), whereas the cost of the decision list in the right panel, π′ is 

N(π′) = N2 ≥ N (π) with strict inequality if N2 > N1 and ℙ(X1 > τ1) > 0. Thus, π is preferred 

to π′ in settings where X2 is a biomarker that is expensive, burdenome, or potentially 

harmful to collect (e.g., Huang et al., 2015, and references therein).

Therefore, among all decision lists achieving the value R(πopt), where πopt is an optimal 

regime as defined previously, we seek to estimate the one that minimizes the cost. Defining 

Lr to be the level set {π ∈ Π : R(π) = r}, then the goal is to estimate a regime in the set arg 

minπ∈L{R(πopt)} N (π). Define L̂(r) = {π ∈ Π : R̂(π) = r}. Let π̃ be an estimator of an element 

in the set arg maxπ∈Π R̂ (π). In the following we provide an algorithm that ensures our 

estimator, π̂, belongs to the set arg minπ∈L̂ {R̂ (π̂)} N̂(π), where N̂(π) is defined by replacing 

the probabilities in N(π) with sample proportions.

2.4 Computation

Estimation proceeds in two steps: (i) approximate an element π̃ ∈ arg maxπ∈Π R̂(π), where R̂

(π) is constructed using (2); and (ii) find an element π̂ ∈ arg minπ∈L̂ {R̂ (π̃) } N̂(π).

2.4.1 Approximation of arg maxπ∈Π R̂(π)—Maximizing R̂(π) over π ∈ Π is 

computationally burdensome in problems with more than a handful of covariates because of 

the indicator functions in (2) and the discreteness of the decision list. However, the tree 

structure of decision lists suggests a greedy algorithm in the spirit of classification and 

regression trees (CART, Breiman et al., 1984). Assume that for the jth covariate, there is a 

candidate set of finitely many possible cutoff values χj. These cutoffs might be dictated by 

clinical guidelines, e.g., if the covariate is a comorbid condition then the thresholds might 

reflect low, moderate, and high levels of impairment; alternatively, these cutoffs could be 

chosen to equal empirical or theoretical percentiles of that covariate. There is no restriction 

imposed on these cutoffs. Let C denote the set of all conditions that induce regions of the 

form in (4) with the cutoffs τjk ∈ χjk for k = 1, 2, jk ∈ {1, …, p}.

Before giving the details of the algorithm, we provide a conceptual overview. The algorithm 

first uses exhaustive search to find a decision list with exactly one clause, of the form π = 

{(c1, a1), }, which maximizes R̂(π). Let {(c1̃, ã1), } denote this decision list. The 
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algorithm then uses exhaustive search to find the decision list that maximizes R̂(π) over 

decision lists with exactly two clauses, the first of which must be either (c̃1, ã1) or ( , ), 

where  is the negation of c̃1 such that ; e.g., if c̃1 has the form xj1 ≤ τ1 and 

xj2 ≤ τ2, then  would be xj1 > τ1 or xj2 > τ2. Although the decision lists {(c̃1, ã1), } and 

{( , ), ã1} yield identical treatment recommendations and have the same value, their first 

clauses are distinct, and may lead to substantially different final decision lists. Hence it is 

necessary to consider both possibilities for the first clause. The algorithm proceeds 

recursively by adding one clause at a time until some stopping criterion (described below) is 

met.

Hereafter, for a decision list π described by {(c1, a1), …, (cL, aL), a0} for some L ≥ 0, write 

R̂[{(c1, a1), …, (cL, aL), a0}] to denote R̂(π); e.g., for L = 0, R̂[{a0}] is the estimated value of 

the regime that assigns treatment a0 to all patients. For any decision list with a vacuous 

condition, e.g.,{∩ℓ<j T (cℓ)c} ∩ T (cj) = ∅ for some j, define R̂[{(c1, a1), …, (cL, aL), a0}] = 

−∞. Let zρ be the 100ρ percentile of the standard normal distribution. Let Πtemp denote the 

set of regimes to which additional clauses can be added, and let Πfinal denote the set of 

regimes that have met one of the stopping criteria. The algorithm is as follows, and an 

illustrative example with a step-by-step run of the algorithm is given in the Web Appendix.

Step 1 Choose a maximum list length Lmax and a critical level α ∈ (0, 1). Compute 

ã0 = arg maxa0∈A R̂[{a0}]. Set Πtemp = ∅, and Πfinal = ∅.

Step 2
Compute  and 

. If  then let π = 

{ã0}, set Πfinal = {π}, and go to Step 5; otherwise let 

 set Πtemp = {π, π′}, and proceed to Step 3, 

where  is the negation of c̃1.

Step 3 Pick an element π̄ ∈ Πtemp, say,  where j 

− 1 is the length of π̄. Remove π̄ from Πtemp. With the clauses (c̄1, ā1), …, 

(c̄j−1, āj−1) held fixed, compute 

and 

. If , then let , 

and set Πfinal = Πfinal ∪ {π}, otherwise if j = Lmax, let 

, and set Πfinal = Πfinal ∪ {π}; 

otherwise set Πtemp = Πtemp ∪ {π, π′}, where  is the negation of c̃j, 

 and 

.
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Step 4 Repeat Step 3 until Πtemp becomes empty.

Step 5 Compute π̃ = arg maxπ∈Πfinal R
̂(π). Then π̃ is the estimated optimal decision 

list.

The above description is simplified to illustrate the main ideas. The actual implementation 

of this algorithm avoids exhaustive searches by pruning the search space C × A × A. It also 

avoids explicit construction of Πtemp and Πfinal. Complete implementation details are 

provided in the Web Appendix. In the algorithm, the decision list stops growing if either the 

estimated increment in the value, Δ̂j, is not sufficiently large compared to an estimate of its 

variation, , or if it reaches the pre-specified maximal length Lmax. We estimate 

Var(Δ ̂
j) using large sample theory; the expression is given in the Web Appendix. This 

variance estimator is a crude approximation, as it ignores uncertainty introduced by the 

estimation of the decision lists; however, it can be computed quickly, and in simulated 

experiments it appears sufficient for use in a stopping criterion. The significance level α is a 

user-chosen tuning parameter. In our simulation experiments, we chose α = 0.05; results 

were not sensitive to this choice (see Web Appendix). To avoid lengthy lists, we set Lmax = 

10. Nevertheless, in our simulations and applications the estimated lists never reach this 

limit. Finally, it may be desirable in practice to restrict the set of candidate clauses so that, 

for each j, the number of subjects in R̂
j = {∩ℓ<j T (ĉℓ)c} ∩ T (ĉj) exceeds some minimal 

threshold. This can be readily incorporated into the above algorithm by simply discarding 

candidate clauses that induce partitions that contain an insufficient number of observations.

The time complexity of the proposed algorithm is O [2Lmaxmp2 {n + (maxj # χj)2}] (see Web 

Appendix), where #χj is the number of cutoff values in χj. Because 2Lmax and m are 

constants that are typically small relative to p2 {n + (maxj # χj)2}, the time complexity is 

essentially O(np2) provided that maxj # χj is either fixed or diverges more slowly than n1/2. 

Hence, the time complexity is the same as a single least squares fit, indicating that the 

proposed algorithm runs very fast and scales well in both dimension p and sample size n.

2.4.2 Finding an element of arg minπ∈L̂{R̂(π̃)} N̂(π)—To find an element within the set 

minπ∈L̂{R̂(π̃)} N̂(π), we enumerate all regimes in L{R̂(π̃)} with length no larger than Lmax and 

select among them the list with the minimal cost. The enumeration algorithm is recursive 

and requires a substantial amount of bookkeeping; therefore, we describe the basic idea here 

and defer implementation details to the Web Appendix. Suppose π̃ is described by {(c̃1, ã1), 

…, (c̃L, ãL), ã0}. Call a condition of the form xj ≤ τj an atom. There exist K ≤ 2L atoms, say 

d1, …, dK, such that each clause c̃ℓ, ℓ = 1, …, L, can be expressed using the union, 

intersection, and/or negation of at most two of these atoms. The algorithm proceeds by 

generating all lists with clauses representable using the foregoing combinations of at most 

two atoms. To reduce computation time, we use a branch-and-bound scheme (Brusco and 

Stahl, 2006) that avoids constructing lists with vacuous conditions or those that are provably 

worse than an upper bound on minπ∈L̂{R̂(π̃)} N(π) In the simulation experiments in the next 

section, the average runtime for the enumeration algorithm was less than one second running 

on a single core of a 2.3GHz AMD Opteron™ processor and 1GB of DDR3 RAM.
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3. Simulation Experiments

We use a series of simulated experiments to examine the finite sample performance of the 

proposed method. The average value E{R(π̂)} and the average cost E{N(π̂)} are the primary 

performance measures. We consider generative models with (i) binary and continuous 

outcomes; (ii) binary and trinary treatments; (iii) correctly and incorrectly specified models; 

and (iv) low- and high-dimensional covariates. The class of data-generating models that we 

consider is as follows. Covariates are drawn from a p-dimensional Gaussian distribution 

with mean zero and autoregressive covariance matrix such that cov(Xk, Xℓ) = 4(1/5)|k−ℓ|, and 

the treatments are sampled uniformly so that P(A = a∣X = x) = 1/m for all x ∈ ℝp and a ∈ A. 

Let ϕ(x, a) be a real-valued function of x and a; given X = x and A = a, continuous outcomes 

are normally distributed with mean 2 + x1 + x3 + x5 + x7 + ϕ(x, a) and variance 1, whereas 

binary outcomes follows a Bernoulli distribution with success probability expit {2 + x1 + x3 

+ x5 + x7 + ϕ(x, a)}, where expit(u) = exp(u)/{1 + exp(u)}. Table 1 lists the expressions of ϕ 

used in our generative models and the number of treatments, m, in A. Under these outcome 

models, the optimal regime is πopt(x) = arg maxa ϕ(x, a).

For comparison, we estimate πopt by parametric Q-learning, nonparametric Q-learning, 

outcome weighted learning (OWL, Zhao et al., 2012) and modified covariate approach 

(MCA, Tian et al., 2014). For parametric Q-learning, we use linear regression when Y is 

continuous and logistic regression when Y is binary. The linear component in the regression 

model has the form , where β1, …, βm are unknown coefficient 

vectors. A LASSO penalty (Tibshirani, 1996) is used to reduce overfitting; the amount of 

penalization is chosen by minimizing 10-fold cross-validated prediction error. For 

nonparametric Q-learning, we use support vector regression when Y is continuous and 

support vector machines when Y is binary (Zhao et al., 2011), both are implemented using a 

Gaussian kernel. Tuning parameters for non-parametric Q-learning are selected by 

minimizing 10-fold cross-validated prediction error. For OWL, both linear and Gaussian 

kernels are used and we follow the same tuning strategy as in Zhao et al. (2012). For MCA, 

we incorporate the efficiency augmentation term described in Tian et al. (2014). Both OWL 

and MCA are limited to two treatment options.

To implement our method, the mean model, μ(x, a), in (1), is estimated as in parametric Q-

learning. The propensity score ω(x, a) is estimated by . All the 

comparison methods result in treatment regimes that are more difficult to interpret than a 

decision list; thus, our intent is to show that decision lists are competitive in terms of the 

achieved value of the estimated regime, E{R(π̂)}, while being significantly more 

interpretable and less costly.

Results in Table 2 are based on the average over 1000 Monte Carlo replications with data 

sets of size n = 500 if m = 2 and Y is continuous; n = 750 if m = 3 and Y is continuous; n = 

1000 if m = 2 and Y is binary; and n = 1500 if m = 3 and Y is binary. The value R(π̂) and cost 

N(π̂) were computed using an independent test set of size 106.
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Table 2 shows that the decision list is competitive in terms of the value obtained across the 

entire suite of simulation experiments. If πopt can be represented as a decision list, the 

proposed method produces the best value. However, even in settings in which the optimal 

regime is not a decision list, the estimated decision list appears to perform well. Recall that 

the proposed algorithm attempts to find the best approximation of the optimal regime within 

the class of regimes that are representable as a decision list. Figure 3 shows the average 

estimated decision list in misspecified settings II and III with continuous outcome and p = 

10. In these settings, the estimated decision list provides a reasonable approximation of the 

true optimal regime. In addition, the cost of the decision list is notably smaller than the cost 

of the parametric Q-learning estimator or the MCA estimator. Nonparametric Q-learning 

OWL always use all covariates, so their costs are always equal to p.

In the Web Appendix, we derive point estimates and prediction intervals for R(π̂). We also 

present simulation results to illustrate the accuracy of variable selection for the decision list.

4. Applications

4.1 Breast Cancer Data

Gail and Simon (1985) compared the treatment effects of chemotherapy alone and 

chemotherapy with tamoxifen using data collected from the NSABP trial. Their regime 

recommended chemotherapy alone to patients with age ≤ 50 and PR ≤ 10 and chemotherapy 

plus tamoxifen to all others. Because the variables involved in the treatment regime 

constructed by Gail and Simon were chosen using clinical judgment, it is of interest to see 

what regime emerges from a more data-driven procedure. Thus, we use the proposed method 

to estimate an optimal treatment regime in the form of a decision list using data from the 

NSABP trial.

As in Gail and Simon (1985), we take three-year disease-free survival as the outcome, so 

that Y = 1 if the subject survived disease-free for three years after treatment, and Y = 0 

otherwise. Patient covariates are age (years), PR (fmol), estrogen receptor level (ER, fmol), 

tumor size (centimeters), and number of histologically positive nodes (number of nodes, 

integer). We estimated the optimal treatment regime representable as a decision list using 

data from the 1164 subjects with complete observations on these variables. Because 

treatment assignment was randomized in NSABP, we estimated ω(x, a) by the sample 

proportion of subjects receiving treatment a. Based on exploratory analyses, we estimated 

μ(x, a) using a logistic regression model with transformed predictors z = z(x) = {age, log(1 + 

PR), log(1 + ER), tumor-size, log(1 + number-of-nodes)}T.

The estimated optimal treatment regime representable as a decision list is given in the top 

panel of Figure 4; the regime estimated by Gail and Simon is given in the bottom panel of 

this figure. The structure of the two treatment regimes is markedly similar. The treatment 

recommendations from the two regimes agree for 92% of the patients in the NSABP data. In 

this data set, 33% of the patients have a PR value less than 3; 13% of the patients have a PR 

values between 3 and 10; and 54% of the patients have a PR value greater than 10.
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In a previous analysis of the NSABP data, Zhang et al. (2012) recommended that patients 

with age + 7.98 log(1 + PR) ≤ 60 receive chemotherapy alone and all others receive 

chemotherapy plus tamoxifen. However, this regime was built using only age and PR as 

potential predictors with no data-driven variable selection. In contrast, the proposed method 

selects age and PR from the list of potential predictors. For completeness, we also 

implemented parametric Q-learning using a logistic regression model with covariate vector 

z. The estimated regime recommends chemotherapy alone if 1.674 – 0.021 age − 0.076 

log(1+PR) – 0.116 log(1 + ER) − 0.024 tumor-size − 0.274 log(1 + number-of-nodes) ≥ 0 

and chemotherapy with tamoxifen otherwise. The treatment recommendation dictated by 

parametric Q-learning agrees with that dictated by decision list for 86% of the subjects in the 

data set.

To estimate the survival probability under each estimated regime, we use cross-validation. 

The data set was randomly divided into a training set containing 80% of the subjects and a 

test set containing 20% of the subjects. The optimal regime was estimated using both 

approaches on the training set, and its value was computed using (2) (with μ̂ ≡ 0) on the test 

set. To reduce variability, this process was repeated 100 times. The estimated survival 

probability is 0.65 for the regime representable as decision list and 0.66 for the regime 

obtained from parametric Q-learning. Thus, the proposed method greatly improves 

interpretability while preserving quality.

4.2 Chronic Depression Data

Keller et al. (2000) compared nefazodone, psychotherapy, and combination of nefazodone 

and psychotherapy for treating patients with chronic depression in a three-arm randomized 

clinical trial. Among the three treatments considered, combination therapy was shown to be 

the most beneficial in terms of efficacy as measured by the Hamilton Rating Scale for 

Depression score (HRSD). However, the combination treatment is significantly more 

expensive and burdensome than monotherapy. Therefore, it is of interest to construct a 

treatment regime that recommends combination therapy only to subjects for whom there is a 

significant benefit over monotherapy.

Because lower HRSD indicates less severe symptoms, we define outcome Y = –HRSD to be 

consistent with our paradigm of maximizing the mean outcome. Patient covariates comprise 

50 pretreatment variables, including personal habits and difficulties, medication history and 

various scores from several psychological questionnaires; a list of these variables is given in 

the Web Appendix. We estimate an optimal regime using data from the n = 647 (of 680 

enrolled) subjects in the clinical trial with complete data. Because treatments were randomly 

assigned, we estimated ω(x, a) by the sample proportion of subjects receiving treatment a. 

We estimated μ(x, a) using a penalized linear regression model with all patient covariates 

and treatment by covariate interactions. Penalization was implemented with a LASSO 

penalty tuned using 10-fold cross-validated prediction error.

The estimated optimal treatment regime representable as a decision list is displayed in 

Figure 1. One explanation for this rule is as follows. Those with strong physical anxiety 

symptoms (somatic) and significant cognitive impairment (retardation) may be unlikely to 

benefit from psychotherapy alone or in combination with nefazodone and are therefore 
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recommended to nefazodone alone. Otherwise, because psychotherapy is a primary tool for 

treating anxiety (HAM-A) and nefazodone is associated with sleep disturbance (sleep), it 

may be best to assign subjects with moderate to severe anxiety and severe sleep disturbance 

to psychotherapy alone. All others are assigned to the combination therapy.

The estimated regime contains only four covariates. In contrast, the regime estimated by 

parametric Q-learning using linear regression and LASSO penalty involves a linear 

combination of twenty-four covariates, making it difficult to explain and expensive to 

implement. To compare the quality of these two regimes, we use random-split cross-

validation as in Section 4.1. The estimated HRSD score under the regime representable as 

decision list is 12.9, while that under the regime estimated by parametric Q-learning is 11.8. 

Therefore, by using decision lists we are able to obtain a remarkably more parsimonious 

regime with high quality, which facilitates easier interpretation.

5. Discussion

Data-driven treatment regimes have the potential to improve patient outcomes and generate 

new clinical hypotheses. Estimation of an optimal treatment regime is typically conducted as 

a secondary, exploratory analysis aimed at building knowledge and informing future clinical 

research. Thus, it is important that methodological developments are designed to fit this 

exploratory role. Decision lists are a simple yet powerful tool for estimation of interpretable 

treatment regimes from observational or experimental data. Because decision lists can be 

immediately interpreted, clinical scientists can focus on the scientific validity of the 

estimated treatment regime. This allows the communications between the statistician and 

clinical collaborators to focus on the science rather than the technical details of a statistical 

model.

Due to the “if-then” format and the conditions given in (4), the estimated regime, as a 

function of the data, is discrete. Thus, a theoretical proof of the consistency of the treatment 

recommendations using decision lists is heavily technical and will be presented elsewhere. 

We provide some empirical evidence in the Web Appendix that the estimated regime gives 

consistent treatment decisions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Estimated decision list for treating patients with chronic depression.
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Figure 2. 
Left: diagram of a decision list dictated by regions R1 = {x ∈ ℝ2 : x1 > τ1}, R2 = {x ∈ ℝ2 : 

x1 ≤ τ1, x2 > τ2}, and R0 = {x ∈ ℝ2 : x1 ≤ τ1, x2 ≤ τ2}, and treatment recommendations a1, 

a2, and a0. Middle: representation of the decision list that requires only x1 in the first clause. 

Right: alternative representation of the same decision list that requires both x1 and x2 in the 

first clause.
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Figure 3. 
Left: average estimated regimes under setting II. Right: average estimated regimes under 

setting III. In both settings πopt cannot be represented as decision list. The solid line is the 

treatment decision boundary under πopt. The region where treatment 1 is better than 

treatment 2 is marked by circles, while the region where treatment 2 is better than treatment 

1 is marked by crosses. For every point (x1, x2)T, we compute the proportion of 1000 

replications that the estimated regime recommends treatment 1 to a patient with covariate 

(x1, x2, 0, …, 0) ∈ ℝ10. The larger the proportion, the darker the shade.
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Figure 4. 
Top: estimated optimal treatment regime representable as a decision list. Bottom: treatment 

regime proposed by Gail and Simon (1985).
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Table 1

The second column gives the number of treatment options m. The third column gives the set of ϕ functions 

used in the outcome models. The fourth column specifies the form of the optimal regime πopt (x) = arg maxa 

ϕ(x, a) where: “linear” indicates that πopt(x) = arg maxa{(1, xT)βa} for some coefficient vectors βa ∈ ℝp+1, a ∈ 

A, “decision list” indicates that πopt is representable as a decision list; and “nonlinear” indicates that πopt(x) is 

neither linear nor representable as a decision list.

Setting m Expression of ϕ Form of πopt

I 2 ϕ1(x, a) = I(a = 2){3I(x1 ≤ 1, x2 > −0.6) −1} decision list

II 2 ϕ2(x, a) = I(a = 2)(x1 + x2 − 1) linear

III 2 ϕ3(x, a) = I(a = 2) arctan(exp(1+x1) −3x2 −5) nonlinear

IV 2 ϕ4(x, a) = I(a = 2)(x1 − x2 + x3 − x4) linear

V 3 ϕ5(x, a) = I(a = 2){4I(x1 > 1) −2} + I(a = 3)I(x1 ≤ 1){2I(x2 ≤ −0.3) −1} decision list

VI 3 ϕ6(x, a) = I(a = 2)(2x1) + I(a = 3)(−x1x2) nonlinear

VII 3 ϕ7(x, a) = I(a = 2)(x1 − x2)+ I(a = 3)(x3 − x4) linear
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