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Abstract

The room temperature radical decarboxylative allylation of N-protected α-amino acids and esters 

has been accomplished via a combination of palladium and photoredox catalysis to provide 

homoallylic amines. Mechanistic investigations revealed that the stability of the α-amino radical, 

which is formed by decarboxylation, dictates the predominant reaction pathway between 

competing mechanisms.

Homoallylic amines are robust building blocks used to construct a wide variety of natural 

products and other bioactive molecules.1 Classically, the addition of stoichiometric 

organometallic nucleophiles to an electrophilic aldimine has furnished these versatile 

molecules.1,2 More recently, catalytic asymmetric methods including metal-free variants 

have been described in the literature.1,3

Alternatively, the palladium-catalyzed decarboxylative coupling of α-imino esters has 

provided an umplong approach that couples 2-azaallyl anions with allyl electrophiles 

(Scheme 1).4 This method is advantageous because it uses abundant, inexpensive carboxylic 

acid derivatives to access reactive intermediates under neutral conditions via loss of CO2.5 

One drawback is that the amine must be activated to stabilize the α-amino anion to facilitate 

decarboxylation which leads to regio- and chemoselectivity issues that limit the substrate 

scope (Scheme 1).6 We endeavored to extend this mode of reactivity towards synthetically 

useful N-protected amino acids that do not undergo anionic decarboxylation due to the 

formation of highly basic alkyl amino anions by utilizing alternate single electron pathways 

to facilitate decarboxylation.

The radical decarboxylation of carboxylic acids has historically been accomplished via 

electrochemical,7 photochemical,8 and reagent-based methods.9,10 Recently, the 

combination of transition metal and photoredox catalysis has also been used to overcome 

high-energy two electron processes in catalysis via single-electron-transfer (SET) 

events.11,12 For example, MacMillan12g,12h and Molander12i,12j have utilized photoredox 

events to facilitate the generation of alkyl radicals which undergo nickel-catalyzed cross-
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coupling. In addition, our lab has used palladium and photoredox catalysis to effect the 

decarboxylative allylation of aminoalkanoic acids and esters.11 A similar approach for the α-

allylation of secondary amines and N-aryl tetrahydroisoquinolines has also been employed 

by Lu and Xiao.13 Herein we report that a dual catalytic approach allows the 

decarboxylative allylation of protected amino acids and peptides.

One obstacle encountered in our lab during development of the decarboxylative coupling of 

p-(aminophenyl)acetic acid esters was the products were formed in moderate yields due to 

the suspected formation of free radicals.11 DFT calculations on nickel-catalyzed radical 

cross-coupling by Molander and Kozlowski indicate that free benzylic radicals and the 

nickel-bound benzyl radical are nearly equienergetic14 and radical addition to the metal is 

reversible. Thus, we hypothesized that accessing higher energy radicals should disfavor free 

radical coupling by favoring formation of metal-bound radical intermediates which can 

undergo reductive elimination. Readily available amino acid derivatives bearing 

synthetically useful electron withdrawing nitrogen protecting groups, which generate less 

stable alkyl radicals upon decarboxylation, were chosen to test this hypothesis.

(1)

Optimization studies were initiated by combining Boc-proline-allylester with Pd(PPh3)4 and 

various visible-light-mediated photoredox catalysts (eq. 1). Low conversion was observed 

by GC/MS when the strongly reducing Ir(dFppy)3
15 photocatalyst was employed. 

Substituting more oxidizing cationic heteroleptic iridium complexes led to an increase in 

conversion, but numerous byproducts were also detected by GC/MS analysis. A solvent 

screen revealed that the combination of the highly oxidizing photocatalyst 

Ir{dF(CF3)ppy}2(dtbbpy)[PF6] (Ered
1/2[Ir*III/IrII] = + 1.21 V vs. SCE)16 with DMSO led to 

rapid conversion of the starting material without the previously observed byproduct 

formation or significant deactivation of the active catalytic species.17 Control reactions 

confirmed that no conversion of starting material to product occurred when the reaction was 

conducted without palladium, photocatalyst, or light.

We next evaluated the scope of α-amino allyl-esters that underwent decarboxylative 

allylation to furnish homoallyl amines (Scheme 2). A brief survey of nitrogen protecting 

groups revealed that tert-butyl and benzyl carbamates along with acetamides were 

compatible with the reaction conditions (2a–2c). A variety of phenylalanine derivatives 
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bearing electron withdrawing (2d–2f), halogen (2g, 2h), and electron donating (2i), 
substituents on the aryl ring were allylated in good yields. The reaction was also performed 

on gram scale, but it required a longer reaction time when it was performed under more 

convenient concentrated conditions (2h). A phenylalanine allyl ester bearing a tertiary amine 

and an N-Boc phenylglycine allyl ester were also tolerated (2j, 2k).

Cyclic amino acid allyl esters derived from proline, 4-hydroxy-, thio-, and homoproline (2l–
2o) were also successfully allylated. Other acyclic tertiary homoallyl amines were 

constructed from their amino allyl ester precursors including alanine (2p), methionine (2q), 

and aspartic acid (2r). A protected glycine allyl ester provided a secondary homoallylic 

amine, albeit in reduced yield (2s). Nitrogen- (2u, 2v) and sulfur-containing (2t) 
heterocycles also tolerated the reaction conditions, although lower yields were observed 

when pyridine (2v) or an unprotected indole (2u) was present. Lastly, a β-methallyl ester 

provided the desired homoallylic amine (2w), although a slightly higher reaction 

temperature (45 °C) was required.

One of the hallmarks of anionic decarboxylative couplings is that they are typically site-

specific, leading to coupling only at the position that bears the carboxylate.5a With the goal 

of demonstrating that the typical thermodynamic selectivity of α-amino radical formation 

can be overridden by the structure of the starting material used in decarboxylative coupling, 

the allyl ester of N-Boc tetrahydro-3-isoquinoline carboxylic acid was prepared. 

Tetrahydroisoquinolines are widely used in photoredox couplings due to the ease of access 

of the benzylically stabilized α-amino radical; an excellent example involving the allylation 

of tetrahydroquinoline by Xiao is shown in Scheme 3.13 When our tetrahydroquinoline 

carboxylic ester was subjected to the standard reaction conditions, site-specific 

decarboxylative coupling to form a C–C bond occurred without isomerization to the 

thermodynamically more stable radical occurred (Scheme 3, >95% selectivity by crude 1H 

NMR spectroscopy).

We also recognized that, in many cases, it would be beneficial to generate homoallylic 

amines directly from carboxylic acids via an intermolecular process. It was expected that 

treatment of the free acid with Pd(PPh3)4 and allylmethyl carbonate would provide the same 

ionic intermediates (a carboxylate anion and Pd-π-allyl cation) that were generated from the 

amino acid allyl esters. Indeed, the Boc-protected amino acids phenylalanine and proline 

provided the corresponding products 2a and 2l in higher yields than those generated from 

their allylic ester counterparts (Scheme 4). Next, several Boc-protected dipeptides, which 

contained both amide and carbamate moieties that could potentially undergo oxidation by 

the excited photocatalyst, were examined. The allylated peptides were isolated in moderate 

to good yields although extended reaction times were required.

Our initial hypothesis was that higher yields of radical decarboxylative allylation may be 

achieved by favoring metal-mediated C–C bond formation while avoiding free radical 

coupling. On the basis of observations by MacMiillan,12b,12g Molander,12i,12j and us,11 two 

different potential mechanistic pathways were proposed (Scheme 5). In either case, the cycle 

begins with oxidative addition of the allyl ester to Pd(0) which provides the cationic Pd-π-

allyl species and the carboxylate counterion. Since more oxidizing photocatalysts are more 
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effective for the transformation, we propose that the amino carboxylate (for example, Boc-

Pro-OCs, E1/2 red = +0.95 V vs SCE)18 is then oxidized by the photoexcited iridium 

complex (Ered
1/2[Ir*III/IrII] = + 1.21 V vs. SCE)16 which triggers radical decarboxylation to 

form an α-amino radical. If the radical is suitably stabilized then electron transfer from the 

reduced iridium catalyst to the the Pd(II) complex (A) can result in homolysis to provide an 

allyl radical (path a, Scheme 5).19,20 The ensuing free radical coupling can produce the 

allylated amine as well as diamine and hexadiene homocoupling products. Alternatively, if 

the α-amino radical is less stable, it may prefer to coordinate to palladium generating a 

Pd(III) intermediate (B)12b,12g,12i,12j that behaves as a persistent radical.21 Electron transfer 

from the reduced iridium complex prior to or after reductive elimination would form the 

observed product and regenerate Pd(0) (path b, Scheme 5).12b,12g,12i,12j A similar possibility 

was proposed by Molander and Kozlowski on the basis of DFT calculations of the pathways 

for nickel-catalyzed photoredox coupling of borates and aryl halides.14

The allyl esters of N,N-dibenzyl phenyalanine (4), N-Boc phenylglycine (5), and N-Boc 

phenylalanine (6) were prepared to attempt to distinguish if radical stability influenced 

whether C–C bond formation was occurring within the Pd coordination sphere (path b) or by 

an undesired free radical (path a) or radical chain process. Initial evaluation of BDEs 

revealed that the α-amino radical species derived from 6 is ~5–6 kcal/mol higher in energy 

than those derived from 4 and 5.22 Moreover, the single electron oxidation potential of the 

radical derived from 6 is expected to be endergonic whereas oxidations of the radicals 

formed from 4 and 5 are exergonic.19 In short, substrates 4 and 5 generate relatively stable 

radicals while substrate 6 generates a less stable radical.

To probe whether C–C bond formation occurs within the coordination sphere of the metal, 

4–6 were subjected to slightly modified reaction conditions using a chiral non-racemic 

palladium complex (Scheme 6). Substrate 6, which produces a more unstable radical post 

decarboxylation, provided enantioenriched product which provides evidence that the C–C 

bond is forming within the coordination sphere of the chiral palladium complex. In contrast, 

the reactions of 4 and 5, which generate more stabilized radical intermediates, led to racemic 

or nearly racemic products.

The results of reaction with a chiral palladium catalyst suggest that substrate 6 reacts 

through a Pd-bound intermediate while substrates 4 and 5 react primarily through free 

radical coupling. One way to potentially test for free radical coupling is to measure products 

of free-radical homocoupling. Toward this end, 1H NMR spectroscopy was used to monitor 

the formation of 1,5-hexadiene via allyl-allyl coupling in reactions of 4–6. That free radical 

coupling is the primary mechanism for the reaction of 4 is supported by the observation of 

nearly statistical amounts homodimerization was observed in much lower quantity when 6, 

which produces a less stable α-amino radical, was utilized (product:hexadiene = 1.0 : 0.08). 

Similar NMR spectroscopic studies were used to examine the effect of palladium of 

homodimerization products, including 1,5-hexadiene (product:hexadiene = 1.0 : 0.50).23 In 

contrast, free radical concentration on the homodimerization of allyl radicals (Scheme 7). 

The amount of hexadiene observed did not appreciably change when the concentration of Pd 

was varied in the reaction of 5, which indicates a Pd-independent C–C bond formation (path 

a). Conversely, when 6, which forms a less stable radical, was subjected to similar inquiry, 
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the quantity of hexadiene was affected by the concentration of palladium. This observation 

suggests pathways a and b are competitive, but pathway b is favored at higher palladium 

concentrations. Ultimately, the simplest interpretation of the observations is that, under our 

standard reaction conditions, less stable α-amino radicals react primarily via metal-mediated 

C–C bond formation, while more stabilized benzylic and α-tert-amino radicals form C–C 

bonds via radical coupling.

In conclusion, we have developed a direct method for the decarboxylative allylation of α-

amino acid derivatives using dual palladium and photoredox catalysis to circumvent 

traditional limitations in decarboxylative couplings. The coupling is site-specific for the 

position that bears CO2, allowing the kinetic formation of contra-thermodynamic radical 

species. Detailed studies of product and byproduct formation implicate competing 

mechanisms for the coupling, with more stable radicals preferring to react via radical 

coupling and less stabilized radicals preferring to react via metal-mediated coupling.
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Figure 1. 
Substrates and radical intermediates
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Scheme 1. 
Anionic versus radical decarboxylation pathways
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Scheme 2. 
a,b Decarboxylative allylation of α-amino esters [a] Reactions performed on a 0.25 mmol 

scale at 0.13 M. [b] Isolated yields. [c] Gram scale, 0.37 M. [d] 95% pure. [e] Average yield 

of two runs.
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Scheme 3. 
Site-specific allylation
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Scheme 4. 
Decarboxylative allylation of α-amino acidsa,b,c [a] Reactions performed on a 0.25 mmol 

scale at 0.13 M. [b] Isolated Yields. [c] Yields in parentheses refer to entries in Scheme 2.

Lang et al. Page 11

Chemistry. Author manuscript; available in PMC 2016 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 5. 
Divergent pathways for photoredox decarboxylative coupling
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Scheme 6. 
Stereochemical test for palladium involvement in C-C formation.
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Scheme 7. 
Does Pd concentration affect homodimerization? [a] At a constant substrate concentration of 

0.0125M. [b] Reaction did not reach complete conversion
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