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Abstract

The case-cohort study design has often been used in studies of a rare disease or for a common 

disease with some biospecimens needing to be preserved for future studies. A case-cohort study 

design consists of a random sample, called the subcohort, and all or a portion of the subjects with 

the disease of interest. One advantage of the case-cohort design is that the same subcohort can be 

used for studying multiple diseases. Stratified random sampling is often used for the subcohort. 

Additive hazards models are often preferred in studies where the risk difference, instead of relative 

risk, is of main interest. Existing methods do not use the available covariate information fully. We 

propose a more efficient estimator by making full use of available covariate information for the 

additive hazards model with data from a stratified case-cohort design with rare (the traditional 

situation) and non-rare (the generalized situation) diseases. We propose an estimating equation 

approach with a new weight function. The proposed estimators are shown to be consistent and 

asymptotically normally distributed. Simulation studies show that the proposed method using all 

available information leads to efficiency gain and stratification of the subcohort improves 

efficiency when the strata are highly correlated with the covariates. Our proposed method is 

applied to data from the Atherosclerosis Risk in Communities (ARIC) study.
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1. Introduction

In large cohort studies, obtaining expensive covariate information on all members in the 

entire cohort could be costly and might not be feasible due to limited financial resource. In 

order to reduce cost, the case-cohort study design was proposed by Prentice [1]. Under the 

case-cohort design, covariate information is collected only from a random sample of the 

cohort, called the subcohort, as well as all the subjects who have the disease of interest. A 

key advantage for the case-cohort study is that the same subcohort can be used when several 
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types of diseases are of interest [2]. For example, one of the goals in the Atherosclerosis 

Risk in Communities (ARIC) study is to investigate the association between the genetic 

variation in PTGS1 and coronary heart disease (CHD) as well as stroke [3]. To preserve 

blood specimens and reduce cost, two case-cohort studies were conducted separately using 

the same subcohort.

In spite of the extensive work on multiplicative hazards models for case-cohort studies, only 

a few methods for case-cohort studies with additive hazards models have been studied. For 

univariate failure time, Kulich and Lin [4] proposed semiparametric estimation and 

developed the asymptotic properties in additive hazards models from case-cohort data. Sun 

et al. [5] extended this approach to competing risks analysis in the case-cohort study. To 

compare the risk effect on different diseases, Kang et al. [6] proposed modeling them 

simultaneously using an additive hazards model for the stratified case-cohort design. 

However, they did not fully use all the available information on the covariate of interest. For 

example, in the ARIC study, the genetic variation in PTGS1 was collected from the 

subcohort and all subjects with CHD and/or stroke. When analysis for CHD was conducted, 

the PTGS1 information collected on stroke patients outside the subcohort was disregarded. 

This could induce loss of efficiency. Recently, Kim et al. [7] proposed the weight function 

to use this extra information in multiplicative hazard models for rare diseases. Similar ideas 

on using information from cases of other types have been proposed for nested case-control 

data, for example, Salim et al. (2009) [8] and Stoer and Samuelsen (2012) [9]. However, in 

many biomedical studies with common diseases, due to financial restrictions as well as for 

reserving biospecimens for future use, it is more desirable to sample a portion of the cases 

instead of including all the cases in the case-cohort study. Therefore, we extend Kim et al. 

[7]’s approach to the non-rare diseases situation in additive hazards models.

In this paper, we propose more efficient estimation methods for the additive hazards model 

with data from case-cohort studies by making full use of available covariate information. 

We also take into account two important features of the sampling in the case-cohort design. 

One is stratification. Stratified sampling is commonly used in survey sampling to increase 

the representation of the sample and to improve estimation efficiency. Due to these 

advantages, stratified random sample is often used in drawing the subcohort in the case-

cohort design. The other feature is case sampling. We refer to the design that incorporates 

both features as the generalized stratified case-cohort design. We propose an estimation 

procedure for the parameters in the additive hazards model for the generalized stratified 

case-cohort design with multivariate failure times. In Section 2, we introduce the model and 

propose estimation procedures. Section 3 summarizes asymptotic properties for the proposed 

estimators and Section 4 reports simulation results to investigate the performance of the 

proposed estimators in finite samples. In Section 5, we illustrate the methods by analyzing 

data from the ARIC study. Concluding remarks are provided in Section 6.

2. Model

Suppose that a cohort study consists of n independent subjects with K diseases of interest 

and can be divided into L mutually exclusive strata based on available information V from 

all cohort members. Let Tlik and Clik denote the potential failure time and the potential 
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censoring time for disease k of subject i within stratum l, respectively. The failure time Tlik 

is assumed to be independent of Clik given covariates. Let Zlik(t) be a p × 1 possibly time-

dependent covariate vector for disease k of subject i within stratum l at time t. We assume 

that time-dependent covariates are external; that is, they are not influenced by the disease 

processes [10]. Let Xlik = min(Tlik, Clik) denote the observed time, Δlik = I(Tlik ≤ Clik) the 

indicator for failure, Nlik(t) = I(Xlik ≤ t, Δlik = 1) the counting process, and Ylik(t) = I(Xlik ≥ t) 

the at risk indicator for disease k of subject i within stratum l, where I(.) is the indicator 

function. Let Vi denote a discrete random variable for stratification of subject i. Let τ denote 

the end of study time.

Consider the following additive hazards model for Tlik given Zlik(t)

(1)

where λ0k(t) is a baseline hazard function for disease k and β0 is a p-vector of unknown 

regression parameters. Model (1) can accommodate the disease-specific effect model 

 which is a special case of model (1) with 

 and 

where 0T is a 1 × p zero vector.

Suppose that the total size n of the cohort is partitioned into groups of size nl, l = 1, …, L. 

We select a fixed number ñl of subjects from the nl subjects in stratum l for the subcohort by 

using simple random sampling. The total size of the subcohort is .

Let ξli be an indicator for subcohort membership for subject i in stratum l. Each subject in 

stratum l has the same probability α̃
l = Pr(ξli = 1) = ñl/nl of being selected into the 

subcohort. The covariates Zlik(t)(0 ≤ t ≤ τ) are measured for subjects in the subcohort and 

those with any disease of interest.

Under the generalized stratified case-cohort design, after selection of the subcohort, we 

select a fixed number m̃lk of the cases of disease k among non-subcohort members with 

disease k in stratum l using simple random sampling. Denote by  the total 

number of cases of disease k outside of the subcohort. Let ηlik be an indicator for whether 

subject i in stratum l is sampled as a non-subcohort subject with disease k. Let γ̃
lk = Pr (ηlik 

= 1|Δlik = 1, ξli = 0) = m̃lk/(olk − õlk) denote the selection probability of subjects among non-

subcohort members with disease k in stratum l, where olk and õlk denote the number of 

subjects with disease k in the cohort and in the subcohort within stratum l, respectively. Due 

to the sampling scheme, the elements in (ηl1k, …, ηlnlk) are correlated, however, (ηl1k, …, 

ηlnlk) is independent of (ηl′1k′, …, ηl′nl′k′) for k ≠ k′ or l ≠ l′.

2.1. Estimation

Suppose that there re  independent subjects with K diseases of interest. Let the 

independent failure time vector be Tli = (Tli1, …, Tlik) and the observed time vector be Xli = 
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(Xli1, …, Xlik,) i = 1, …, n. Thus, for subject i in stratum l, complete observations are (Xlik, 

Δlik, ξli, Zlik(t), 0 ≤ t ≤ τ, k = 1, …, K, Vi) when ξli = 1 or Δlik = 1 and (Xlik, Δlik, ξi, k = 1, …, 

K, Vi) when ξli = 0 and Δlik = 0.

Consider the situation with non-rare diseases of interest, but with covariate information for 

subjects with other diseases being available. Without using covariate information collected 

on subjects with other diseases, Kang et al. [6] considered the additive hazards model for 

generalized case-cohort designs using stratified simple random sampling. The regression 

parameter β0 in (1) can be estimated by solving the estimating equation [6]:

(2)

where

and  with 

 and 

. The time-invariant weight can 

involve fixed weights α̂
lk and q̂lk with that replace α̂lk(t) and q̂lk(t) at t = 0. If we select all 

cases i.e. q̂lk(t) for all k is 1, the weight function reduces to  in 

traditional case-cohort studies.

The estimator β̂ is defined as the solution to (2) and has the following explicit form:

where a⊗2 = aaT.

To make full use of covariate information collected on subjects with other diseases, we 

proposed the following weight function πlik(t) when there are two diseases (i.e. K = 2):

(3)

where
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The proposed weight function uses extra covariate information collected on the selected 

subjects with the other disease. Specifically, subcohort subjects without either disease (i.e. 

) are weighted by α̃lk(t)−1, the inverse of the estimated selection 

probabilities, while subjects with disease 1 or disease 2 in the subcohort (i.e. 

) are weighted by 1. To use the information collected on the 

sampled subjects with disease 2, the sampled non-subcohort subjects with disease 1 (i.e. 

Δli1(1 − ξli)ηli1 = 1) can be decomposed into two groups: those with only disease 1 (i.e. 

Δli1(1 − Δli2)(1 − ξli)ηli1 = 1) and those with both disease 1 and disease 2 (i.e. Δli1Δli2(1 − 

ξli)ηli1 = 1). The sampled subjects in the first group (i.e. Δli1(1 − Δli2)(1 − ξli) = 1) are 

weighted by γ̃
l1k(t)−1, the inverse of their estimated sampling probabilities. Similarly, the 

sampled non-subcohort subjects with disease 2 can also be decomposed into two groups: 

those with only disease 2 (i.e. Δli1(1 − Δli2)(1 − ξli)ηli2 =1) and those with both diseases (i.e. 

Δli1Δli2(1 − ξli)ηli2 =1). Those with only disease 2 are weighted by γ̃
l2k(t)−1, the inverse of 

their estimated sampling probabilities. For those sampled non-subcohort subjects with both 

diseases, they can be weighted by , the inverse of the estimated sampling probabilities 

based on disease 1 or disease 2. Note the weight function for the traditional case-cohort 

design proposed by Kim et al. [7]  is a 

special case of the proposed weight function (3).

We consider the following weighted estimating equation:

(4)

where

The explicit form of β̃, which is defined by the solution of the estimating equation in (4), is:
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Let . A Breslow-Aalen type estimator of the baseline cumulative hazard 

function is given by Λ̃
0k(β̃, t), where

(5)

3. Asymptotic properties

In this section we present the asymptotic properties of the proposed methods. Because the 

traditional case-cohort study is a special case of the generalized case-cohort study, we 

present only the results for the generalized case-cohort study. The following theorems 

summarize the main results.

Theorem 3.1—Under the regularity conditions in Web appendix, β̃ converges in 

probability to β0 and n1/2(β̃ − β0) converges in distribution to a mean zero normal 

distribution with covariance matrix , where

Note that Σ(β0) consists of three parts. The first part, , is the contribution to the 

variance from the full cohort, the second part, , is due to sampling the subcohort 

from the full cohort, and the last part, , is due to sampling a fraction of 

cases. If we select all cases, which is the traditional stratified case-cohort design, the last 

variance is zero.

We summarize the asymptotic properties of the proposed baseline cumulative hazard 

estimator Λ̃
0k(β̃, t) in the following theorem.

Theorem 3.2—Under the regularity conditions in Web appendix, Λ̃
0k(β̃, t) is a consistent 

estimator of Λ0k(t) in t ∈ [0, τ] k =1, 2) and G(t)={G1(t),G2(t)}T =[n1/2{Λ̃
01(β̃, t) − Λ01(t)}, 

n1/2{Λ̃
02(β̃, t) − Λ02(t))}]T converges weakly to the Gaussian process (t)={ (t), (t)}T in 
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D[0, τ]K with mean zero and the following covariance function (t, s) between (t) and 

(s) for j ≠ k.

where the explicit forms of μlik(β, t),wlik(β, t), and νlik(β, t) are given in Web Appendix.

The proof of Λ̃
0k(β̃, t) is provided in Web appendix. The proof uses Taylor expansion, the 

Kolmogorov-Centsov theorem, weak convergence of the baseline cumulative hazard 

estimator from full cohort studies with multivariate failure time, Hájek[11]’s central limit 

theorem for finite population sampling, and the Cramer-Wold device.

4. Simulations

We conducted simulation studies to examine the performance of the proposed methods and 

to compare them with the existing methods. Correlated bivariate failure time data were 

generated from the Clayton-Cuzick model [12]. The bivariate survival function for the 

bivariate survival time (T1, T2) given (Zl1,Zl2) has the following form:

where λ0k(t) and βk are the baseline hazard function and the effect of the covariate for 

disease k, respectively, l indexes the two strata, and θ is the parameter that controls the 

correlation between the failure times for the two diseases. Smaller θ indicates higher 

correlation between the two failure times T1 and T2. The relationship between Kendall’s tau, 

τθ, and θ is . For θ, we used values of 0.10, 0.67, and 4 and the corresponding 

Kendall’s tau values are 0.83, 0.43, and 0.11, respectively. We also consider independent 

failure times (τθ =0). We set the baseline hazard function λ01 =2 for the first failure event 

type, k =1, and λ02 =4 for the second failure event type, k =2. The regression parameters 

considered were β0 =0, 0.1, 0.3, and 0.5.

We generated Z from Bernouilli distribution with pr(Z =1) = 0.5 under the situation Zl1 =Zl2 

=Z. To consider stratified subcohort sampling from two strata defined by Vi, we defined two 

parameters: η =Pr(V =1|Z =1) and ν =Pr(V =0|Z =0) where η is the sensitivity and ν the 

specificity for Z. Both η and ν greater than 0.5 indicate that V is highly correlated with Z. 

For stratified case-cohort studies, we set the values [η, ν]=[0.5, 0.5] and [0.7, 0.7]. Thus, a 

stratum variable is simulated with Pr(V =1)=(1 − ν)Pr(Z =0) + ηPr(Z =1)=0.5. Censoring 

times were generated from uniform distribution [0, u]where u depends on the specified level 

of the censoring probability.

For simulations of the traditional case-cohort design, we set event proportions of 

approximately 5% for k =1 and 9% for k =2. For the simulations of the generalized case-

cohort design, the event proportions were set as 15% for k =1 and 26% for k =2 and we 
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sampled half of the cases outsides the subcohort, [γ1, γ2]=[0.5, 0.5]. The sample size of the 

full cohort was set to be n =1000. For stratified sampling, we set the total subcohort sizes as 

100 and 200 and sampled a subcohort of size ñl =ñ ×ql from each stratum. For each 

configuration, we conducted 2000 simulations.

We first considered the traditional and generalized case-cohort design using unstratified 

sampling but with covariates available on subjects with other diseases. For generalized case-

cohort design, we sampled half of the cases outside the subcohort. We examined the 

performance of our proposed estimator and compared our results with those in Kang et al. 

(2013) [6]. We fitted disease-specific model. Table 1 summarizes the results for β1̃, β̃
2, β̂

1, 

and β̂
2. For different combinations of regression parameter values, event proportion, study 

design, subcohort sample size, and correlation, Table 1 shows the average of the estimates 

β̃
1 and β̃

2, the average of the estimated standard error (SE), empirical standard deviation 

(SD), and coverage rate (%) of the nominal 95% confidence interval (CR). The subscripts 

for SE and SD refer to the proposed method (Pi) for disease i and the Kang et al. (2013) [6] 

method (Ki) for disease i. The simulation results suggest that both methods are 

approximately unbiased across the setup for β1 = β2 =0 and [β1, β2]=[0.1, 0.5]. The average 

of the proposed estimated standard error is close to the empirical standard deviation and it is 

in general smaller when subcohort size are larger, as expected. The 95% confidence interval 

coverage rate ranges between 94% and 97%. All the sample relative efficiencies (SREi), 

defined as  (i =1, 2), are larger than 1 which indicates that the proposed 

estimates are more efficient than those from Kang et al. [6]. This shows that the extra 

information collected on subjects with the other disease helps improve efficiency. In 

general, the efficiency gain is larger in situations with smaller subcohort size and smaller 

correlation.

We also compared the performance of our proposed estimator to Kang et al. [7]’s estimator 

in stratified case-cohort studies. To mimic the situation in the ARIC study with 1) CHD and 

stroke and 2) diabetes and hypertension, we consider two sets: 1) event proportion for 

disease 1 and disease 2 to be [3%,8%]according to the baseline hazard with 1 for disease 1 

and 4 for disease 2; 2) [11%,48%] according to the baseline hazard of 1 for disease 1 and 7 

for disease 2. We also set the case selection probabilities for disease 1 and disease 2 to be γ 

=[1, 1]and γ =[0.35, 0.35], respectively. Table 2 summarizes the results. All the sample 

relative efficiencies for β1 are greater than 1 which suggests that our proposed estimator for 

stratified case-cohort studies are more efficient than Kang et al. [6]’s estimators. The range 

of efficiency gain is 1% – 66%. However, efficiency gain for β2 is small. This is expected 

because there are not many additional disease cases in the case-cohort sample and therefore 

there are not much additional information for estimating β2. When the correlation between 

covariate and stratum variable is higher, sample standard deviation is smaller which 

indicates that more efficiency gain is associated with higher correlation between covariates 

and stratum variable.

Figure 1 shows standard errors of the full cohort, our proposed method, and Kang et al. [6] 

for the traditional and generalized case-cohort studies. The standard errors are obtained for 

the setup with the subcohort size ñ =100 and τθ =0.43. For generalized case-cohort studies, 
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we sampled half of the cases outside of the subcohort. Figure 1 shows that more efficiency 

gain compared to Kang et al. [6] is associated with higher event proportion.

5. Data Analysis

We applied the proposed methods to two data examples from the Atherosclerosis Risk in 

Communities (ARIC) study for illustration under the traditional and generalized case-cohort 

designs. The ARIC study is a longitudinal, population-based cohort study consisting of 

15,792 men and women aged from 45 to 64 years at baseline, recruited from four US 

communities. The first case-cohort study example is from the actual case-cohort studies in 

ARIC for rare diseases: incident coronary heart disease (CHD) event (7%) and stroke event 

(2%) [3]. To illustrate our methods for non-rare diseases, we constructed generalized case-

cohort sample for incident diabetes (11%) and incident hypertension (48%). Baseline 

measurements were obtained during 1987–1989 and follow up for incident coronary heart 

disease (CHD), stroke, diabetes, and hypertension events is through 1998. Incident CHD is 

defined as definite or probable myocardial infarction, electrocardiographic evidence of silent 

myocardial infarction, definite CHD death, or coronary revascularization procedure. 

Incident stroke is defined as a definite or probable ischemic stroke. Incident diabetes is 

defined as a reported physician diagnosis, use of antidiabetes medications, a fasting (≥ 8 

hours) glucose ≥ 7.0 mmol/l, or a nonfasting glucose of ≥ 11.1 mmol/l. Hypertension is 

defined as systolic blood pressure ≥ 140 or diastolic blood pressure ≥ 90 or used anti-

hypertensive medication in the previous two weeks. We regarded the subject as censored if 

he or she was free of that event type by December 31, 1998 or lost to follow-up during the 

study.

5.1. Example 1: the traditional case-cohort studies

The primary aim of the first study example was to investigate the association between 

PTGS1 polymorphisms and risk of incident CHD and stroke. Cyclooxygenase-derived 

prostaglandins can be significant modifiers of risk of cardiovascular disease events. It has 

been suggested that variation in the genes encoding cyclooxygenase-derived prostaglandins 

(PTGS1) play an important role in cardiovascular disease risk [13, 14, 15].

Using a case-cohort design, genomic DNA genotyped for the polymorphisms in PTGS1 was 

available on all incident CHD and ischemic stroke cases, and the subcohort. The subcohort 

was selected using a stratified sampling design with three stratifying variables: age (≥ 55 or 

< 55 years), gender, and race (Caucasian or African American). After excluding subjects 

with missing genotype data or covariates, the full cohort consisted of 13,731 subjects, which 

included 900 subjects with only CHD, 188 subjects with only stroke, and 61 subjects with 

both CHD and stroke. The subcohort contained 850 disease-free subjects, 72 subjects with 

only CHD, 15 subject with only stroke, and 7 subjects with both CHD and stoke. The total 

number with assayed samples was 1,999. To adjust for confounding and other risk factors, 

traditional and clinical covariates related to cardiovascular diseases were used: age, gender, 

race, study center, current smoking status, diabetes, and hypertension.

Figure 2 provides plots of the empirical cumulative hazard functions for CHD and stroke. 

For stroke events the difference in the cumulative hazard functions for the two genetic 
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variation groups appear to be increasing in an approximately linear fashion, while the two 

functions are not very different for CHD events. Based on these plots, the additive hazards 

model is appropriate for studying the effects of genetic variation (PTGS1) on CHD as well 

as on stroke. Since all cases for CHD and stoke were selected and we are interested in 

comparing the risk effects on CHD and on stroke, we conducted a simultaneous analysis by 

using the proposed method.

We initially fitted the model allowing for different effects for CHD and stroke and tested 

whether those effects are indeed different. If we cannot reject the null hypothesis that they 

are the same, we use common effect for that factor for CHD and stroke. Table 3 presents the 

results of the final model. After adjusting for age, gender, race, study center, current 

smoking status, diabetes, and hypertension, presence of at least one A allele was associated 

with significantly higher risk of stroke compared with homozygotes. We also fitted the same 

model using Kang et al. [6]’s method. In general, the standard errors for the proposed 

estimator are slightly smaller than those for the estimator of Kang et al. [6], which provide 

tighter confidence intervals for the estimated parameters.

5.2. Example 2: the generalized case-cohort studies

To illustrate our proposed approach and compare to the approach in Kang et al. [6] in 

generalized case-cohort studies with some common diseases, we constructed a generalized 

case-cohort sample from the ARIC study based on diabetes and hypertension. We used a 

subcohort size of 626 stratified by race. We then sampled 35% diabetes cases and 35% 

hypertension cases outside of the subcohort. The final generalized case-cohort sample has 

2267 subjects with 342 subjects having diabetes only, 1821 having hypertension only, and 

104 having both. We applied our proposed method to study the effect of total cholesterol, 

HDL cholesterol, smoking status, and body mass index (BMI) on the risk of diabetes and 

hypertension after adjusting for age, gender, race, and study center. We also fitted the same 

model using Kang et al. [6]’s method. Table 4 summarized the results. All the standard 

errors for the proposed estimator are smaller than those for the estimator of Kang et al. [6].

6. Concluding remarks

Using a new weight function, we have proposed more efficient estimators for the additive 

hazards model in a stratified case-cohort design with rare or non-rare diseases. The new 

weight functions incorporate the extra information for subjects with other diseases, which 

can help to increase efficiency relative to existing methods. However, under the situation 

that the disease rate is low, the proposed method did not improve efficiency much, because 

of the small amount of extra information. Moreover, we also showed that stratified sampling 

for the subcohort improved efficiency when the stratum variable is correlated with 

covariates.

We considered both traditional and generalized case-cohort studies in additive hazards 

models using unstratified sampling as well as stratified sampling. We applied Kim et al. 

[7]’s weight function for traditional case-cohort studies to additive hazards models. 

Moreover, we extend it to situation with non-rare diseases. Under the unstratified sampling, 
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our proposed estimators for both the traditional and generalized case-cohort designs are 

more efficient than those in Kang et al. [6].

It would be worthwhile to consider models with different associations between failure time 

and risk factors. We can adapt our approach to other types of models such as the 

proportional odds model, the accelerated failure time model, and the semiparametric 

transformation model by using all available information including stratum variables and 

covariate information for other diseases. These modifications are expected to improve 

efficiency.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of standard errors
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Figure 2. 
Plots of Nelson-Aalen cumulative hazards function estimates for genetic variation
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