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Oppositional defiant disorder (ODD) is a frequent psychiatric

disorder seen in children and adolescents with attention-deficit-

hyperactivity disorder (ADHD). ODD is also a common ante-
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Although the heritability of ODD has been estimated to be

around 0.60, there has been little research into the molecular
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genetics of ODD. The present study examined the association

of irritable and defiant/vindictive dimensions and categorical

subtypes of ODD (based on latent class analyses) with previously

described specific polymorphisms (DRD4 exon3 VNTR,

5-HTTLPR, and seven OXTR SNPs) as well as with dopamine,

serotonin, andoxytocingenesandpathways ina clinical sampleof

children and adolescents with ADHD. In addition, we performed

a multivariate genome-wide association study (GWAS) of the

aforementioned ODD dimensions and subtypes. Apart from

adjusting the analyses for age and sex, we controlled for “parental

ability to copewith disruptive behavior.”None of the hypothesis-

driven analyses revealed a significant association with ODD

dimensions and subtypes. Inadequate parenting behavior was

significantly associated with all ODD dimensions and subtypes,

most strongly with defiant/vindictive behaviors. In addition, the

GWAS did not result in genome-wide significant findings but

bioinformatics and literature analyses revealed that the proteins

encodedby28of the53 top-rankedgenes functionally interact ina

molecular landscape centered around Beta-catenin signaling and

involved in the regulation of neurite outgrowth. Our findings

provide new insights into themolecular basis ofODDand inform

future genetic studies of oppositional behavior.

� 2015 The Authors. American Journal of Medical Genetics Part B: Neuropsychi-

atric Genetics Published by Wiley Periodicals, Inc.
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INTRODUCTION

Oppositional defiant disorder (ODD) shows strong comorbidity

with attention-deficit-hyperactivity disorder (ADHD), conduct

disorder (CD), and mood disorders [Angold et al., 1999], in both

epidemiological and clinical samples. Todate, the etiological basis of

this comorbidity is unclear, although shared genetic influences

between these disorders have been postulated to play a role [Faraone

et al., 1991; Dick et al., 2005]. Research into ODD has gained

momentum due to its relation to later psychopathology such as

affective disorders [Copeland et al., 2009] and antisocial personality

disorder [Langbehn et al., 1998]. Youths with ADHD frequently

show severe impulse control problems and are at high risk for

developing ODD. A better understanding of the developmental

pathways from ADHD to ODD is crucial to prevent further anti-

sociality and psychopathology. However, there has been little re-

search on the genetics of ODD, perhaps, because this disorder has

been viewed primarily as the result of ineffective parenting [Frick

et al., 1992]. Nevertheless, the heritability of ODDhas been estimat-

ed to be around 0.60 [Nadder et al., 1998; Coolidge et al., 2000] and

ODD is familial among families of ADHD youth [Petty et al., 2009].

ADHD has been the focus of considerable genetic research. A

meta-analysis of candidate gene studies found several polymor-

phisms associated with childhood ADHD, including several

markers in the dopaminergic and serotonergic systems, and sug-

gested associations in CHRNA4 and SNAP25 [Gizer et al., 2009].

Genome-wide association studies (GWAS) of ADHD did not yet

reveal any significant association [Neale et al., 2010; Hinney et al.,
2011; Stergiakouli et al., 2012; Ebejer et al., 2013; Yang et al., 2013;

Sanchez-Mora et al., 2015; Zayats et al., 2015]. There is compara-

tively little work into the molecular genetics of oppositional and

disruptive behaviors in children and adolescents. A recent meta-

analysis showed a significant association of the short allele of the

polymorphic region (5-HTTLPR) in the promoter region of the

serotonin transporter gene 5-HTT/SLC6A4 with antisocial behav-

iors (including aggression) [Ficks and Waldman, 2014], although

evidence for this association is conflicting [Vassos et al., 2014]. The

short allele has been found to affect negatively the transcription rate

of the gene compared to the long allele [Heils et al., 1996],

putatively affecting the availability of serotonin in the synaptic

cleft and thus increasing the risk for aggressive behavior. Further

studies also support the role of dopamine genes in the development

of ODD and/or CD. The variable number tandem repeat poly-

morphism (VNTR) within exon 3 of the dopamine receptor D4

gene (DRD4) has been frequently investigated in psychiatric ge-

netic studies and the 7-repeat allele was found to lead to less

efficient dopamine binding and reduced receptor sensitivity. Sev-

eral studies found individuals with the 7-repeat allele to have an

increased risk for ODD and CD symptoms [Holmes et al., 2002;

DiLalla et al., 2009]. In accordance with the findings forDRD4 and

5-HTTLPR, high levels of dopamine and low levels of serotonin

were associated with aggression and irritability in humans [Ryding

et al., 2008; Duke et al., 2013]. Deregulation of oxytocin (OXT)

signaling—for example, as a consequence of genetic variability—

also predisposes an individual to antisocial and aggressive behav-

iors and disrupts prosocial behaviors [Malik et al., 2012]. Two

studies found that low levels of OXT are linked to aggressive

behaviors in adult males [Fetissov et al., 2006; Lee et al., 2009].

In genetic studies, single nucleotide polymorphisms (SNPs) within

the oxytocin receptor gene (OXTR) were associated with callous-

unemotional and aggressive behaviors in males and females [Malik

et al., 2012; Zai et al., 2012]. To date, sevenOXTR SNPs (rs1042778,

rs6770632, rs237885, rs4564970, rs1488467, rs53576, rs13316193)

have been found to be related to aggression, CU behaviors, and/or

behavior problems [Park et al., 2010; Campbell et al., 2011; Beitch-

man et al., 2012; Johansson et al., 2012a; Johansson et al., 2012b;

Malik et al., 2012]. Most of the molecular genetic studies of OXTR

have been limited by small sample sizes, though, and therefore

warrant replication.

The phenotypic heterogeneity of ODD complicates the identi-

fication of genetic involvement with the occurrence of the disorder.
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An increasing number of studies supports the need for discrimi-

nation of ODD irritable and defiant/vindictive dimensions in

community samples of preschoolers, school-aged children, and

adolescents [Stringaris and Goodman, 2009a,b; Ezpeleta et al.,

2012; Krieger et al., 2013] as well as in children and adolescents

referred for ADHDor autism [Aebi et al., 2010;Mandy et al., 2014],

which may inform genetic studies. Irritable mood has been sug-

gested to underlie the developmental link between ODD and later

affective disorders [Stringaris et al., 2009], and a defiant/vindictive

behavioral pattern of ODD is associated with CD and the presence

of callous unemotional (CU) traits [Kolko and Pardini, 2010] as

well as later criminal outcomes in adulthood [Aebi et al., 2013]. A

genetic link betweenODD irritable behavior and depression, on the

one hand, and between ODD defiant/vindictive aspects and delin-

quent behavior, on the other, was found in a UK twin sample

[Stringaris et al., 2012].

In this study, we aim to investigate the genetic underpinnings of

ODD using data from the International Multicentre ADHD Ge-

netics (IMAGE) study [M€uller et al., 2011a,b] including 750

subjects. We first defined conceptually meaningful dimensions/

subtypes of oppositionality in order to improve the power of our

analyses by reducing the known heterogeneity of the ODD pheno-

type [Burke, 2012]. We subsequently tested genetic variants in

dopamine, serotonin, and oxytocin signaling pathways for their

association with the two dimensions and the two categorical

subtypes. We first tested individual polymorphisms earlier found

related to such traits, that is, theDRD4VNTR 7-repeat allele, the 5-

HTTLPR short allele, and variants in the OXTR gene. In a second

step, gene-wide analysis for DRD4, 5-HTT, OXTR, and gene-set

analysis of the dopamine, serotonin, and oxytocin pathways was

performed to test their associationwith the two dimensions and the

two categorical subtypes. Besides adjusting the analyses for age and

sex, we also controlled for parental ability to cope with disruptive

behavior because parenting behavior has been identified as a major

source of ODD [e.g., Burke et al., 2008]. We also tested the

interaction between genetic polymorphisms and “parental ability

to cope with disruptive behavior” and ODD subtypes/dimensions.

In addition to the hypothesis-driven analyses, we aimed to generate

new hypotheses about genetic involvement in ODD. Because

genetic overlap as well as differences can be expected to exist

between the two dimensions and the two categoricalODD subtypes

[Dowell et al., 2010] and to maximize power of our analyses

[Galesloot et al., 2014], we used a multivariate genome-wide

association testing framework. Employing bioinformatics and

literature mining, we integrated top-ranked findings from the

GWAS into a landscape of proteins and molecules that regulate

biological signaling cascades, providing important new insights

into the genetic etiology of ODD.
MATERIALS AND METHODS

Sample
The present study is based on 750 probands from the International

Multicentre ADHD Genetics (IMAGE) study. Participants of the

IMAGE study were European Caucasians aged 5–17 years, who had

been recruited in 12 child and adolescent psychiatry clinics rep-
resenting eight countries: Belgium, Germany, Switzerland, Hol-

land, Ireland, Israel, Spain, and theUnited Kingdom. Approval was

obtained by the Institutional Review Board of SUNY Upstate

Medical University and from ethical review boards within each

country. A detailed description of the study design and assessment

procedures has been provided in previous publications [M€uller
et al., 2011a,b]. In short, entry criteria for probands were a clinical

diagnosis of ADHD based on DSM-IV criteria and access to one or

both biological parents and one or more full siblings for DNA

collection and clinical assessment. Exclusion criteria applying to

both probands and siblings included autism, epilepsy, IQ <70,

brain disorders, and any genetic or medical disorder associated

with externalizing behaviors that might mimic ADHD. The full

sample of the IMAGEproject amounts to 1,067 subjects. Out of this

sample with ADHD combined type, 774 subjects with full infor-

mation on ODD phenotypes and covariates (see below) were

included in the analyses. Genome-wide imputed genotypes (HAP-

MAP2) and variable number of tandem repeats (VNTR) were

available for 750 subjects. Attrition analyses showed that the 317

subjects, who were not included in the analyses, did not differ from

the participating 750 subjects in terms of sex (male sex 86.8% vs.

87.7%; x2¼ 0.20, df¼ 1, P¼ n.s.), age (10.94 vs. 10.67 years;

t¼ 1.43, df¼ 1,065, P¼ n.s.), and ODD diagnosis (69.0% vs.

64.1%; x2¼ 2.32, df¼ 1, P¼ n.s.).
Measures
The long form of the revised Conners parent rating scale (CPRS-R:

L) was used in the present study [Conners, 1997; Conners et al.,

1998]. Subtypes and dimensions of oppositionality were assessed

by use of the 10 items (0¼ not true, 1¼ little true, 2¼much true,

3¼ very much true) of the CPRS-R:L oppositional scale. In total,

four different phenotype (two dimensional and two categorical)

measures were included in the present study and tested for differ-

ences in the candidate-based and hypothesis-free analyses (see

below). The use of dimensional as well as categorical measures

of ODD is in line with previous research confirming (1) separate

but correlated dimensions of ODD [Stringaris and Goodman,

2009a,b; Aebi et al., 2010; Ezpeleta et al., 2012; Aebi et al., 2013;

Krieger et al., 2013] and (2) distinct subtypes of irritable and severe

forms of ODD [Burke, 2012; Kuny et al., 2013; Althoff et al., 2014].
(1)
 Two dimensions were defined on theoretical grounds, which

reflected the two previously described dimensions of ODD

[Stringaris et al., 2012; Aebi et al., 2013], namely defiant/

vindictive (P1) and irritable (P2). The items related to P1

with scores ranging from 0 to 18 and P2 with scores from 0 to

12 for P2 are shown in Figure 1. Internal consistencies (Cron-

bach alpha) amounted to 0.79 and 0.82 for the defiant/vindic-

tive and the irritable dimension, respectively. Because of a right

skewed distribution, a Blom transformation [Blom, 1958] of

P2 was performed.
(2)
 Two further dichotomous subtypes were based on findings

from a latent class analysis (LCA). LCA was performed using

poLCA package [Linzer and Jeffrey, 2011] in R statistic soft-

ware [R Development Core Team, 2011]. All of the 10 dichot-

omized CPRS-oppositionality items (0 and 1 were scored as



FIG. 1. Mean scores of dichotomized items of the Conners parent scale (CPRS-R:L) oppositional scale assessing irritable (IRR1-IRR4), and

defiant/vindictive (DV1–DV6) behaviors as a function of latent classes for children and adolescents with ADHD combined type (N¼ 750). OPP,

oppositionality.
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absent; 2 and 3 were scored as present) were included in

analysis. One to five class models were compared, and the

Bayesian Information Criterion (BIC) and the Akaike Infor-

mation Criterion (AIC) were used to determine the number of

classes. The four class solution, which fitted the data best

(BIC¼ 11,169; AIC¼ 10,955), contained classes labeled low

oppositionality (OPP), moderate OPP, irritable OPP, and severe

OPP (see Fig. 1). Because of our interest in severe forms of

ODD, we defined the following dichotomous phenotypes: a

dichotomous subtype P3, with 0 representing “low OPP/

moderate OPP” (n¼ 331) and 1 representing “irritable

OPP/severe OPP” (n¼ 419), and a dichotomous subtype

P4, with 0 representing “low OPP/moderate OPP/irritable

OPP” (n¼ 534) and 1 representing “severe OPP” (n¼ 216).
TheDSM-IV diagnoses of ODD/CD and parental ability to cope

with disruptive behaviors was coded from the diagnostic interview

(parental account of childhood symptoms [PACS]; Chen and

Taylor, 2006; Taylor et al., 1986] A parent (usually the mother)

responded to a 7-point Likert-scale ranging from 0 (efficient

coping) to 7 (abusive parental behavior) measuring maternal

and paternal coping with disruptive behaviors. A mean score

was used when information for both parents was available. Fur-

thermore, the oppositional scale of the Conners’ teacher rating

scale (CTRS- R:L; [Conners, 1997]) and the conduct problem

scale of the Strengths and Difficulties Questionnaire [Goodman,

1997] were used for phenotype description.
DNA Collection and Genotype Assays
Sample collection andDNA isolation has been described previously

[Brookes et al., 2006]. Genome-wide genotyping and data cleaning

was performed as part of the GAIN study using the Perlegen 600K
genotyping platform, as described in Neale et al. [2008]. To

increase genomic coverage, imputation was performed using

MACH and the Hapmap 2 (Release 22 Build 36) reference data

set [Y. Li et al., 2010]. Quality control was performed on the

imputed data, and SNPs with imputation quality scores lower than

0.30, a minor allele frequency lower than 0.01, and those failing

the Hardy–Weinberg equilibrium test at a threshold of P� 10�5

were excluded. In addition, SNPs and subjects with missingness

rates higher than 0.05 were removed from the data. Distributed

over 22 autosomes, 1,871,025 SNPs were left for analysis.

Genotyping of candidate polymorphisms (DRD4 exon 3 VNTR;

5-HTTLPR) was performed at the SGDP laboratories in London

or at the Human Genetics department of the Radboudumc

in Nijmegen, the Netherlands. Standard PCR protocols were

used, as previously described [Brookes et al., 2006; Thissen

et al., 2015].
Statistical Analyses
Analysis of candidate polymorphisms. For the oxytocin re-

ceptor gene OXTR, only one of the seven SNPs previously linked

with aggression was present in the data (rs1488467). Linear and

logistic regression analyses were used to test the effects of theDRD4

exon 3 variant (presence/absence of the 7-repeat allele: 7R/7R and

7R/other vs. other/other), the 5-HTT variant (presence/absence of

the 5-HTTLPR short allele: S/S and S/L vs. L/L), and the OXTR

rs1488467 SNP (presence/absence of C: C/C and C/G vs. G/G) on

the ODD dimensions/subtypes. Variables included in the model

were age, sex, and parental ability to cope with disruptive behav-

iors, as well as the interaction of DRD4, 5-HTTLPR, and OXTR

rs1488467 genotype with parental ability to cope with disruptive

behaviors. In addition, since only one of the seven OXTR SNPs of

interest was present in the data, outcome of the association analysis
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of all SNPs located in that region was plotted to find out if an

association signal was presented by closely related linked SNPs.

Gene-wide and gene-set analyses. Gene-wide analysis was

applied for 5-HTT as well as for DRD4 and OXTR using a

mass-univariate approach, to take potential allelic heterogeneity

into account and test if a combination of SNPs located in these

genes showed association with the ODD dimensions/subtypes.

Similarly, gene-set analysis was performed for all genes involved

in serotonin, dopamine, and oxytocin neurotransmission. A list of

genes included in each pathway-wide analysis can be found in

Supplementary Table SI. All available variants of each gene were

extracted, including variants within a 100 kilobase (kb) flanking

region of each gene to capture regulatory sequences. The effect of

common variants of each gene or gene-set of interest on the two

dimensions and the two categorical subtypeswas investigated using

the statistical approach described by Bralten et al. [2013] consisting

of SNP-by-SNP regression and estimation of the effect of the whole

gene or gene-set. For both gene-wide and gene-set based analyses,

linkage disequilibrium-pruned genotyping data were prepared,

using the “indep” command in Plink [Purcell et al., 2007] with

a r2 threshold of 0.8.

Correction for multiple testing. Results were considered to

be significant if they reached the Bonferroni corrected P-value

threshold for multiple testing (0.05 divided by the number of

phenotypes, polymorphisms, and gene(-sets) tested; P-value

threshold¼ 1.4E-3).

Multivariate genome-wide association study. We performed

a multivariate GWAS to capture covariance among the different

correlated ODD dimensions/subtypes and to increase the power

for finding genetic associations. Using only a single test for

association instead of four has the additional advantage of a

reduced multiple testing burden. Following analysis of correlation

between traits, we assessed association between genetic markers

and the two dimensions and the two categorical subtypes using the

MQFAM multivariate extension of PLINK [Ferreira and Purcell,

2009]. Residuals obtained for each subtype after adjustment for

age, sex, parental ability to cope with disruptive behavior, and four

population components derived from multidimensional scaling

analysis were used as input. The MQFAM method uses canonical

correlation analysis to identify the linear combination of traits that

maximizes the covariance between amarker and the traits. It can be

used for analysis of a combination of quantitative and binary traits

[Ferreira and Purcell, 2009; Galesloot et al., 2014]. For each SNP

included in the analysis, a loading is calculated in the output which

reflects the contribution of each phenotype to the association

results. Top-SNPs (P< 1.00E-5) from the multivariate GWAS

were investigated for their location in or around genes and for

their performance in univariate analysis, which provided informa-

tion on the direction of effect.

Molecular landscape building: bioinformatics and literature

analyses. To increase the understanding of the molecular basis of

ODD, we aimed at integrating the top findings from the GWAS

into a landscape of functionally interacting proteins andmolecules

that regulate biological signaling cascades. First, a list of indepen-

dent association regionswas obtained by clumping the results using

PLINK [Purcell et al., 2007]. SNPs in LD (r2� 0.2) within 10,000 kb

of a more significant index SNP were discarded. Second, a thresh-
old of P< 1.00E-04 was applied for index SNPs, resulting in

65 LD-independent regions. The chosen statistical cut-off for

association of P< 1.00E-04 is often used to designate ‘suggestive’

association and has been previously used in studies of neuro-

developmental disorders (ADHD and autism) [Poelmans et al.,

2011b, 2013]. Third, a list of top genes was compiled. Gene

annotation was performed when an index SNP was located within

an exon, an intron, or untranslated region of the gene, or when an

index SNP was located within a region 100 kb downstream or

upstream of the gene to capture regulatory sequences [Veyrieras

et al., 2008; Gherman et al., 2009; Nicolae et al., 2010; Pickrell

et al., 2010].

We then conducted a canonical pathway analysis of the list of

top-ranked genes from the multivariate GWAS, using the Ingenui-

ty software package (http://www.ingenuity.com). For this pathway

enrichment analysis, Ingenuity draws on the Ingenuity Knowledge

Base which is based on information from published literature as

well as on various other sources including gene expression and gene

annotation databases. An enrichment P-value is calculated for each

pathway with the right-tailed Fisher’s exact test and correction for

multiple testing is performed using the Benjamini–Hochberg

correction. Subsequently, we searched the literature for the func-

tion of the proteins encoded by all the top-ranked genes from the

multivariate GWAS, using UniProtKb (http://www.uniprot.org/

uniprot) and Pubmed (http://www.ncbi.nlm.nih.gov/). The land-

scape building approach described here has been used in earlier

studies of neurodevelopmental disorders [Poelmans et al., 2011a,b,

2013] Lastly, the genes from the list with top findings were

investigated for previous implication in the etiology of neuro-

developmental or neuropsychiatric disorders using Ensembl re-

lease 75 [Flicek et al., 2014] and the NCBI databases (http://www.

ncbi.nlm.nih.gov/).
RESULTS

Descriptives
The final sample (N¼ 750) consisted of 658 boys (87.7%) and 92

girls (12.3%) aged 5–18 years (mean¼ 10.67 years, SD¼ 2.77).

According to the PACS interview, 481 (64.1%) children and

adolescents fulfilled DSM-IV criteria for ODD and 170 (22.7%)

for CD. Bivariate correlations of the two dimensions and the two

categorical subtypes are shown in Supplementary Table SII. All

correlations were significant and moderate. Furthermore, all

dimensions/subtypes were slightly correlated to teacher ratings

of oppositionality (CTRS), and moderately correlated to SDQ

conduct problems and DSM-IV diagnosis of ODD / CD (also

shown in Supplementary Table SII).

Candidate Polymorphisms
No associations of DRD4, 5-HTTLPR, and OXTR rs1488467 were

observed for any of the four measures, nor were any interactions of

parental ability to cope with disruptive behaviors with these

genotypes observed (Table I). Parental ability to cope with the

child’s disruptive behaviors was significantly associated with all

four ODD measures (except for 5-HTTLPR analysis of severe

oppositionality (P4)). Agewas positively associatedwith irritability

http://www.ingenuity.com
http://www.uniprot.org/uniprot
http://www.uniprot.org/uniprot
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/


TABLE I. Linear and Logistic Regressions of the DRD4 Genotype (Presence/Absence of the Seven Repeat Allele: 7R7R and 7R/Other Vs.
Other/Other), of the HTTLPR Genotype (Presence/Absence of the Short Allele: S/S and S/L Vs. L/L), and of the OXTR Genotype

rs1488467 (Presence/Absence of C: C/C and C/G Vs. G/G) Predicting the Four Phenotypes of ODD

Phenotypes P1 P2 (transformed) P3 P4

Variables B B B B
DRD4 genotype

DRD4 (7R7R and 7R/other vs. other/other) �0.39 n.s. �0.08 n.s. 0.00 n.s. �0.10 n.s.

Parent coping (centered) 0.65
���

0.16
���

0.28
���

0.27
���

DRD4 (7R7R and 7R/other vs. other/other)� parent coping (centered) 0.02 n.s. �0.08 n.s. �0.10 n.s. �0.12 n.s.

Sex (0¼ female, 1¼male) 0.69 n.s. 0.19 n.s. 0.33 n.s. 0.35 n.s.

Age 0.09 n.s. 0.04
��

0.07
�

0.05 n.s.

HTTLPR genotype

5-HTTLPR (S/S and S/L vs. L/L) 0.51 n.s. �0.02 n.s. �0.03 n.s. 0.20 n.s.

Parent coping (centered) 0.73
��

0.16
��

0.25
�

0.23 n.s.

5-HTTLPR (S/S and S/L vs. L/L)� parent coping (centered) �0.13 n.s. �0.04 n.s. 0.00 n.s. �0.02 n.s.

Sex (0¼ female, 1¼male) 0.64 n.s. 0.19 n.s. 0.34 n.s. 0.28 n.s.

Age 0.08 n.s. 0.04
��

0.07
�

0.04 n.s.

OXTR rs1488467 genotype

rs1488467 (C/C and C/G vs. G/G) 0.14 n.s. 0.12 n.s. 0.13 n.s. �0.08 n.s.

Parent coping (centered) 0.63
���

0.13
���

0.25
���

0.24
���

rs1488467 (C/C and C/G vs. G/G)� parent coping (centered) 0.35 n.s. 0.10 n.s. 0.11 n.s. 0.02 n.s.

Sex (0¼ female, 1¼male) 0.73 n.s. 0.22
�

0.35 n.s. 0.31 n.s.

Age 0.08 n.s. 0.03
�

0.06
�

0.04 n.s.

Note: P1, defiant vindictive dimension; P2, irritable dimension; P3, irritable/severe oppositionality; P4, severe oppositionality.
�
Significance (two sided), P< 0.05

��
Significance (two sided), P< 0.01

���
Significance (two sided), P< .001.
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(P2) and irritable/severe oppositionality (P3), in all three models.

There appeared to be no SNPs closely located to, and in high linkage

disequilibrium with, OXTR SNP rs1488467 that show association

with the ODD dimensions/subtypes (Supplementary Fig. S1).
Gene-Wide and Gene-Set analyses
Findings for the 5-HTT, DRD4, and OXTR genes and the neuro-

transmission pathways are shown in Table II. None of the analyses

revealed a significant association with any of the four ODD

phenotypes.
Multivariate Genome-Wide Association Study
As expected given the modest sample size (n¼ 750), multivariate

GWAS did not result in genome-wide significant findings

(P< 5.0E-08; [Dudbridge and Gusnanto, 2008]) (see Fig. 2,

and Supplementary Fig. S2 for the Quantile–Quantile plot).

Supplementary Table SIII presents the 53 SNPs showing associa-

tion with the ODD dimensions and subtypes at P< 1.00E-5,

together with their respective loadings reflecting the contribution

of each phenotype to the association results and their perfor-

mance in univariate analysis. The top three findings were for

rs7204436 (P¼ 1.98E-07) located in an intergenic region on

chromosome 16, rs1278352 (P¼ 1.24E-06) located in an intronic
region of the ADAM12 gene on chromosome 10, and rs12370275

(P¼ 2.41E-06) located in an intergenic region on chromosome

12 (Fig. 2). Also of interest is a region on chromosome 20 with a

large number of SNPs in high LD showing a strong association

signal. This region is located on chromosome 20q11.21 and is

spanning several genes (COX4I2, BCL2L1, TPX2, MYLK2,

FOXS1, TTLL9) (also depicted in Fig. 2).
Molecular Landscape Building
Using the criteria as described in the methods section, gene

annotation was performed for 44 out of 65 independent SNPs

with a P< 1.00E-04, resulting in a list of 53 top-ranked genes

(Supplementary Table SIV). The bioinformatics analysis with

Ingenuity revealed significant enrichment of the canonical path-

ways “Inhibition of matrix metalloproteases” (Pcorrected¼
1.19E-2), “Axonal guidance signaling” (Pcorrected¼ 2.60E-02),

and “Wnt/Beta-catenin signaling” (Pcorrected¼ 2.60E-02), with

the proteins encoded by nine of the top-ranked genes belonging

to one or more of these pathways (Table III). Importantly, all

proteins encoded by these nine genes play a role in neurite

outgrowth. In addition, the subsequent literature analysis revealed

that in total, 28 of the 53 top-rankedODDgenes (53%) interact in a

molecular landscape centered around b-catenin signaling and

involved in regulating neurite outgrowth (depicted in Fig. 3).



TABLE II. P-Values of Gene-Wide and Gene-Set-Based Analysis of 5-HTT, DRD4, and OXTR Genes and the Neurotransmission Pathways
for Serotonin, Dopamine, and Oxytocin

Gene-wide analysis Gene-set analysis

Phenotype

5-HTT

(20 SNPs)

DRD4

(14 SNPs)

OXTR

(71 SNPs)

Serotonin

(942 SNPs)

Dopamine

(2568 SNPs)

Oxytocin

(360 SNPs)

P1 0.2508 0.2756 0.3101 0.3458 0.5612 0.6798

P2 0.6463 0.9455 0.5737 0.5493 0.4726 0.9272

P3 0.9445 0.3128 0.9649 0.515 0.276 0.9991

P4 0.1632 0.7257 0.5579 0.5012 0.274 0.9377

Note: P1, defiant vindictive dimension; P2, irritable dimension; P3, irritable/severe oppositionality; P4, severe oppositionality.
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This landscape encompasses signaling cascades that are important

for the neural modulations necessary for the growth of axons in

a specific direction. The evidence linking the molecules in the

landscape to neurite outgrowth is described in detail in the

Supplementary Information.

Fifteen of the top-ranked genes have also been implicated

previously in the etiology of neurodevelopmental and/or neuro-

psychiatric disorders. A summary of these genes and previous

findings from literature can be found in Supplementary Table SV.
DISCUSSION

The aim of this study was to reduce the known heterogeneity in

the ODD phenotype in order to improve the power to detect the

genetic underpinnings.We first identified four conceptuallymean-

ingful subtypes and dimensions of oppositionality in the IMAGE

sample. We then tested specific polymorphisms and genes/gene-

sets that have been previously implicated in aggression/disruptive

behavior for their effect on the two dimensions and the two

categorical subtypes. In addition to these hypothesis-driven analy-

ses, we aimed to generate new hypotheses about genetic involve-

ment in ODD by performing multivariate GWAS. By using

bioinformatics analysis and literature mining, we found that top

findings obtained from the GWAS fit into a neurite outgrowth-

regulating molecular landscape.

Previous research has focused on various dimensions within

oppositional defiant behaviors [Stringaris and Goodman, 2009b;

Aebi et al., 2010]. Further studies have attempted to identify

discrete classes of children and adolescents according to their

oppositional behavior profiles. Consistent with previous research

[Kuny et al., 2013; Althoff et al., 2014], LCA in the present study

revealed a low symptom endorsement type, an irritable type, and a

severe type with elevated scores on all symptoms. In contrast to

these previous findings, we additionally found a moderate opposi-

tional type with intermediate scores on all symptoms, but not a

specific defiant/vindictive type. Considering the large sample size

and the multi-site data collection for the sample of the present

study [M€uller et al., 2011a,b] one may conclude that, most proba-

bly, children with ADHD more often show the full range of ODD

symptoms rather than defiant/vindictive symptoms only. In con-
trast, irritability symptoms are frequently co-occurring in ADHD

children andmay represent a specific subtype of ADHD[Fernandez

de la Cruz et al., 2015].

Although we tried to reduce the heterogeneity of ODD by

identifying conceptually meaningful subtypes and dimensions of

oppositionality, we did not observe any significant associations or

interactions with previously postulated candidates (SNPs, genes,

andpathways). This is not surprising in light of inconsistent reports

of DRD4, 5-HTT, and OXTR effects on externalizing behaviors

(e.g., [Kirley et al., 2004; Beitchman et al., 2012; Malik et al., 2012;

Lavigne et al., 2013]), and the small effect sizes of most genetic risk

factors for behavioral measures. A recent meta-analysis did not

confirm a relation of DRD4 exon3 and 5-HTTLPR to aggression

and violence [Vassos et al., 2014]. Furthermore, our findings

mirror those of a previous study that did not find a DRD4/5-

HTTLPR- interactionwith parental support forODD in 4-year-old

children [Lavigne et al., 2013]. Parenting behavior was moderately

to strongly associated with the defined ODD dimensions and

subtypes. In line with behavioral theories on negative parent-child

interactions (e.g., coercive behaviors; [Patterson, 1982]), parenting

behavior was most strongly associated with defiant/vindictive

behaviors. Since parental ability to cope with the child’s disruptive

behavior was rated by PACS interviewers, and symptoms of

oppositionality were rated by parents, confounding of these var-

iables by rater-effects is unlikely.

In order to obtain new insights into genetic risk factors for ODD

that can inform future investigations of the neurobiology related to

oppositional behavior, we also conducted a multivariate GWAS

using the four ODD subtypes and dimensions. We found 53

markers that showed association with at least one of the four

phenotypes at P< 1.00E-5. The strongest association with opposi-

tional behavior was found for rs7204436 (P¼ 1.98E-07) located in

an intergenic region on chromosome 16. Although no genes are

located nearby, a novel microRNA was found 30 kb from the

marker which might regulate genes involved in the etiology of

oppositional behavior.

Out of 53markers with P< 1.00E-05, 46 were located in a region

on chromosome 20q11.21 spanning the genes COX4I2, BCL2L1,

TPX2, MYLK2, FOXS1, and TTLL9. It can be hypothesized that of

these genes, BCL2L1 is the most likely candidate causing suggestive



FIG. 2. Top: Manhattan plot of multivariate GWAS including ODD subtypes P1 (defiant vindictive), P2 (irritable), P3 (0 representing “low OPP/

moderate OPP” and 1 representing “irritability/severe OPP”), and P4 (0 representing “low OPP/moderate OPP/irritability” and 1 representing

“severe OPP”). Bottom: Top four regions (indicated by arrows in the manhattan plot) containing SNPs showing association at P< 1.00E-5 in

the multivariate GWAS. Top SNPs for each region are depicted in purple; rs7204436 on chromosome 16 (P¼ 1.98E-07), rs1278352 on

chromosome 10 (P¼ 1.24E-06), rs12370275 on chromosome 12 (P¼ 2.41E-06), and rs6060960 on chromosome 20 (P¼ 3.00E-06). OPP,

oppositionality.
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association of the region with oppositional behavior. The long

isoform Bcl-S(L) is an anti-apoptotic regulator expressed at high

levels in both the developing and the adult brain [Krajewska et al.,

2002]. Interestingly, it regulates neurotransmitter release and

retrieval of vesicles in neurons, thereby influencing presynaptic
plasticity [Li et al., 2013]. Recently, it has also been shown that

BCL2L1 is associated with volume of the putamen in a GWAS of

subcortical volumes in 30,717 individuals from 50 cohorts [Hibar

et al., 2015]. BCL2L1 is not present in our top gene list because of

filtering during the clumping procedure.



TABLE III. Three Canonical Pathways That Were Significantly Enriched in the Top 53 ODD GWAS Genes, Using Ingenuity Pathway
Analysis (www.ingenuity.com)

Canonical pathway Genes Significance
�

Adjusted significance
��

Inhibition of matrix metalloproteases ADAM10, ADAM12, MMP7 1.20E-04 1.19E-02

Axonal guidance signaling ABLIM2, ADAM10, ADAM12, MMP7, PAK7, SLIT1 6.46E-04 2.60E-02

Wnt/b-catenin signaling MMP7, RARB, SFRP4, SOX5 7.86E-04 2.60E-02

The genes encoding proteins that could be directly placed in the odd landscape are indicated in bold
�
Single test P-value calculated with the right-tailed Fisher’s exact test and taking into consideration both the total number ofmolecules from the analysed dataset and the total number ofmolecules that is
linked to the same gene category according to the Ingenuity Knowledge Base.
��
Multiple test-corrected P-values using the Benjamini–Hochberg correction (P< 0.05).
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Genome-wide studies of aggression phenotypes are starting to

emerge. A GWAS of CD had been performed before in the current

ADHD sample [Anney et al., 2008], where one of the three

phenotypes used was defined as the sum score for 12 CPRS-R:L

items, giving perhaps a better representation of ODD than CD. In

contrast, we assumed in the present study that combining biologi-

cally valid and less heterogeneous subtypes of ODD through a

multivariate approach would improve power to define new hy-

potheses about the genetics of ODD. The top SNPs reported by

Anney et al. [2008], who performed family-based transmission

disequilibrium tests (TDT), did not reach suggestive significance

(P< 1.00E-04) in our study (Supplementary Table SVI). A few

other GWAS of aggression-related phenotypes have been reported

to date. We compared our association results for the oppositional

phenotypes to the top results of four published aggression related

genome-wide association studies [Alliey-Rodriguez et al., 2011;

Dick et al., 2011; Tielbeek et al., 2012;Mick et al., 2014]. None of the

SNPs in a 100 kb region surrounding these reported top results

reached the threshold for suggestive association in our study

(P< 1.00E-4) (Supplementary Fig. S3). Interestingly though

among our list of top genes is EPDR1 (ependymin related 1).

Ependymin is involved in control of aggressive behavior in fish,

where it is a neurotrophic factor that plays a role in neuronal

regeneration and adhesion [Sneddon et al., 2011]. Themammalian

ependymin related protein 1 shows significant sequence similarity

to piscine ependymins and has been proposed to be the human

homolog of the piscine ependymin [Nimmrich et al., 2001]. These

findings make EPDR1 an interesting candidate gene for future

investigations of genetic contributions to aggression phenotypes.

An additional comparison of SNPs reaching suggestive association

in our study (P< 1.00E-4) with a list of ADHDGWAS top hits with

P-value <1.00E-05 (Supplementary Table SVII, adapted from

Zayats et al. [2015]), did not reveal overlap of our findings with

top hits from genome-wide studies of ADHD phenotypes.

As could be expected based on sample size, our multivariate

approach did not retrieve any region that yielded genome wide

significant association with ODD. Nevertheless, using the de-

scribed landscape building approach, we have integrated the

top-ranked findings of the GWAS into a molecular landscape

involved in regulating neurite outgrowth. More than half of

our top-ranked ODD genes were found to interact functionally

within this landscape, identifying neurite outgrowth as a biological
process that is important for the etiology of ODD. This is in line

with neuroimaging studies indicating that aggressive behavior is

associated with dysfunctional brain circuitry involved in emotion

regulation and decision making [Blair, 2013]. Moreover, current

models of aggression postulate an impaired structural and func-

tional connectivity between prefrontal areas and subcortical struc-

tures such as the amygdala [Rusch et al., 2007; Siever, 2008; Saxena

et al., 2012]. Indeed, alterations in the efficiency or direction of

neurite outgrowth may underlie these dysfunctions.

The identifiedmolecular landscape centers around Beta-catenin

(CTNNB) signaling. CTNNB has a pivotal function in an impor-

tant signaling cascade leading to neurite outgrowth. The process of

neurite outgrowth can be initiated at the neuronal cell membrane,

where the binding of ligands from the extracellular matrix to their

receptors leads to the modulation of downstream molecular cas-

cades in the cytoplasm, cytoskeleton, and nucleus that are involved

in regulating neurite outgrowth. Importantly, several proteins

and signaling molecules in the landscape (highlighted in yellow

in Fig. 3)—including serotonin, testosterone, triiodothyronine,

growth hormone, and retinoic acid—have been associated with

ODD or aggressive behavior through genetic or functional evi-

dence (Supplementary Table SVIII). Starting with the findings on

genetic deficits in the metabolism of neurotransmitters in aggres-

sive patients [e.g., Valzelli, 1981] and the discovery of a nonsense

mutation in the MAOA gene leading to a syndrome characterized

by violent behavior [Brunner et al., 1993], the key role of mono-

amines and especially serotonin in aggression has been demon-

strated in a wide variety of human and animal studies [Anholt and

Mackay, 2012]. Several studies also show a correlation of levels of

the male hormone testosterone and aggression [Pavlov et al.,

2012] and it has been proposed that an altered testosterone-to-

cortisol ratiomay be associated with aggression in humans [Haller,

2012; Montoya et al., 2012]. Further, thyroid hormones are asso-

ciated with stress, and elevated levels of the active thyroid hormone

triiodothyronine (T3) are associated with conduct disorder and

criminal behavior [Ramklint et al., 2001; Stalenheim, 2004]. In

addition, several animal studies suggest that growth hormone

(GH) influences aggressive behavior. For example, GHRH

knock-out mice with GH deficiency show reduced aggressive

behavior which can be normalized by GH replacement [Sagazio

et al., 2011]. Lastly, chronic administration of synthetic retinoic

acid to rats reduced aggression- and increased flight-related

http://www.ingenuity.com


FIG. 3. Neurite outgrowth-regulating molecular landscape implicated in ODD. The evidence linking the molecules in the landscape to neurite

outgrowth can be found in the Supplementary Information.
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behaviors in the resident-intruder paradigm [Trent et al., 2009].

The fact that these and other molecules active within our landscape

have been associated previously with aggressive behavior provides

corroborating evidence for the involvement of neurite outgrowth

in aggression etiology.

Of note, alterations in neurite outgrowth are not specific to the

etiology of ODD, as neurite outgrowth has also been shown to play
a role in the pathogenesis of other neurodevelopmental disorders

such as ADHD, autism spectrum disorders (ASD), dyslexia, and

schizophrenia [Penzes et al., 2011; Poelmans et al., 2011a,b, 2013].

It has been hypothesized in these studies that each of these disorders

may in part be explained by different functional consequences and

different primarily affected brain regions of disturbed neurite

outgrowth. Psychiatric disorders, including ODD, are currently
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classified based on clinical presentation rather than underlying

etiology.Hence, shared genetic etiology can be expected to exist not

only between definable subtypes of psychiatric disorders, but also

between different psychiatric disorders as currently classified in

clinical practice. This notion is also supported by a recent study

[Cross-Disorder Group of the Psychiatric Genomics et al., 2013)

that detected substantial genetic correlations between five major

psychiatric disorders and by the fact that 15 out of the 53 top ranked

genes of our study have previously been associated with neuropsy-

chiatric and neurodevelopmental disorders.

This study is based on a representative clinical sample from eight

European countries. Psychometrically reliable and valid measures

and methods (e.g., LCA) were used for phenotype definitions and

advanced methods were performed in gene-set and genome-wide

analyses. However, the present study is limited to data obtained

from children and adolescents with ADHD combined type (which

is often comorbid with ODD) and although our findings may not

be generalized to other clinical and community samples, the

overlap of our top findings with results in other genetic studies

of psychiatric disorders suggests a broader validity. Our results

were based on Caucasian subjects only and the sample consisted

mostly of male subjects. Due to missing information in the PACS

and other instruments, our sample was reduced to 750 probands.

However, attrition analyses did not show significant differences

between probands included in the sample and drop-outs.

A potential source of bias in our bioinformatics analysis arises

from the fact that brain-expressed genes are relatively large. There-

fore, brain-expressed genes may be over-represented in our GWAS

results. If large genes are more likely found to be associated by

chance (because they containmore SNPs), this should be the case in

GWASs of both psychiatric disorders and non-psychiatric disor-

ders that do not originate in the brain. However, previous studies

have compared enrichment results for psychiatric disorders with

results fromCrohn’s disease and diabetes mellitus [Poelmans et al.,

2011b, 2013] and showed that the “neurological disease” category

enriched in the psychiatric GWASs showed very little or no

enrichment in Crohn’s disease or diabetes. Combined with the

fact that 53% of our ODD top genes also fitted in the molecular

landscape for neurite outgrowth based on extensive literature

mining, we argue that although some genes in the landscape

may have been chance findings, most candidate genes from the

GWAS represent true findings contributing to our phenotype.

Future studies conducting pathway analyses using algorithms

that address potential confounders such as the large size of brain

genes will be of additional information [Holmans et al., 2009; Lee

et al., 2012].

In summary, the present findings confirmed the existence of

various subgroups of youths with different oppositional symptom

profiles. However, against our expectations the examined ODD

dimensions and subtypes were not associated with previously

described candidate genes and pathways. By employing a multi-

variate genome-wide association approach, we identified several

genetic susceptibility loci that may inform future theories on the

etiology of oppositional behavior. We also identified a biological

landscape of molecular signaling cascades involved in neurite

outgrowth providing new insights into the etiology of ODD. In

part, our findings may reflect shared genetic risk factors for
psychiatric disorders. We hope to encourage further investigations

toward a biologically informed classification of psychopathology.
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