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Abstract Fibrillins constitute the backbone of microfibrils in
the extracellular matrix of elastic and non-elastic tissues.
Mutations in fibrillins are associated with a wide range of
connective tissue disorders, the most common is Marfan syn-
drome. Microfibrils are on one hand important for structural
stability in some tissues. On the other hand, microfibrils are
increasingly recognized as critical mediators and drivers of
cellular signaling. This review focuses on the signaling mech-
anisms initiated by fibrillins and microfibrils, which are often
dysregulated in fibrillin-associated disorders. Fibrillins regulate
the storage and bioavailability of growth factors of the TGF-β
superfamily. Cells sense microfibrils through integrins and other
receptors. Fibrillins potently regulate pathways of the immune
response, inflammation and tissue homeostasis. Emerging evi-
dence show the involvement of microRNAs in disorders caused
by fibrillin deficiency. A thorough understanding of fibrillin-
mediated cell signaling pathways will provide important new
leads for therapeutic approaches of the underlying disorders.
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AT1/2 Angiotensin II type 1/2 receptor
BMP Bone morphogenetic protein
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domain

EBP Elastin-binding protein
ECM Extracellular matrix
ERK1/2 Extracellular signal-regulated kinase 1/2
GDF Growth and differentiation factor
GTPase Guanosine triphosphate phosphohydrolase
Hyb
domain

Hybrid domain

IL Interleukin
JNK C-Jun N-terminal kinase
LAP Latency associated peptide
LLC Large latent complex
LTBP Latent transforming growth factor beta-

binding protein
MAPK Mitogen-activated protein kinase
MicroRNA Micro ribonucleic acid
MMP Matrix metalloproteinase
NF-κB Nuclear factor-κB
p- phosphorylated
SMAD Sma and Mad related
SLC Small latent complex
TAK Transforming growth factor-beta-activated

kinase
TB domain Transforming growth factor-beta-binding

protein-like domain
TGF-β Transforming growth factor-beta
Wnt Wingless-type mouse mammary tumor virus

integration site family

Structure and function of fibrillins

In humans and other non-rodent mammalian species, three
highly homologous ~350 kDa extracellular matrix (ECM)
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proteins, fibrillin-1, −2 and −3 constitute the fibrillin protein
family (Hubmacher and Reinhardt 2011). In rodents, the gene
for fibrillin-3 is inactive due to chromosomal rearrangements
(Corson et al. 2004). Fibrillin-1 is the main form in postnatal
life, whereas fibrillin-2 and −3 are primarily expressed during
development (Zhang et al. 1995; Corson et al. 2004; Sabatier
et al. 2011). Human fibrillin-1, −2 and −3 are encoded by
different genes on chromosomes 15, 5 and 19 (Lee et al.
1991; Magenis et al. 1991; Corson et al. 2004), and are highly
conserved between species (Robertson et al. 2011; Piha-
Gossack et al. 2012).

Domain organization of fibrillins

Fibrillins are multi-domain proteins mainly composed of epi-
dermal growth factor-like (EGF) and some other domains
(Corson et al. 1993; Pereira et al. 1993) (Fig. 1). EGF domains
are present 47 times in fibrillin-1 and −2, and 46 times in
fibrillin-3 due to alternative splicing. The majority of these
EGF domains, 43 in fibrillin-1 and −2 and 42 in fibrillin-3,
contain the calcium binding (cb) consensus sequence D/N-X-
D/N-E/Q-Xm-D/N-Xn-Y/F where m and n represent variable
numbers of amino acid residues (Rees et al. 1988; Handford
et al. 1991;Mayhew et al. 1992). These residues are involved in
either the direct ligation of calcium or the stabilization of the
calcium binding site. Calcium binding is a key property which
provides structural stabilization to the fibrillin proteins
(Downing et al. 1996; Reinhardt et al. 1997a; Werner et al.
2000). Together with interdomain hydrophobic packing inter-
actions and short linker regions between individual cbEGF do-
mains, calcium binding contributes to the characteristic rigid
rod-like shape of fibrillins (Downing et al. 1996; Reinhardt
et al. 1997a). Calcium binding is also functionally important
for the protection of fibrillins against proteolysis (Reinhardt
et al. 1997b), the control of self-interaction (Lin et al. 2002;
Marson et al. 2005), and the interaction with several different
ECM components, such as fibulin-2, heparin/heparan sulfate
and microfibril-associated glycoprotein-1 (Reinhardt et al.
1996; Tiedemann et al. 2001; Rock et al. 2004). Disulfide bond
formation between the six cysteine residues in EGF and cbEGF
domains occurs in a C1-C3, C2-C4 and C5-C6 pattern and fur-
ther stabilizes the protein (Downing et al. 1996; Smallridge et al.
2003). The second most common type of domain in fibrillins is
the transforming growth factor-beta-binding protein-like (TB)
domain (Corson et al. 1993; Pereira et al. 1993). TB domains
occur seven times in fibrillins, and their eight cysteine residues
form four disulfide bonds in a C1-C3, C2-C6, C4-C7 and C5-C8
pattern (Yuan et al. 1997; Lee et al. 2004). Fibrillins further
contain hybrid (hyb) domains which show sequence similarities
with TB domains in their N-terminus and with EGF domains in
their C-terminus (Corson et al. 1993; Pereira et al. 1993). Hyb
domains occur twice in all mammalian fibrillins and are stabi-
lized by four intradomain disulfide bonds in a C1-C3, C2-C5,

C4-C6 and C7-C8 pattern (Jensen et al. 2009). Other protein
domains in fibrillins include unique N- and C-terminal domains
that are processed by furin convertases (Lönnqvist et al. 1998;
Raghunath et al. 1999; Ritty et al. 1999; Kettle et al. 2000;Wallis
et al. 2003). A distinguishing feature is a proline-rich domain
close to the N-terminus of fibrillin-1, a glycine-rich domain in
fibrillin-2, and a domain rich in proline and glycine in fibrillin-3
(Corson et al. 1993; Zhang et al. 1994; Nagase et al. 2001).

In addition to fibrillins, cbEGF domains can be found in
many other ECM and serum proteins. TB domains and hyb
domains, however, are unique to fibrillins and a related family
of ECM proteins, the latent transforming growth factor beta-
binding proteins (LTBPs) (Robertson et al. 2015). Fibrillins
and LTBPs together constitute the fibrillin/LTBP superfamily
(Fig. 1). In humans, four members of the LTBP family are
known, LTBP-1, −2, −3 and −4. Similar to fibrillins, LTBPs
consist of tandem cbEGF repeats that are interspersed with
three TB domains and one hyb domain (Hyytiäinen et al.
2004). LTBPs are important for the sequestration and activa-
tion of transforming growth factor-beta (TGF-β)1, −2 and −3
as outlined in detail below.

Fig. 1 Schematic of the fibrillin/LTBP superfamily. The domain
organization of human fibrillins and LTBPs is shown. The most
common type of domain are the cbEGF domains interspersed mainly
by TB and hybrid domains. TB domains are numbered in fibrillin-1.
The RGD cell binding sites, the synergy region (S) and heparin/heparan
sulfate-binding sites (H) are shown for fibrillin-1. The latent small TGF-
β/LAP complex covalently interacting with LTBP-1, −3 and −4 is
indicated by yellow triangles. Only the longest splice variant is shown
for each LTBP isoform and shorter splice variants are omitted for
simplicity
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RGD and heparin/heparan sulfate binding sites

The RGD (arginine-glycine-aspartic acid) cell binding site is a
three amino acid motif that occurs in many ECM proteins,
including fibrillins (Ruoslahti 1996). It mediates the interac-
tion between ECM proteins and transmembrane receptors, the
integrins (see paragraph Integrins). All fibrillins contain an
RGD sequence in their TB4 domain (Fig. 1). Fibrillin-2 and
−3 have an additional RGD cell binding site in the TB3 or the
cbEGF18 domain, respectively (Robertson et al. 2011; Piha-
Gossack et al. 2012). X-ray crystallographic structural analy-
sis of the TB4 domain in a cbEGF22-TB4-cbEGF23 recom-
binant fibrillin-1 fragment demonstrated a tetragonal pyramid
shape for this fragment (Lee et al. 2004). The RGD site is
located on an exposed flexible loop in the TB4 domain.

Integrinsα5β1,αvβ3 andαvβ6 were shown to interact with
fibrillin-1 (Pfaff et al. 1996; Sakamoto et al. 1996; Bax et al.
2003; Jovanovic et al. 2007). Fibrillin-1 adhesion and migra-
tion on α5β1 is strongly enhanced by an upstream tandem
array of cbEGF domains, the synergy site (Bax et al. 2007).
This study demonstrated that the strongest cell adhesion to
α5β1 integrin was promoted in the presence of seven upstream
cbEGF domains, and to αvβ3 in the presence of four upstream
domains. This indicates slightly different requirements for
these integrins in terms of the complementary synergy site(s)
present in fibrillin-1.

In addition, close to the RGD site in the TB4 domain, a
downstream heparin/heparan sulfate binding site was identified
in TB5-cbEGF25 that stimulates focal adhesion formation
(Tiedemann et al. 2001; Ritty et al. 2003; Cain et al. 2005,
2008) (Fig. 1). It is possible that this site can modulate the
integrin interaction with fibrillins, but this aspect is not ex-
plored. Six other heparin/heparan sulfate binding sites were
identified throughout the fibrillin-1 molecule (Tiedemann
et al. 2001; Ritty et al. 2003; Cain et al. 2005, 2008; Yadin
et al. 2013) (Fig. 1). Some, or possibly all, of them may be
relevant for fibrillin-mediated cell signaling. The addition of
heparin/heparan sulfate to cultured human skin fibroblasts im-
paired the formation of a fibrillin network (Tiedemann et al.
2001; Ritty et al. 2003). Moreover, the inhibition of heparan
sulfate sulfation or the biosynthesis of heparan sulfate inhibited
fibrillin network formation (Trask et al. 2000a; Tiedemann et al.
2001). These data show that heparin/heparan sulfate interac-
tions with fibrillins play a critical role in fibrillin network as-
sembly. Other cell signaling functions of these heparin/heparan
sulfate sites in fibrillins require future clarification.

Fibrillin-containing microfibrils

Fibrillins multimerize in the ECM of elastic and non-elastic
tissues to form the core of supramolecular structures, the
10 nm in diameter microfibrils (Low 1962). Fibrillin-
containing microfibrils (referred to as Bmicrofibrils^

throughout this review) provide mechanical stability in some
tissues where they typically tether basement membranes to the
underlying stroma, for example in superficial regions of the
skin, the kidney and the ciliary zonules of the eye (Raviola
1971; Kriz et al. 1990). In elastic tissues, microfibrils provide
the key scaffold machinery for the biogenesis of elastic fibers
(Wagenseil and Mecham 2007). The importance of fibrillin-1
for the deposition of elastic fibers is highlighted by fibrillin-1
deficient Fbn1−/− mice (Carta et al. 2006). These mice die
within two weeks after birth due to impaired lung function
and ruptured aortic aneurysms as a result of disorganized elas-
tic fibers in these tissues. Microfibrils also represent the prin-
cipal units that mediate fibrillin-guided cell signaling as
outlined in detail below throughout this review.

Microfibrils are associated with more than 20 other pro-
teins to fulfill their highly specialized role in different tissue
contexts (Baldwin et al. 2013). The interacting partners of
fibrillins can be divided into functional subgroups: 1) micro-
fibril biogenesis, 2) elastic fiber assembly, 3) proteoglycan
interaction, and 4) growth factor regulation. Self-interaction
sites, heparin-binding sites and the interaction with fibronectin
are important for microfibril biogenesis (Ashworth et al.
1999a; Trask et al. 1999; Tiedemann et al. 2001; Lin et al.
2002; Marson et al. 2005; Kuo et al. 2007; Hubmacher et al.
2008; Sabatier et al. 2009). Crucial fibrillin interaction part-
ners relevant for elastic fiber assembly are, among others,
tropoelastin (Trask et al. 2000b; Rock et al. 2004), fibulin-4
and −5, and lysyl oxidase (Freeman et al. 2005; El-Hallous
et al. 2007; Kobayashi et al. 2007; Choudhury et al. 2009;
Ono et al. 2009). Fibrillin-1 interacting proteoglycans include
decorin, versican and perlecan (Trask et al. 2000a; Isogai et al.
2002; Tiedemann et al. 2005). The interaction with growth
factors can be either indirect via LTBPs in the case of
TGF-βs (Isogai et al. 2003; Hirani et al. 2007; Ono et al.
2009), or direct for bone morphogenetic protein (BMP)-2,
−4, −5, −7 and −10 and growth and differentiation factor
(GDF)-5 (Gregory et al. 2005; Sengle et al. 2008a, 2011).
This aspect will be discussed in detail below.

Fibrillinopathies

Mutations in fibrillin-1 and −2 can lead to a wide variety of
heritable autosomal-dominant connective tissue disorders, col-
lectively termed fibrillinopathies. Mutations in fibrillin-1 most
commonly cause Marfan syndrome (Dietz et al. 1991), but also
other disorders such as stiff skin syndrome (Loeys et al. 2010),
acromicric and geleophysic dysplasia (Le Goff et al. 2011),
dominant Weill-Marchesani syndrome (Faivre et al. 2003),
and dominant ectopia lentis (Tsipouras et al. 1992).

Marfan syndrome affects two to three in 10,000 individuals
and manifests in various organ systems, most importantly in
large blood vessels, bones and eyes (Pyeritz and Dietz 2002).

Fibrillin-containing microfibrils are key signal relay stations 311



The clinical symptoms range from long bone overgrowth,
scoliosis, dural ectasia and ectopia lentis to life-threatening
aortic aneuryms and dissections. Marfan syndrome was ini-
tially described in a 5-year old girl in 1896 by Antoine-
Bernard Marfan (Marfan 1896). However, the link between
Marfan syndrome and mutations in the fibrillin-1 gene
(FBN1) on chromosome 15 was not established until 1991
(Kainulainen et al. 1990; Dietz et al. 1991). Until today, more
than 3000 mutations have been identified in the fibrillin-1
gene (http://www.umd.be/FBN1) (Collod-Beroud et al.
2003). Most of these mutations cause different forms of
Marfan syndrome, ranging from the common classical form
to a more severe neonatal form with early disease onset to the
progeroid form which is associated with premature aging
(Dietz et al. 1991; Kainulainen et al. 1994; Graul-Neumann
et al. 2010).Marfan syndrome is characterized by a wide inter-
and intra-familial phenotypic variability and severity of the
disease, which complicates genotype-phenotype correlations.

Mutations in the RGD-containing TB4 domain of fibrillin-1
cause an autosomal-dominant form of congenital scleroderma,
known as stiff skin syndrome (Loeys et al. 2010). These pa-
tients present with diffuse skin fibrosis leading to hard, thick
skin, which imposes major limitations on joint mobility and
causes flexion contractures. The patients also are characterized
by short body stature. Electron microscopy of microfibrils from
stiff skin syndrome patients displayed accumulation of structur-
ally altered microfibrils containing shorter and denser fibrils in
addition to collagen accumulation (Loeys et al. 2010).

Acromicric and geleophysic dysplasias are caused by mu-
tations in the TB5 domain of fibrillin-1 (Le Goff et al. 2011).
Stiff joints, thick skin, short stature and extremities character-
ize both dysplasias. These authors also demonstrated that fi-
broblasts from these patients form a disorganized and reduced
microfibril network. An in-frame deletion of eight amino acid
residues in the region of fibrillin-1 that encodes the TB5 do-
main causes the autosomal dominant form of Weill-
Marchesani syndrome (Faivre et al. 2003). Similar to
acromicric and geleophysic dysplasias, clinical symptoms in-
clude a short stature and joint stiffness. Additionally, those
patients often display spherophakia associated with glaucoma.

In summary, mutations within the same gene (FBN1) lead
to a range of connective tissue disorders spanning a wide
clinical spectrum. The current pressing question in the field
is how mutations within FBN1 can cause such a wide spec-
trum of clinical features. It is likely that these pleotropic dis-
ease manifestations are caused by alterations of the fine-
tuning of growth factors and other fibrillin-guided cell signal-
ing pathways, as summarized in the following paragraphs.

In addition to mutations in FBN1, mutations in FBN2 give
rise to congenital contractural arachnodactyly characterized by
multiple joint contractures in the elbows, knees, ankles and fin-
gers as well as a crumpled appearance of the ears (Viljoen 1994).
No pathogenic mutation has yet been identified in FBN3,

although some studies suggest its involvement in polycystic ova-
ry syndrome (Jordan et al. 2010; Raja-Khan et al. 2010;
Hatzirodos et al. 2011).

Growth factor regulation by fibrillins

Matrix sequestration of growth factors is an essential aspect in
the regulation of their activity and signaling properties. The
interaction of microfibrils and growth factors can be either
indirect through LTBPs in case of TGF-β or direct in case of
several BMPs. Perturbation of the growth factor matrix se-
questration frequently leads to disease pathogenesis.

TGF-β superfamily in relation to fibrillins

The TGF-β superfamily comprises TGF-β1, −2 and −3, BMPs,
activins, inhibins and GDFs (Massague 1998). The members of
this superfamily include potent cytokines that regulate a variety
of processes in development, homeostasis and tissue repair in-
cluding cellular differentiation, migration, and ECM remodeling.

Synthesis, secretion and activation of TGF-βs

TGF-β1, −2 and −3 are synthesized as 55 kDa precursor proteins
composed of the mature growth factor domain at the C-terminus
and an N-terminal prodomain, the latency associated peptide
(LAP) (Lawrence et al. 1984; Gentry et al. 1988) (Fig. 2). The
precursor proteins homodimerize through disulfide bond forma-
tion. The homodimers are proteolytically processed by furin-like
endoproteases in the trans-Golgi network, forming the small la-
tent complex (SLC) with the LAP dimer non-covalently
shielding the active TGF-β dimer (Shi et al. 2011). The SLC
covalently interacts with several LTBPs forming the large latent
complex (LLC) (Hyytiäinen et al. 2004; Rifkin 2005). LTBP-1
and −3 bind to the LAPs of all three TGF-βs, whereas LTBP-4
only interacts with the LAP of TGF-β1 (Saharinen and Keski-
Oja 2000). Most cell types secrete TGF-β as latent complexes
(Miyazono et al. 1991; Taipale et al. 1994). LTBP-1 colocalized
with fibrillin-1 and fibronectin in cell culture (Taipale et al. 1996;
Dallas et al. 2000, 2005; Klingberg et al. 2014). LTBP-1was also
found associated with microfibrils in different tissues, including
skin, developing heart and the cardiovascular system, as well as
the periosteum of developing bone (Nakajima et al. 1997;
Raghunath et al. 1998; Dallas et al. 2000; Isogai et al. 2003).
Direct biochemical interactions were shown between fibrillin-1
and the C-termini of LTBP-1, −2 and −4 (Isogai et al. 2003;
Hirani et al. 2007; Ono et al. 2009), whereas the N-termini of
LTBP-1 and −4 associate with fibronectin (Dallas et al. 2005;
Fontana et al. 2005; Kantola et al. 2008). All LTBPs localize to
microfibrils in tissues, even LTBP-3 despite the lack of biochem-
ical interaction with fibrillin-1 (Zilberberg et al. 2012). Through
this mechanism, inactive TGF-βs are targeted to microfibrils in
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the ECM, which regulate release and activation of the active
growth factors. The formation of the LLC is schematically
depicted in Fig. 2.

In its latent state, TGF-β is not accessible to its receptor and
requires release from the ECM either through conformational
changes in the SLC or through other mechanisms including
proteolytic degradation. The LAPs of TGF-β1 and −3 contain
an RGD sequence by which they can interact withαvβ6,αvβ8

or αvβ5 integrins expressed by different cell types (Munger
et al. 1999; Mu et al. 2002; Wipff and Hinz 2008). Upon
binding of LAPs to cell surface integrins and cell-mediated
force transmission, a conformational change is induced in the
SLC which leads to the release of active TGF-β (Annes et al.
2004; Wipff et al. 2007; Shi et al. 2011). Matrix metallopro-
teinase (MMP)-2 and −9 and the serine protease plasmin can
either directly target LAPs or alternatively target the LTBPs to
induce TGF-β activation (Sato and Rifkin 1989; Yu and
Stamenkovic 2000). Interaction between thrombospondin-1
and LAP can also release active TGF-β through a conforma-
tional change in LAP (Schultz-Cherry et al. 1995). TGF-β can
also be released from the SLC by reactive oxygen species that
are generated during inflammation or by irradiation
(Barcellos-Hoff et al. 1994). In vitro, TGF-β can be activated
by heat or acid treatment, which leads to denaturation of LAP,
and in turn to the release of active TGF-β (Lyons et al. 1988).

BMPs in relation to fibrillins

BMPs are also expressed as precursor proteins with a
prodomain and a mature C-terminal growth factor. Unlike

TGF-β, most BMPs are active when overexpressed as recom-
binant proteins due to an open armed conformation of the
prodomain that allows interaction of the growth factor dimer
with its receptor (Mi et al. 2015). BMP-7 is secreted as a stable
complex with the growth factor dimer non-covalently associ-
ated with its two prodomains (Gregory et al. 2005). Due to the
structural similarity to the TGF-β SLC, the prodomain of
BMP-7 was tested by these authors for binding to LTBP-1
or fibrillin-1. Interactions were observed between the BMP-
7 prodomain or the BMP-7 prodomain/growth factor complex
and N-terminal regions of fibrillin-1, whereas the growth fac-
tor dimer alone did not interact. It is possible that this interac-
tion sequesters BMP-7 complexes to microfibrils in the ECM.
Binding assays with fibrillins were extended to BMP-2, −4,
−5, −10 andGDF-5 and −8 using the recombinant prodomains
without their respective growth factor dimers (Sengle et al.
2008a, 2011). All prodomains, except the GDF-8 prodomain,
interacted with fibrillins. BMPs and GDFs bind to a region
between the N-terminus and the proline-rich domain in
fibrillin-1. The downstream region between EGF4 and TB3
also interacts with various affinities with GDF‐5 and BMP‐2,
−4, and −10. Thus, the N-terminal region of fibrillins appears
to act as a high affinity binding site and concentrator for BMP
prodomains. However, other mechanisms for targeting some
of these growth factors to the ECM exist. For example, the
GDF-8 prodomain interacts with a glycosaminoglycan chain
at the C-terminus of perlecan, a core basement membrane
protein (Sengle et al. 2011). Given that perlecan has been
shown to interact directly with fibrillin-1, GDF-8 might be
indirectly targeted to microfibrils (Tiedemann et al. 2005).

Fig. 2 Biosynthesis of TGF-β and targeting to microfibrils. TGF-βs are
synthesized as precursor proteins consisting of a growth factor domain at
the C-terminus (red) and the LAP at the N-terminus (yellow). Two
precursor proteins homodimerize and are proteolytically cleaved to
form the SLC where LAP is non-covalently bound to the active TGF-β
dimer. The SLC can covalently bind to the penultimate TB domain in
LTBP-1, −3 and −4 (shown here for LTBP-1), constituting together the

LLC. The C-terminal region of LTBP-1 and −4 interact non-covalently
with the N-terminal region of fibrillin-1 present in the core of beaded
microfibrils. The N-terminal regions of LTBP-1 and −4 interact with
fibronectin. LTBP-3 localizes to microfibrils via a different mechanism.
In this way, TGF-βs are targeted to microfibrils, which directly or
indirectly regulate their release and activation
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Unlike the latent TGF-β prodomain/growth factor com-
plex, the BMP-7 prodomain/growth factor complex was able
to bind to its receptors and induce BMP signaling in cell
culture (Sengle et al. 2008b). The growth factor dimers and
the BMP-7 prodomain/growth factor complex did not show
any overt differences in their signaling capabilities, and BMP
type II receptors could displace the BMP-7 prodomains in
solution and bind to the growth factor dimer. In vitro studies
showed that capturing the BMP-7 complexes by binding to a
fibrillin-2 scaffold impaired BMP signaling (Sengle et al.
2015). This inhibitory effect of fibrillin binding is most likely
the result of a conformational change in the prodomain struc-
ture, which impedes the interaction of BMP receptors and
growth factor. Thus, fibrillins might act as a latency factor
for at least some BMPs.

TGF-β and BMP signaling

Active TGF-β family members signal via specific complexes
of homodimeric type I and type II transmembrane serine/
threonine kinase receptors (Wrana et al. 1992). Upon ligand-
induced formation of heterotetrameric receptor complexes, the
type II receptor transphosphorylates and activates the type I
receptor. The activated type I receptors propagate the growth
factor signal by phosphorylating specific Sma and Mad relat-
ed (SMAD) transcription factors, the receptor-regulated
(R-)SMADs (Feng and Derynck 2005). Upon activation,
two R-SMADs form heteromeric complexes with the co-
SMAD, followed by translocation into the nucleus, where
the complex participates in the transcriptional regulation of
target genes.

TGF-β can also activate non-canonical signaling through
the serine/threonine kinase receptors by activating Ras guano-
sine triphosphate phosphohydrolases (GTPases) (Derynck
and Zhang 2003; Lee et al. 2007; Yamashita et al. 2008).
The Ras GTPases phosphorylate and thus activate the
mitogen-activated protein kinases (MAPKs), including extra-
cellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-ter-
minal kinase (JNK), and p38. TGF-β can also activate
TGF-β-activated kinase (TAK1), which is a MAP kinase ki-
nase kinase activating the MAP kinase cascade. Non-
canonical TGF-β signaling can either occur independently
or in parallel to canonical signaling via SMADs.

Regulation of TGF-β/BMP activation and signaling
in fibrillinopathies

TGF-β and BMP signaling is highly dependent on the cellular
and tissue context. The generation of mouse models has sig-
nificantly extended knowledge of how fibrillin-1 and -2 guide
and modulate TGF-β/BMP signaling. Mice heterozygous for
a missense mutation in fibrillin-1 (Fbn1C1039G/+) are frequent-
ly used as a model for Marfan syndrome (Judge et al. 2004).

These mice display aberrant thickening of the aortic media
with fragmented and disorganized elastic fibers, and excessive
TGF-β activity leads to the formation of aortic aneurysms
(Habashi et al. 2006). This study also showed that postnatal
administration of TGF-β-neutralizing antibodies improved
aortic wall architecture and decreased elastic fiber fragmenta-
tion. Fbn1C1039G/+ mice are further characterized by myxoma-
tous changes of the atrioventricular valves, which include a
postnatally acquired increase in leaflet length and thickness
(Ng et al. 2004). The alterations in mitral valve architecture
correlate with excess TGF-β activation and signaling, which
could be rescued in vivo by TGF-β antagonism. Fbn1C1039G/+

mice also display architectural abnormalities in the skeletal
muscle, which was characterized by decreased muscle fiber
sizes and numbers and an increase in the amount of interstitial
tissue and fat between muscle fiber bundles (Cohn et al.
2007). These phenotypes also were generally correlated with
elevated TGF-β activity as evidenced by the normalization of
muscle architecture upon systemic antagonism of TGF-β.
Mice that homozygously express a centrally deleted Fbn1
allele at about 10 % of the wild‐type level (Fbn1mgΔ/mgΔ)
present in addition to aortic dilation and rupture with lung
abnormalities, which manifested as impaired distal alveolar
septation (Pereira et al. 1997; Neptune et al. 2003). These
mice are again characterized by enhanced TGF-β activation
and signaling. Perinatal administration of a TGF-β-
neutralizing antibody rescued the failed distal alveolar
septation in vivo.

Fbn1C1039G/+ mice show activation of both the canonical
TGF-β signaling pathway via SMAD2 and the non-canonical
pathway via ERK1/2 (Holm et al. 2011). This study clarified
that it is the non-canonical pathway through ERK1/2 that
drives aortic aneurysm progression, and hence inhibition of
ERK1/2 pathways appears as a potential novel therapeutic
strategy. Further evidence for the importance of non-
canonical TGF-β signaling comes from studies with vascular
smooth muscle cells explanted from the thoracic aortas of
Fbn1−/− mice (Carta et al. 2009). These cells displayed abnor-
mal accumulation of TAK1 and the phosphorylated MAPK
p38. This study further demonstrated that phosphorylated p38
accumulated earlier than phosphorylated (p-)SMAD2 in the
aortic wall of Fbn1−/− mice, and activated signaling via
SMAD2. In addition, systemic inhibition of p38 activity
lowered SMAD2 phosphorylation.

TGF-β antagonism proved as a valuable therapeutic ap-
proach in preclinical mouse models and is also the basis for
treatment with losartan, an angiotensin II type 1 (AT1) recep-
tor antagonist. Like beta-blockers, losartan lowers the blood
pressure, albeit through a different molecular mechanism.
Beta-blockers emerged as standard care for Marfan patients
over the years (Shores et al. 1994). In addition to its beneficial
effects on blood pressure, losartan was shown to antagonize
TGF-β in animal models of chronic renal insufficiency and
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cardiomyopathy (Lim et al. 2001; Lavoie et al. 2005). The
interaction between angiotensin II and AT1 mediates the pro-
gression of aortic aneurysms and AT1 blockade abrogated
aneurysm progression in Fbn1C1039G/+ mice (Habashi et al.
2011). Loss of AT2 expression, in contrast, accelerates aortic
aneurysm formation in these mice. The authors further dem-
onstrate that losartan inhibits TGF-β-mediated activation of
ERK1/2 by shunting signaling through the AT2 receptors,
which in turn inhibits ERK1/2 activation. This lowers the
expression of TGF-β ligands, receptors, and activators as their
expression is stimulated through the ERK1/2 pathway.

Postnatal treatment with the beta-blocker propranolol or
losartan in comparison demonstrated the advantages of
losartan, which fully rescued the abnormalities in the aortic
wall and also partially reversed the impaired alveolar septation
(Habashi et al. 2006). Administration of propranolol, in con-
trast, reduced the aortic growth rate, but did not improve the
aortic wall architecture. Angiotensin II type 1 receptor block-
ade through losartan also normalized the architectural abnor-
malities in the skeletal muscle, similar to TGF-β antagonism
(Cohn et al. 2007).

The beneficial effects of losartan for patients with Marfan
syndrome was assessed in various clinical trials (Lacro et al.
2007; Detaint et al. 2010). One of the largest recent studies
with over 600 children and young adults withMarfan syndrome,
however, did not show significantly different beneficial effects
of losartan and the beta-blocker atenolol on the aortic growth
rate over a period of three years (Lacro et al. 2014). These data
exemplify differences thatmay exist in terms of drug efficiencies
between preclinical mouse models and humans.

Deregulation of TGF-β activation and signaling is also
observed in other fibrillinopathies. Fibroblasts from patients
with acromicric or geleophysic dysplasia displayed enhanced
TGF-β signaling (Le Goff et al. 2011). Increased TGF-β sig-
naling was also observed in the dermis of patients with stiff
skin syndrome, which can be partly explained by the increased
expression of p-SMAD2 and the accumulation of LLCs which
causes an elevated concentration of TGF-β in the ECM
(Loeys et al. 2010).

It is still not completely understood how mutations in
fibrillin-1 lead to enhanced TGF-β activation and signaling,
either as a primary or a secondary cause. One explanation is a
reduced number of functional microfibrils present in the
ECM, another one is the inability of LTBPs to mediate
TGF-β sequestration to microfibrils in the disease state.
Residues within the hyb1 domain mediate binding of
fibrillin-1 to LTBP-1 and LTBP-4 (Ono et al. 2009). This
study showed that LTBP-1 and LTBP-4 were not incorporated
into microfibrils produced by Fbn1−/− fibroblast cultures,
demonstrating that fibrillin-1 is required for correct matrix
incorporation of LTBPs. The authors of this study further
showed that deletion of the hyb1 domain caused impaired
interaction between fibrillin-1 and LTBP-1 and abrogated

binding to LTBP-4 in vitro. Homozygous in vivo deletion of
the hyb1 domain inFbn1H1Δ/H1Δmice did not show any gross
phenotype (Charbonneau et al. 2010). Both, homozygous
Fbn1H1Δ/H1Δ and heterozygous Fbn1H1Δ/+ mice did not de-
velop aortic aneurysms or dissections and displayed normal
assembly of microfibrils. Therefore, it can not only be a com-
promised interaction between LTBPs and fibrillin-1 that
causes the spectrum of diseases associated with fibrillin-1 mu-
tations. Likely, it is an integrated interplay of context specific
factors and events that trigger the pathological cascade.

Global deletion of the fibrillin-2 gene (Fbn2−/−) in mice
causes a relatively mild phenotype including bilateral syndac-
tyly and temporary joint contractures (Arteaga-Solis et al.
2001). This study showed that fibrillin-2 regulates BMP-7
signaling in the developing autopod. Upon deletion of
fibrillin-2, BMP-7 does not localize to the interdigit region,
where it normally mediates apoptosis, thus leading to syndac-
tyly. A study analyzing Fbn2−/− null mice on a 129/Sv back-
ground described newborn mice with reduced muscle mass,
abnormal muscle histology and activated BMP-7 signaling in
skeletal muscle. These data indicate that fibrillin-2 mediated
BMP signaling is important for muscle differentiation (Sengle
et al. 2015).

The crosstalk between TGF-β and BMPs can exemplarily
be described in bone remodeling. TGF-β1 stimulates matrix
degradation through the induction of osteoclastogenesis
(Nistala et al. 2010b). BMPs have an osteoinductive effect
during bone maturation, mineralization and homeostasis.
Primary cultured osteoblasts from both Fbn1−/− and Fbn2−/−

mice showed enhanced activation of TGF-β signaling (Nistala
et al. 2010a). Fbn2−/− osteoblasts showed impaired osteoblast
maturation and bone formation as a result of enhanced TGF-β
activation. Osteoblasts from Fbn1−/− displayed evidence for
activated BMP signaling. Osteoblast maturation and mineral-
ization occurred faster despite enhanced TGF-β signaling at
similar levels as in Fbn2−/− osteoblasts. The increased avail-
ability of normally matrix-bound BMPs enhances
osteoinductive BMP signaling and counteracts the anabolic
effects of TGF-β signaling.

Figure 3 provides an overview of growth factor sequestra-
tion by fibrillin microfibrils in normal and in disease state.

Other growth factors relevant to fibrillins

Wnts (Wingless-type mouse mammary tumor virus
integration site family) are important growth factors required
for cellular differentiation, tissue morphogenesis and homeo-
stasis with critical roles in cardiac development and differen-
tiation, angiogenesis, cardiac hypertrophy, cardiac failure, and
aging (Rao and Kuhl 2010). The Wnt signaling pathway is
still largely unstudied in the context of its regulation by the
ECM and in regard to its involvement in fibrillinopathies.
Wnts propagate signaling through the stabilization of β-
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catenin, which is otherwise targeted for destruction. β-catenin
can then mediate the regulation of gene expression in the
nucleus with other transcription factors. Wnt signaling has
been shown to play a role in skin fibrosis where it crosstalks
with fibrillin. The tight skin (Tsk) mouse model displays cer-
tain features that are overlapping with stiff skin syndrome. It is
caused by a large in-frame duplication of exons 17–40 in
fibrillin-1, thus resulting in a larger ~420 kDa fibrillin-1 pro-
tein (Siracusa et al. 1996; Saito et al. 1999). Heterozygous
Fbn1Tsk/+ mice are characterized by tight skin and accumula-
tion of microfibrils in the loose connective tissue (Green et al.
1976). mRNA microarray analysis of the Tsk mouse skin
showed increased levels of several genes integrated with the
Wnt signaling pathway, including Wnt2, -9a, -10b, and −11,
inhibitors such as secreted frizzled-related protein 2 and −4, as
well as Wnt-induced secreted protein 2 (Bayle et al. 2008).
Furthermore, the authors demonstrated that Wnt3a increased
fibrillin matrix formation in vitro, which further indicates that
Wnts contribute to increased microfibril accumulation in the
skin of Fbn1Tsk/+ mice.

The CCN family is a group of six secreted proteins that are
named after three of its members: cysteine-rich protein 61
(CYR61, also called CCN1), connective tissue growth factor
(CTGF, also cal led CCN2) and nephroblas toma
overexpressed protein (NOV, also called CCN3) (Leask and
Abraham 2006). CCNs are generally induced by growth fac-
tors and cytokines and are overexpressed in pathological con-
ditions such as fibrosis. The CCNs act as adaptor molecules
connecting the ECM with the cell surface. It has been shown

that CCN3 plays a role in skin matrix remodeling of Fbn1Tsk/+

mice (Lemaire et al. 2010). These authors showed that TGF-β
and Wnt worked synergistically to stimulate fibrillin matrix
assembly and CCN3 expression in the skin. CCN3 overex-
pression markedly impaired fibrillin assembly, as it blocked
the effects of both cytokines. Fibrillin matrix in turn upregu-
lated CCN3 expression, and thus provided a counter-
regulatory mechanism to the stimulating effects of TGF-β
and Wnt on fibrillin assembly.

Cellular sensing of fibrillin microfibrils

Fibrillin microfibrils are sensed by transmembrane receptors
which transduce signals to the interior of the cells that influ-
ence cell shape, gene expression and function. Integrins and
potentially other receptors mediate those effects.

Integrins

Numerous ECM proteins contain an RGD sequence, which
mediates cell-matrix interactions by binding to integrins. In
addition, many other amino acid sequences in extracellular
ligands can mediate interaction with integrins. Each integrin
heterodimer consists of an α and a β single-pass transmem-
brane protein that associate non-covalently (Hynes 2002). The
interaction between RGD cell binding sites and integrins me-
diates cell attachment, focal adhesion formation and integrin
signaling. This interaction is essential for cells to sense and

Fig. 3 Microfibrils as growth factor and cell signalling relay stations in
normal and pathological situations. a In a normal physiological situation,
cell surface located beaded microfibrils interact with smooth muscle cells
and fibroblasts through integrins (blue). The TGF-βs LLC and BMP
prodomain/growth factor complexes are secreted by cells and deposited
onto microfibrils (black arrows). b In pathological situations, the release
regulation of active TGF-β and BMP growth factors from microfibrils is

disturbed.Mutations in fibrillin-1 lead to enhanced release of TGF-β, and
potentially BMPs. The growth factors can interact with their respective
cell surface receptors and trigger intracellular signaling events (white
arrows). The interaction of integrins with microfibrils might also be
dysregulated in pathological situations. Cells, microfibrils and growth
factors are not drawn to scale
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react to their extracellular microenvironment. Important intra-
cellular components of this signaling complex are talin, Src-
family kinases, focal adhesion kinase, vinculin and paxillin
(Harburger and Calderwood 2009). Talin is a structural adap-
tor that links integrins directly to the cytoskeleton. Scaffolding
adaptors (e.g., paxillin, vinculin) form bridges between focal
adhesion proteins. Focal adhesion kinas and Src-family ki-
nases are catalytic adaptors that propagate signal transduction.

Relevant integrins that mediate cell attachment to fibrillin-1
are α5β1, αvβ3 and αvβ6 (Pfaff et al. 1996; Sakamoto et al.
1996; Bax et al. 2003; Jovanovic et al. 2007). Mutations in the
TB4 domain of fibrillin-1 that harbors the RGD sequence lead
to stiff skin syndrome characterized by diffuse skin fibrosis as
outlined in section Fibrillinopathies (Loeys et al. 2010).
Interestingly, no mutation that directly affects the RGD cell
binding site is listed in the fibrillin-1 mutation database (http://
www.umd.be/FBN1) (Collod-Beroud et al. 2003). All known
mutations that cause stiff skin syndrome are located across the
entire TB4 domain in close vicinity of the RGD sequence.
In vitro analyses of two stiff skin syndrome mutations, p.
W1570C and p.C1564S, displayed significant loss of both,
cell attachment and spreading, suggesting that the fibrillin-1
interaction with integrins α5β1 and/or αvβ3 was affected.
However, keratinocytes expressing integrin αvβ6 attached
and spread normally on mutated fibrillin-1. Moreover, studies
with cultured dermal fibroblasts from patients with stiff skin
syndrome display reduced amounts of active focal adhesion
kinase. This underlines the importance of integrin ligation and
the resulting downstream signaling. In vivo studies showed
that heterozygous mice with an RGD to RGE substitution in
fibrillin-1 (Fbn1RGE/+) phenocopied the diffuse skin fibrosis
observed in patients with stiff skin syndrome (Gerber et al.
2013). The mice further mimicked the typical autoantibody
production and dermal infiltration of pro-inflammatory immune
cells including plasmacytoid dendritic cells, T helper cells and
plasma cells. Homozygous inactivation of the RGD sequence
in mice (Fbn1RGE/RGE) resulted in early embryonic lethality.
The in vivo studies of heterozygous Fbn1RGE/+ mice further
emphasize the importance of correct integrin ligation (Gerber
et al. 2013). In this study, integrin-modulating therapies mim-
icking the integrin-matrix ligand interaction, which is impaired
by the mutation, normalized the skin architecture and dermal
infiltration of proinflammatory immune cells.

Other transmembrane receptors

The AT1 receptor is another possible cellular sensor. It can be
activated by mechanical stress, independent of angiotensin II,
in cardiac hypertrophy (Zou et al. 2004). Mice homozygous
for a hypomorphic Fbn1 allele (Fbn1mgR/mgR) present with
dilated cardiomyopathy (Cook et al. 2014). This study further
showed that crossing these mice with AT1-deficient mice re-
stored normal cardiac size and function, which was also

normalized upon treatment with losartan, but not with
TGF-β-neutralizing antibodies. This suggests that the activa-
tion of TGF-β signaling does not account for cardiomyopathy,
but rather the abnormal muscle mechanosignaling via AT1.

Pericellular heparan-sulfate-containing proteoglycans (e.g.,
syndecans) might also be important in sensing the fibrillin
matrix. The importance of the interaction between heparan
sulfate and the TB5 domain in fibrillin-1 is highlighted by
the disruption of heparin binding in acromicric and
geleophysic dysplasias caused by mutations in the TB5 do-
main (Cain et al. 2012). However, the full spectrum of func-
tional contributions of how cells sense their microenviron-
ment needs to be clarified.

Fibrillin-associated ECM remodeling
and inflammation

Regulation of matrix metalloproteinases

MMPs are a large family of endopeptidases, which are in-
volved in degradation and remodeling of the ECM (Sekhon
2010). Several lines of evidence demonstrate that the regula-
tion of MMPs is involved in the pathogenesis of Marfan syn-
drome and other fibrillinopathies. Several MMPs, including
MMP-1, -2, −3 and −9, were present at increased concentra-
tions in aortic specimens obtained from Marfan patients
(Segura et al. 1998; Ikonomidis et al. 2006). Additionally,
these aortic specimens displayed fibrillin fragmentation
(Fleischer et al. 1997), and it has been shown that fibrillin is
susceptible to proteolysis by several MMPs (Ashworth et al.
1999b; Hindson et al. 1999; Kirschner et al. 2011). Increased
MMP expression was also found in lens specimens from in-
dividuals affected with Marfan syndrome (Sachdev et al.
2002).

Fibrillin-1 fragments that contain the RGD cell binding site
were capable of inducing MMP-1 and −3 expression at the
mRNA and protein level in human skin fibroblasts, whereas
MMP-2 and −9 levels remained unaltered (Booms et al.
2005). Furthermore, this study also showed that fibrillin-1
fragments without the RGD cell binding site did not cause
an increase in MMP-1 expression, but in MMP-3 expression.
This indicates that both, RGD-dependent and independent
mechanism exist for fibrillin-1 to regulate the expression of
MMPs. One RGD-independent sequence that mediates MMP
expression is the XGXXPG elastin-binding protein (EBP)
consensus sequence present three times in fibrillin-1
(Brassart et al. 2001). The EBP is one of three subunits of
the elastin-laminin receptor which has been implicated in dif-
ferent cell signaling processes by binding to XGXXPGmotifs
(Mecham et al. 1989). It acts as a mechanotransducer in vas-
cular smooth muscle cells (Spofford and Chilian 2001), and it
induces proliferation of arterial smooth muscle cells
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(Mochizuki et al. 2002). A fibrillin-1 fragment containing a
XGXXPG (EGFEPG) sequence in cbEGF33 upregulated the
MMP-1 protein production in skin fibroblasts (Booms et al.
2006). This fragment was also capable of inducing monocyte
chemotaxis as outlined in the section below Inflammatory
infiltration of immune cells.

In aortic aneurysms of Fbn1C1039G/+ mice, increasing
MMP-2 and −9 mRNA and protein expression was detected
between three to six months of age (Chung et al. 2007).
Altered MMP expression was accompanied by elastic fiber
degradation and deterioration of mechanical properties and
aortic contraction. Treatment with doxycycline, a broad-
spectrum inhibitor of all MMPs, significantly improved life
expectancy in Fbn1mgR/mgR mice (Xiong et al. 2008).
Doxycycline reduced elastic fiber degradation by decreasing
MMP-2 and −9 levels. Similar results were obtained for
Fbn1C1039G/+ mice. Whereas aneurysm formation was
prevented upon doxycycline treatment in Fbn1C1039G/+ mice,
there was still evidence of mild aneurysm formation after ad-
ministration of atenolol (Chung et al. 2008). In this study,
doxycyline improved elastic fiber integrity, normalized vaso-
motor function and reduced TGF-β activation. After estab-
lishment of aortic aneurysms at four months of age, neither
doxycycline nor losartan treatment completely restored aortic
wall integrity and function in Fbn1C1039G/+ mice (Yang et al.
2010). The combination of doxycycline and losartan in this
study led to a better outcome compared to single-drug treat-
ment, as it improved elastic fiber organization, decreased
MMP-2, −9 and TGF-β expression and normalized aortic
mechanical properties. In another study, losartan and doxycy-
cline were found to be equally effective in delaying, but not
preventing aneurysm formation and rupture (Xiong et al.
2012). These authors further demonstrated that MMP-2 plays
a role in the release of active TGF-β from the LLC, which
then results in downstream signaling via ERK1/2. A combi-
nation therapy with losartan and doxycycline might prove
more effective than a single-drug therapy, as these compounds
additively reduce ERK1/2 signaling, and thus delay aneurysm
progression and rupture.

In summary, these findings illustrate that proteolytic deg-
radation, which generates fibrillin-1 fragments, triggers a vi-
cious cycle. The generated fibrillin-1 fragments upregulate
MMP expression, which in turn causes more proteolytic deg-
radation of fibrillin, eventually impairing the sequestration of
growth factors on microfibrils.

Inflammatory infiltration of immune cells

Monocyte infiltration in the medial layer of the aorta can be
observed as early as eight weeks of age in Fbn1mgR/mgR mice
(Pereira et al. 1999). The inflammatory infiltration is followed
by adventitial inflammation, elastolysis of the media and a
fibroproliferative response. Macrophages in inflammatory

foci originate from blood monocytes that are attracted by a
plethora of chemotactic factors (Brömme et al. 1993). There
are also some ECM-derived components harboring a
XGXXPG sequence, that mediate chemotaxis of fibroblasts
and monocytes by binding to the EBP present on the surface
of monocytes (Senior et al. 1984).

In line with the finding that aortic extracts from Fbn1mgR/

mgR mice induced macrophage chemotaxis, recombinant
fibrillin-1 fragments containing a XGXXPG EBP recognition
sequence acted as chemotactic stimuli for macrophages (Guo
et al. 2006). This response was significantly reduced by pre-
treatment with monoclonal antibodies directed against an EBP
recognition sequence VGVAPG, or by a mutation of the EBP
sequence in fibrillin-1 fragments. These results show the in-
volvement of the EBP sequence in the stimulation of macro-
phage chemotaxis in Fbn1mgR/mgR mice. Macrophage infiltra-
tion was also observed in aortic specimens obtained from
individuals with Marfan syndrome (He et al. 2008).
Treatment of Fbn1mgR/mgR mice with a monoclonal antibody
directed against EBP recognition sequence XGXXPG in
fibrillin-1 and elastin rescued elastin degradation and reduced
macrophage infiltration in the aorta (Guo et al. 2013).
Moreover, the treatment had beneficial effects on MMP ex-
pression and TGF-β signaling. The upregulation of MMP-2
and −9 was inhibited, and the upregulation of p-SMAD2,
TGF-β1 and LTBP-1 was decreased. In addition, monoclonal
antibody treatment prevented the development of pulmonary
emphysema in this study.

The proinflammatory cytokine interleukin (IL)-6 plays a key
role in vascular inflammation. Hypomorphic Fbn1mgR/mgR mice
displayed significantly enhanced IL-6 signaling, which contrib-
uted to the aortic ECM degeneration and increased activity of
MMP-9 (Ju et al. 2014). However, IL-6 deficiency delayed an-
eurysm formation, but did not prevent rupture or improve the
survival time. This indicates the involvement of other pathways
in the early stages of disease progression.

MicroRNA-dependent regulation in relation
to fibrillins

MicroRNAs have been identified during the past decade as
important regulators of gene expression (Bartel 2004). They
represent single-stranded short non-coding RNAs that are
about 21–23 nucleotides in length. MicroRNAs regulate gene
expression on the mRNA level by binding directly to the 3′
untranslated regions of specific target mRNAs. This results in
the repression of mRNA translation and thus protein expression.

Overall, the relationship between microRNAs, ECM and
disease pathogenesis is very little explored. However, emerg-
ing evidence demonstrates that microRNAs are important reg-
ulators of the ECM as it relates to fibrillinopathies.
MicroRNAs regulate the expression of critical extracellular
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proteins including fibrillin, elastin, fibronectin and CTGF (van
Rooij et al. 2008; Duisters et al. 2009; Shan et al. 2009), as
well as vascular tissue integrity (Fish et al. 2008). MicroRNA-
dependent regulation further controls smooth muscle fate and
plasticity (Cordes et al. 2009), contractility (Boettger et al.
2009), and cytoskeletal dynamics (Xin et al. 2009).
Moreover, microRNAs can integrate with TGF-β signaling
in vessel stabilization (Climent et al. 2015).

Specific targets for members of the miR-29 family include
fibrillin-1, tropoelastin and several collagens (van Rooij et al.
2008). Overexpression of miR-29a/b/c mimics repressed,
whereas miR-29 inhibitors increased elastin mRNA and pro-
tein levels in cell culture (Zhang et al. 2012). Interestingly,
transfection of smooth muscle cells obtained from a patient
with elastin deficiency (supravalvular aortic stenosis) with an
inhibitor for miR-29a increased tropoelastin mRNA and pro-
tein expression levels. It was shown that miR-29b regulates
aortic wall apoptosis and ECM abnormalities with significant-
ly increased levels in Fbn1C1039G/+ mice compared to control
animals (Merk et al. 2012). Increased apoptosis was found in
the aorta of the Fbn1C1039G/+ mice as evidenced by increased
caspase-3 activity and decreased levels of anti-apoptotic pro-
teins, Mcl-1 and Bcl-2. This study also showed evidence for
an involvement of the nuclear factor (NF)-κB pathway.
NF-κB is known to repress miR-29b and is itself suppressed
by TGF-β. As expected, decreased activation of NF-κB was
observed as a result of enhanced TGF-β signaling, and admin-
istration of an NF-κB inhibitor increased miR-29b levels.
There was an effective reduction in miR-29b levels upon
TGF-β blockade or losartan administration. Direct miR-29b
blockade by antisense oligonucleotides significantly amelio-
rated the outcome by preventing early aneurysm development,
aortic wall apoptosis, and ECM deficiencies. miR-29b was
also shown as a critical player in abdominal aortic aneurysm
development (Maegdefessel et al. 2012). The authors showed
in this study that aortic aneurysm development in mouse
models was accompanied by decreased aortic expression of
miR-29b, correlating with increased expression of miR-29b
targets including tropoelastin. miR-29b inhibition led to a sig-
nificant reduction of the abdominal aneurysms.

microRNAs were also shown to be deregulated in systemic
sclerosis, a disorder similar to stiff skin syndromewith unclear
etiology. Fibroblasts from patients with systemic sclerosis
showed decreased levels of miR-29 in vitro (Gerber et al.
2013). miR-29 is known to be repressed by TGF-β and in-
hibits the expression of multiple ECM components and sup-
presses fibrosis (van Rooij et al. 2008; Maurer et al. 2010).
Integrin-modulating therapies and TGF-β antagonism re-
stored miR-29 levels (Gerber et al. 2013).

In conclusion, these emerging results indicate the need to
explore microRNA pathways in relation to fibrillinopathies.
They may hold future potential for the design of novel
therapies.

Conclusions

In summary, evidence accumulate demonstrating that fibrillin-
containing microfibrils represent key relay stations for the
transmission of extracellular information into cellular signal-
ing and function. Microfibrils store growth factors including
TGF-β and several BMPs and regulate their bioavailability
and activity. Microfibrils directly or indirectly interact with
cell surface receptors to sense normal and pathologically al-
tered ECM. The integrity of microfibrils and associated elastic
fibers determine expression of matrix degrading proteases,
recruitment of inflammatory cells, and regulation of
microRNAs. Loss of microfibril integrity and abundance
leads to a number of connective tissue diseases through de-
fects in cellular signaling mechanisms. The challenge for the
next years is to understand and integrate all cell signaling
functions mediated by fibrillin-containing microfibrils, which
will ultimately aid in the design of novel preventative and
therapeutic strategies for the associated fibrillinopathies.
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