Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Aug 15;90(16):7451–7455. doi: 10.1073/pnas.90.16.7451

Striatal Fos expression is indicative of dopamine D1/D2 synergism and receptor supersensitivity.

G J LaHoste 1, J Yu 1, J F Marshall 1
PMCID: PMC47159  PMID: 8102797

Abstract

Immediate-early genes, such as c-fos, are responsive to dopaminergic stimulation in the brain and can have prolonged effects on the transcription of other genes. Thus, they may mediate some of the long-term consequences of altered dopaminergic transmission on striatal neurons, such as the supersensitivity to dopamine and its agonists that occurs in response to dopamine denervation. The two dopamine receptor families, D1 and D2, interact synergistically under normal conditions but independently after treatments that induce pronounced supersensitivity to dopamine agonists. Using immunocytochemical methods in rats treated with directly acting selective dopamine agonists, we have determined that dopamine-mediated expression of Fos and Fos-like antigens in the striatum normally requires concomitant stimulation of D1 and D2 receptors. Separate administration of a high dose of a selective D1 (SKF 38393; 20 mg/kg) or D2 (quinpirole; 3 mg/kg) agonist induced Fos-like immunoreactivity in few neurons, whereas combined administration of the D1 and D2 agonists produced patches of intensely stained immunoreactive nuclei in the caudate-putamen. Repeated administration of reserpine (1 mg/kg per day for 5 days), which causes supersensitivity to dopamine agonists and a breakdown in D1/D2 synergism behaviorally, also causes a change in control of c-fos, such that independent stimulation of D1 receptors by SKF 38393 (20 mg/kg) elicited pronounced Fos-like immunoreactivity in the striatum; combined treatment with SKF 38393 (20 mg/kg) and quinpirole (3 mg/kg) in reserpine-treated rats elicited Fos-like expression in no more neurons than did D1 agonism alone. These data demonstrate that dopamine-mediated Fos expression in the striatum is indicative of the state of D1/D2 synergism and receptor supersensitivity.

Full text

PDF
7451

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albin R. L., Young A. B., Penney J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989 Oct;12(10):366–375. doi: 10.1016/0166-2236(89)90074-x. [DOI] [PubMed] [Google Scholar]
  2. Alexander G. E., Crutcher M. D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990 Jul;13(7):266–271. doi: 10.1016/0166-2236(90)90107-l. [DOI] [PubMed] [Google Scholar]
  3. Arnt J. Hyperactivity induced by stimulation of separate dopamine D-1 and D-2 receptors in rats with bilateral 6-OHDA lesions. Life Sci. 1985 Aug 26;37(8):717–723. doi: 10.1016/0024-3205(85)90541-7. [DOI] [PubMed] [Google Scholar]
  4. Arnt J., Hyttel J. Differential inhibition by dopamine D-1 and D-2 antagonists of circling behaviour induced by dopamine agonists in rats with unilateral 6-hydroxydopamine lesions. Eur J Pharmacol. 1984 Jul 13;102(2):349–354. doi: 10.1016/0014-2999(84)90267-x. [DOI] [PubMed] [Google Scholar]
  5. Callaway C. W., Kuczenski R., Segal D. S. Reserpine enhances amphetamine stereotypies without increasing amphetamine-induced changes in striatal dialysate dopamine. Brain Res. 1989 Dec 25;505(1):83–90. doi: 10.1016/0006-8993(89)90118-2. [DOI] [PubMed] [Google Scholar]
  6. Carlson J. H., Bergstrom D. A., Demo S. D., Walters J. R. Nigrostriatal lesion alters neurophysiological responses to selective and nonselective D-1 and D-2 dopamine agonists in rat globus pallidus. Synapse. 1990;5(2):83–93. doi: 10.1002/syn.890050202. [DOI] [PubMed] [Google Scholar]
  7. Cenci M. A., Kalén P., Mandel R. J., Wictorin K., Björklund A. Dopaminergic transplants normalize amphetamine- and apomorphine-induced Fos expression in the 6-hydroxydopamine-lesioned striatum. Neuroscience. 1992;46(4):943–957. doi: 10.1016/0306-4522(92)90196-9. [DOI] [PubMed] [Google Scholar]
  8. Cenci M. Angela, Campbell Kenneth, Wictorin Klas, Björklund Anders. Striatal c-fos Induction by Cocaine or Apomorphine Occurs Preferentially in Output Neurons Projecting to the Substantia Nigra in the Rat. Eur J Neurosci. 1992;4(4):376–380. doi: 10.1111/j.1460-9568.1992.tb00885.x. [DOI] [PubMed] [Google Scholar]
  9. Cole A. J., Bhat R. V., Patt C., Worley P. F., Baraban J. M. D1 dopamine receptor activation of multiple transcription factor genes in rat striatum. J Neurochem. 1992 Apr;58(4):1420–1426. doi: 10.1111/j.1471-4159.1992.tb11358.x. [DOI] [PubMed] [Google Scholar]
  10. Dilts R. P., Jr, Helton T. E., McGinty J. F. Selective induction of Fos and FRA immunoreactivity within the mesolimbic and mesostriatal dopamine terminal fields. Synapse. 1993 Mar;13(3):251–263. doi: 10.1002/syn.890130308. [DOI] [PubMed] [Google Scholar]
  11. Gerfen C. R. The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci. 1992;15:285–320. doi: 10.1146/annurev.ne.15.030192.001441. [DOI] [PubMed] [Google Scholar]
  12. Graybiel A. M., Moratalla R., Robertson H. A. Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6912–6916. doi: 10.1073/pnas.87.17.6912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoffman G. E., Lee W. S., Attardi B., Yann V., Fitzsimmons M. D. Luteinizing hormone-releasing hormone neurons express c-fos antigen after steroid activation. Endocrinology. 1990 Mar;126(3):1736–1741. doi: 10.1210/endo-126-3-1736. [DOI] [PubMed] [Google Scholar]
  14. Hu X. T., Wachtel S. R., Galloway M. P., White F. J. Lesions of the nigrostriatal dopamine projection increase the inhibitory effects of D1 and D2 dopamine agonists on caudate-putamen neurons and relieve D2 receptors from the necessity of D1 receptor stimulation. J Neurosci. 1990 Jul;10(7):2318–2329. doi: 10.1523/JNEUROSCI.10-07-02318.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LaHoste G. J., Marshall J. F. The role of dopamine in the maintenance and breakdown of D1/D2 synergism. Brain Res. 1993 May 14;611(1):108–116. doi: 10.1016/0006-8993(93)91782-n. [DOI] [PubMed] [Google Scholar]
  16. Mandel R. J., Wilcox R. E., Randall P. K. Behavioral quantification of striatal dopaminergic supersensitivity after bilateral 6-hydroxydopamine lesions in the mouse. Pharmacol Biochem Behav. 1992 Feb;41(2):343–347. doi: 10.1016/0091-3057(92)90108-r. [DOI] [PubMed] [Google Scholar]
  17. Mileson B. E., Lewis M. H., Mailman R. B. Dopamine receptor 'supersensitivity' occurring without receptor up-regulation. Brain Res. 1991 Oct 4;561(1):1–10. doi: 10.1016/0006-8993(91)90742-e. [DOI] [PubMed] [Google Scholar]
  18. Missale C., Nisoli E., Liberini P., Rizzonelli P., Memo M., Buonamici M., Rossi A., Spano P. Repeated reserpine administration up-regulates the transduction mechanisms of D1 receptors without changing the density of [3H]SCH 23390 binding. Brain Res. 1989 Mar 27;483(1):117–122. doi: 10.1016/0006-8993(89)90041-3. [DOI] [PubMed] [Google Scholar]
  19. Morgan J. I., Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci. 1991;14:421–451. doi: 10.1146/annurev.ne.14.030191.002225. [DOI] [PubMed] [Google Scholar]
  20. Nguyen T. V., Kosofsky B. E., Birnbaum R., Cohen B. M., Hyman S. E. Differential expression of c-fos and zif268 in rat striatum after haloperidol, clozapine, and amphetamine. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4270–4274. doi: 10.1073/pnas.89.10.4270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Paul M. L., Graybiel A. M., David J. C., Robertson H. A. D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson's disease. J Neurosci. 1992 Oct;12(10):3729–3742. doi: 10.1523/JNEUROSCI.12-10-03729.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robertson G. S., Fibiger H. C. Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience. 1992;46(2):315–328. doi: 10.1016/0306-4522(92)90054-6. [DOI] [PubMed] [Google Scholar]
  23. Robertson G. S., Vincent S. R., Fibiger H. C. D1 and D2 dopamine receptors differentially regulate c-fos expression in striatonigral and striatopallidal neurons. Neuroscience. 1992 Jul;49(2):285–296. doi: 10.1016/0306-4522(92)90096-k. [DOI] [PubMed] [Google Scholar]
  24. Robertson G. S., Vincent S. R., Fibiger H. C. Striatonigral projection neurons contain D1 dopamine receptor-activated c-fos. Brain Res. 1990 Jul 23;523(2):288–290. doi: 10.1016/0006-8993(90)91498-6. [DOI] [PubMed] [Google Scholar]
  25. Robertson H. A., Peterson M. R., Murphy K., Robertson G. S. D1-dopamine receptor agonists selectively activate striatal c-fos independent of rotational behaviour. Brain Res. 1989 Dec 4;503(2):346–349. doi: 10.1016/0006-8993(89)91689-2. [DOI] [PubMed] [Google Scholar]
  26. Ross S. B., Jackson D. M., Wallis E. M., Edwards S. R. Enhancement by a single dose of reserpine (plus alpha methyl-p-tyrosine) of the central stimulatory effects evoked by dopamine D-1 and D-2 agonists in the mouse. Naunyn Schmiedebergs Arch Pharmacol. 1988 May;337(5):512–518. doi: 10.1007/BF00182724. [DOI] [PubMed] [Google Scholar]
  27. Sibley D. R., Monsma F. J., Jr Molecular biology of dopamine receptors. Trends Pharmacol Sci. 1992 Feb;13(2):61–69. doi: 10.1016/0165-6147(92)90025-2. [DOI] [PubMed] [Google Scholar]
  28. Sonnenberg J. L., Mitchelmore C., Macgregor-Leon P. F., Hempstead J., Morgan J. I., Curran T. Glutamate receptor agonists increase the expression of Fos, Fra, and AP-1 DNA binding activity in the mammalian brain. J Neurosci Res. 1989 Sep;24(1):72–80. doi: 10.1002/jnr.490240111. [DOI] [PubMed] [Google Scholar]
  29. Sonnenberg J. L., Rauscher F. J., 3rd, Morgan J. I., Curran T. Regulation of proenkephalin by Fos and Jun. Science. 1989 Dec 22;246(4937):1622–1625. doi: 10.1126/science.2512642. [DOI] [PubMed] [Google Scholar]
  30. Trugman J. M., James C. L. Rapid development of dopaminergic supersensitivity in reserpine-treated rats demonstrated with 14C-2-deoxyglucose autoradiography. J Neurosci. 1992 Jul;12(7):2875–2879. doi: 10.1523/JNEUROSCI.12-07-02875.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wachtel S. R., Hu X. T., Galloway M. P., White F. J. D1 dopamine receptor stimulation enables the postsynaptic, but not autoreceptor, effects of D2 dopamine agonists in nigrostriatal and mesoaccumbens dopamine systems. Synapse. 1989;4(4):327–346. doi: 10.1002/syn.890040409. [DOI] [PubMed] [Google Scholar]
  32. Walters J. R., Bergstrom D. A., Carlson J. H., Chase T. N., Braun A. R. D1 dopamine receptor activation required for postsynaptic expression of D2 agonist effects. Science. 1987 May 8;236(4802):719–722. doi: 10.1126/science.2953072. [DOI] [PubMed] [Google Scholar]
  33. White F. J., Bednarz L. M., Wachtel S. R., Hjorth S., Brooderson R. J. Is stimulation of both D1 and D2 receptors necessary for the expression of dopamine-mediated behaviors? Pharmacol Biochem Behav. 1988 May;30(1):189–193. doi: 10.1016/0091-3057(88)90442-x. [DOI] [PubMed] [Google Scholar]
  34. Young S. T., Porrino L. J., Iadarola M. J. Cocaine induces striatal c-fos-immunoreactive proteins via dopaminergic D1 receptors. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1291–1295. doi: 10.1073/pnas.88.4.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES