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Abstract

Major depressive disorder (MDD) is a common and potentially life-threatening mood disorder. 

Identifying genetic markers for depression might provide reliable indicators of depression risk, 

which would, in turn, substantially improve detection, enabling earlier and more effective 

treatment. The aim of this study was to identify rare variants for depression, modeled as a 

continuous trait, using linkage and post-hoc association analysis. The sample comprised 1221 

Mexican-American individuals from extended pedigrees. A single dimensional scale of MDD was 

derived using confirmatory factor analysis applied to all items from the Past Major Depressive 

Episode section of the Mini-International Neuropsychiatric Interview. Scores on this scale of 

depression were subjected to linkage analysis followed by QTL region-specific association 

analysis. Linkage analysis revealed a single genome-wide significant QTL (LOD = 3.43) on 

10q26.13, QTL-specific association analysis conducted in the entire sample revealed a suggestive 

variant within an intron of the gene LHPP (rs11245316, p = 7.8×10-04; LD-adjusted Bonferroni-

corrected p = 8.6×10-05). This region of the genome has previously been implicated in the etiology 

of MDD; the present study extends our understanding of the involvement of this region by 

highlighting a putative gene of interest (LHPP).
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Introduction

Major depressive disorder (MDD) is a common and potentially life-threatening mood 

disorder 1. It affects 16.2% of individuals in the US during their lifetime 2, and incurs great 

economic cost ($83.1 billion per annum in the US) 3. The illness also places an immense 

burden on the sufferer, such that the impact of MDD on wellbeing and functioning is in line 

with that seen in other major chronic conditions (e.g., arthritis and diabetes mellitus) 4. 

Moreover, functional impairments remain even after the remission of a depressive episode 5. 

Unsurprisingly, the World Health Organization (WHO) cites MDD as a leading cause of 

disability worldwide 6. Current methods of diagnosing and treating MDD are symptom 

based, that is, diagnosis is made based on the presence of symptoms outlined in the DSM 7 

and successful treatment is defined by the reduction and eventual remission of those 

symptoms 8. Relying on symptoms alone, without regard for the etiological roots of a 

disorder, makes for mediocre diagnostic reliability 9-11 and inadequate treatment 12. The 

effectiveness of anti-depressant pharmacotherapy is hampered by our limited understanding 

of the biological basis of MDD 8, 13; indeed the administration of anti-depressant 

medications results in remission in only one third of patients 14. Identifying risk variants for 

depression would enhance our understanding of the etiology of MDD which in turn would 

enable earlier and more reliable detection as well as, potentially, the development of new 

and more effective therapies 15, 16.

Heritability estimates of MDD vary around 0.37 1, 17, indicating a substantial influence of 

genes on MDD risk. However, attempts to isolate specific genes which mediate MDD risk 

have been met with difficulty 16, 18: meta-analysis suggests that many of the early candidate 

gene studies were false positives 19, 20, and numerous genome-wide association (GWA) 

studies, including the latest mega-analysis of over nine thousand depressed individuals from 

the Psychiatric Genetics Consortium, have struggled to attain genome-wide significant 

results 20-30. As a consequence it has been suggested that even larger sample sizes are 

necessary for the identification of risk variants for MDD 30. However, linkage, a method 

that ostensibly measures rare in addition to common variation, has isolated numerous 

genome-wide significant loci in relatively small samples 31-34. Thus, while intuitively the 

assertion that greater sample sizes are needed to isolate genes for MDD makes good sense 

(particularly given that increasing sample size has worked for other disorders e.g. 

schizophrenia 35), it is also possible that the degree of genetic (and also phenotypic) 

heterogeneity is greater for MDD than for other disorders 36 and as a consequence 

increasing sample sizes might only serve to compound the problem. Therefore a 

complementary approach would be to focus on reducing genetic heterogeneity using, for 

example, a family-based approach when searching for MDD risk genes.

In order to effectively account for the phenotypic heterogeneity associated with MDD it is 

critical to develop optimal MDD phenotypes 30. MDD is typically treated as a categorical 

trait, it is assumed that MDD reflects the tail end of an underlying normal distribution of 

mood, and that diagnosis occurs when a threshold for liability is crossed. It seems plausible 

that the genes which moderate behavior at the tail end of the distribution are the same as 

those that underlie the regulation of normal mood37 and by dichotomizing the MDD 
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distribution, we ignore a substantial proportion of variance that would contribute to gene-

finding efforts. Conceptualizing MDD as a continuous dimension would capture this 

important information which would confer greater sensitivity and power to detect genes 38.

Thus, the present study, we report on univariate linkage and association analysis of a 

dimensional scale of depression derived from the Past Major Depressive Episode section of 

the Mini-International Neuropsychiatric Interview (MINI) within extended-pedigree data.

Methods

Participants

The sample comprised 1221 Mexican American individuals from extended pedigrees (132 

families, average size 9.32 people, range = 1-129). The sample was 63% female and had a 

mean age of 46.01 (SD = 15.10; range = 18-97). Individuals in this San Antonio Family 

Study cohort have actively participated in research for over 18 years and were randomly 

selected from the community with the constraints that they are of Mexican American 

ancestry, part of a large family, and live within the San Antonio region (see (Olvera et al., 

2011) for recruitment details). All participants provided written informed consent on forms 

approved by the institutional review board at the University of Texas Health Science Center 

of San Antonio.

Diagnostic Assessment

All participants received the Mini-International Neuropsychiatric Interview (MINI) 39, 

which is a semi-structured interview augmented to include items on lifetime diagnostic 

history. Masters-and doctorate-level research staff, with established reliability (κ ≥ .85) for 

affective disorders, conducted all interviews. All subjects with possible psychopathology 

were discussed in case conferences that included licensed psychologists or psychiatrists. 

Lifetime consensus diagnoses were determined based on available medical records, the 

MINI interview, and the interviewer's narrative.

Data Analysis

Depression Modelling: Confirmatory Factor Analysis—All items from the Past 

Major Depressive Episode (A3a-g) section of the MINI were modeled using a single factor 

score; Table 1 outlines each of these items. This enabled the categorical outcomes associated 

with the A3a-g MINI items to be modeled as a unitary quantitative trait. It is important to 

note that because the factor model included all items from the past major depressive episode 

section, the resultant score should be thought of as a lifetime rating of depression not a 

reflection of current symptom severity. the Specifically, a single-factor model was built 

using confirmatory factor analysis in Mplus (Figure 1). Family structure was taken into 

account using the cluster command, under the cluster command in Mplus standard errors in 

the model are adjusted in accordance with non-independence in the data, in this way family 

ID is treated as a nuisance covariate. Because the questionnaire items have categorical rather 

than continuous outcomes, factor analysis was applied to tetrachoric correlations derived 

from the raw phenotypic data. The resultant factor score (mean = 0.15, standard deviation = 

0.59) was subjected to an inverse normalization to ensure normality.
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Genotyping

Subjects were genotyped for approximately one million SNPs using Illumina 

HumanHap550v3, HumanExon510Sv1, Human1Mv1 and Human1M-Duov3 BeadChips, 

according to the Illumina Infinium protocol (Illumina, San Diego, CA). SNP loci were 

checked for Mendelian consistency utilizing SimWalk2 (Sobel and Lange, 1996). SNPs or 

samples exhibiting high calling rate failures or requiring excessive blanking (i.e., if <95% of 

the genotypes are retained) were eliminated from analyses. Missing genotypes were imputed 

according to Mendelian laws based on available pedigree data using MERLIN (Abecasis et 

al., 2002). Maximum likelihood techniques, accounting for pedigree structure, were used to 

estimate allelic frequencies (Boehnke, 1991). For linkage analyses, multipoint identity-by-

descent (IBD) matrices were calculated based on 28,387 SNPs selected from the 1M GWAS 

panel as follows. Using genotypes for 345 founders, SNPs on each chromosome were 

selected to be at least 1kb apart, MAF >= 5%, and LD within a 100kb sliding window not 

exceeding |rho| = 0.15. The resulting selection averaged 7-8 SNPs/centimorgan. For each 

centimorgan location in the genome, multipoint IBD probability matrices were calculated 

using a stochastic Markov Chain Monte Carlo procedure implemented in the computer 

package, LOKI (Heath, 1997).

Quantitative Genetic Analyses

All genetic analyses were performed in SOLAR 40. SOLAR implements a maximum 

likelihood variance decomposition to determine the contribution of genes and environmental 

influence to a trait by modeling the covariance among family members as a function of 

expected allele sharing given the pedigree. In the simplest such decomposition, the additive 

genetic contribution to a trait is represented by the heritability, or h2, index. Univariate 

variance decomposition analysis was applied to the continuous measure of depression. The 

trait was normalized using an inverse Gaussian transformation. Age, age2, sex and their 

interactions were included as covariates.

Linkage and Association Analyses

Quantitative trait linkage analysis was performed to localize specific chromosomal locations 

influencing MDD 40. Model parameters were estimated using maximum likelihood. The 

hypothesis of significant linkage was assessed by comparing the likelihood of a classical 

additive polygenic model with that of a model allowing for both a polygenic component and 

a variance component due to linkage at a specific chromosomal location (as evidenced by 

the location-specific identity-by-descent probability matrix). The LOD score, given by the 

log10 of the ratio of the likelihoods of the linkage and the polygenic null models, served as 

the test statistic for linkage. Genome-wide thresholds for linkage evidence were computed 

for this exact pedigree structure and density of markers, using a method derived from 41: a 

LOD of 1.69 is required for suggestive significance (likely to happen by chance less than 

once in a genome-wide scan) and a LOD of 2.9 is required for genome-wide significance.

Genomic regions meeting genome-wide significance for linkage were investigated in greater 

detail using association analysis of the MDD confirmatory factor score and the genetic 

variants encapsulated by the linkage peak. Statistical significance levels were established 

according to the effective number of tested variants given the linkage disequilibrium (LD) 
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structure in the region. To this end, the pairwise genotypic correlations were calculated in an 

effort to establish the effective number of independent tests carried out during association 

analysis. This method, by Moskvina and Schmidt 42, is considered to be conservative and 

entails computing the eigenvalues of the genotypic correlation matrix. A corrected P-value is 

obtained from a Bonferroni correction based on the nominal alpha (=0.05) and the total 

number of independent tests.

Results

Confirmatory Factor Analysis—All MINI items were shown to be significantly 

heritabile (Table 1). The bivariate tetrachoric correlations (see Table S1) were uniformly 

moderate to high with little discriminability between items, suggesting a single underlying 

dimension. A one-factor model fit the data excellently (χ2
12 = 13.82 p = 0.129, RMSEA = .

020 (.000 - .040) p = 0.995, CFI = 1.000, TLI = 1.000, WRMR = .617).

Heritability and Linkage Analysis

The score derived from the factor model was deemed to be significantly heritable (h2 = 0.21, 

p = 2.3×10-05). Significant univariate linkage was detected for the depression trait on 

chromosome 10 at 153cM (LOD = 3.43; Figure 2). The majority of this linkage signal 

originated from a single multiplex MDD pedigree within the data (h2 = 0.33, p = 1.7×10-02, 

LOD = 1.54) and the top LOD for the multiplex pedigree within the region encapsulated by 

the linkage peak met the criteria for suggestive significance (LOD = 1.84, 152cM).

Association Analysis

Association analysis was conducted using all variants within the linkage peak (defined as 

150-154cM) and the continuous factor score of (Table 2 and Figure 3), the peak-wide (LD-

adjusted Bonferroni-corrected) significance level = 8.7×10-05 (975 SNPs, 590.69 effective 

SNPs). For association analysis run in the entire sample, the top-ranked variant was 

suggestively significant (rs11245316, χ2 = 11.28, p = 7.8×10-04) and located within an 

intron of the gene LHPP (phospholysine phosphohistidine inorganic pyrophosphate 

phosphatase). Association analysis run only in the multiplex MDD pedigree from which the 

majority of the linkage signal originated revealed a variant that met peak-wide significance 

(rs7913161, χ2 = 17.84, p = 2.4×10-05) within an intron of the gene CPXM2 

(carboxypeptidase X (M14 family), member 2). When the SNP rs7913161 was included as a 

covariate in the linkage analysis of the continuous depression factor score in the multiplex 

pedigree, the LOD score observed without the covariate (LOD = 1.84) was reduced 

substantially (LOD = 0.46). This linkage conditional on association test gives additional 

support for the involvement of rs7913161 in depression risk within the multiplex MDD as it 

implicates the variant in the linkage model for MDD within the pedigree. Association for 

this variant was not significant in either the entire sample (χ2 = 1.68, p = 0.19) or in any 

other individual pedigree (the next best association for rs7913161 in any other pedigree did 

not reach suggestive significance, χ2 = 3.97, p = 0.04), suggesting that the variant is likely 

marking a functional and rare variant present only in the multiplex pedigree.
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Validation of the Continuous Factor Score Measure of Depression

The factor score derived from the one-factor model of depression correlates highly with the 

analogous dichotomous diagnosis of depression (indicating the presence or absence of a 

depressive episode over the lifetime of an individual), derived from the same section of the 

MINI (rphenotypic = 0.87 (p = 1.22×10-217), rgenetic = 1.00 (p = 2.46×10-06)). This high 

correlation is unsurprising given that the two traits are derived from precisely the same 

items. However, to provide further validation of the factor model, we ran linkage analysis 

for the dichotomous diagnostic trait within the region of chromosome 10 where we observed 

a genome-wide significant peak for the continuous factor score. For this analysis, the 

dichotomous diagnostic trait was transformed into a normally-distributed liability trait based 

on disease prevalence following standard quantitative genetic practice 43 (pp. 299-309). The 

analogous liability measure from the same items in the entire sample did not exhibit 

genome-wide significant linkage but neared suggestive significance (h2 = 0.38, p = 

4.7×10-06, LOD = 1.58 at 153cM; Figure 2). Moreover, association analysis with the top 

ranked variant (for the continuous factor score) and the dichotomous measure exhibited 

some signal without reaching suggestive significance (χ2= 3.93, p = 4.7×10-02), while the 

top-ranked variant (in the multiplex pedigree) also reached significance for the dichotomous 

measure of depression (χ2= 16.23, p = 5.6×10-05). Thus, while the continuous measure of 

depression derived from the single-factor model overlaps almost completely with the 

dichotomous measure derived from the same items; the use of a continuous measure was 

shown to be more successful for gene-finding efforts. It is of note that the distribution of our 

continuous factor score is bimodal which is in line with a number of unaffected individuals 

within the data. Indeed, the kurtosis score (-0.5887) indicates a platykurtic distribution. 

However, previous work indicates that positive kurtosis, not negative, may inflate the false-

positive rate for linkage 44, 45. Nonetheless, we ran an emprical LOD adjustment routine in 

SOLAR which calculates an adjustment factor by which to multiply the peak LOD from 

linkage analysis; 10,000 simulations run on the inverse normalized factor score calculated an 

adjustment factor of 1.08 where an adjustment factor > 1 means that our LOD of 3.43 is in 

fact somewhat conservative. Thus, we are satisfied that our trait, despite being negatively 

skewed, has not resulted in an inflated LOD score in the present paper.

Discussion

Repeated attempts to identify genetic influences on MDD using genome-wide association 

have been met with difficulty. Conversely, several genome-wide significant loci have been 

identified using linkage analysis 32, 33, including in the same region of chromosome 10, and 

more specifically in the same gene LHPP, as identified here 31. Moreover, a recent whole 

genome sequence study has also highlighted the role of the gene LHPP in MDD risk 46. The 

present study extends the previous literature by supporting the role of 10q26.13 (and 

possibly LHPP) in risk for MDD. Moreover, the present study identifies a novel and 

interesting gene, CPXM2, in a newly identified large multiplex MDD pedigree from whom 

the majority of the linkage signal originates – though this finding needs replication before it 

can be considered a risk gene for MDD. The linkage conditional on association test for the 

variant within CPXM2 suggests that it is partially responsible (either directly or via LD with 

another variant) for the linkage signal within the multiplex pedigree 47. Indeed, it is likely 
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that the variant identified in the pedigree is marking a functional and rare variant that exists 

only in this pedigree. Thus, the present study, through a combination of linkage in extended 

pedigrees and a dimensional index of depression, highlights a two interesting genes for 

MDD risk and, potentially, the role of rare variation in risk for the illness.

LHPP encodes the protein phospholysine phosphohistidine inorganic pyrophosphate 

phosphatase (Lhpp) 48 and is highly expressed in brain 31, 49. Neff and colleagues have 

previously implicated the gene LHPP in MDD risk using a combination of linkage and 

association analysis 31. However, the LHPP associations were dependent on HTR1A 

genotype, which is not a finding that we were able to replicate in the present paper. First, 

many of the LHPP variants identified by Neff and colleagues as being associated with MDD 

risk are not present in our sample, although those that are present are in partial LD with our 

top-ranked variant (rs12265012, r2 = 0.21; rs10794134, r2 = 0.17) 31. Second, while Neff 

and colleagues showed an interaction between HTR1A (and specifically the 1019C>G 

genotype, rs2495, which is not present in out sample) and LHPP, we did not. Three HTR1A 

variants are present in our sample, and an interaction term between our top-ranked LHPP 

variant and any of the HTR1A variants was not significant when included as covariates in a 

polygenic model of the depression factor score (rs10052087, χ2= 0.75, p = 0.39; rs6449693, 

χ2= 0.01, p = 0.93; rs6294, χ2= 0.75, p = 0.39); and none of the HTR1A variants were 

significantly associated with the continuous depression score in isolation (rs10052087, χ2= 

0.46, p = 0.50; rs6449693, χ2= 2.16, p = 0.14; rs6294, χ2= 0.46, p = 0.50). Relatively little is 

known about the function of LHPP. A single study implicates the role of Lhpp in thyroid 

function 50, which could be interesting given that thyroid function is thought to mediate the 

function of certain anti-depressants 51. However, an explicit relationship between thyroid 

function, Lhpp and MDD is not apparent based on current research.

The gene CPXM2 is a member of the metallocarboxypeptidase A family of digestive 

enzymes and is highly expressed in brain, particularly in the hippocampus, hypothalamus, 

choroid plexus and throughout the cerebral cortex 52. CPXM2 is distinct from other gene-

family members as it lacks the active site residues necessary for enzyme function and as a 

consequence it may fulfill an alternative role as a phospholipid binding protein 53. In rats 

CPE, a paralog of CPXM1 (which is highly similar to CPXM2 in that it also lacks the 

catalytic activity found in other carboxypetidases 54), mediates dopamine transporter (DAT) 

expression such that co-expression of CPE and DAT results in increased dopamine reuptake 

in brain 55. Also, a variant of CPXM2 is suggestively associated with cognitive decline in 

schizophrenia 56, where cognitive ability, and more specifically cognitive impairment in 

schizophrenia, is thought to be modulated by dopaminergic signaling 57-59. Insofar as the 

role of dopamine is well established in MDD 60-62 and that the gene CPXM2, or at least very 

similar genes in the same family, appears to influence dopamine functioning in the brain, the 

present paper highlights a new candidate gene for MDD in a newly established large 

multiplex MDD pedigree that warrants further investigation.

The association for the variant rs7913161 in CPXM2 in the larger sample was low and not 

significant, which could suggests that the variant is marking a rare and functional variant 

that exists only within the multiplex MDD pedigree, one which likely makes up a haplotype 

of many variants. The authors of the most recent mega-analysis GWA study (GWAS) from 
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the PGC, which comprised approximately seventy thousand subjects, cite the need for even 

greater sample sizes and increased power in order to detect genetic variants for 

depression 30. However, it is also possible that genetic heterogeneity for MDD is greater 

than for other disorders, meaning that it will be necessary to reduce genetic heterogeneity 

(for example, by studying a group of genetically-homogenous kindred) in order to find risk 

genes. The present study makes a case for the latter approach; namely, the use of whole 

genome sequence data in extended pedigrees. The common disease-rare variant hypothesis 

states that the genetic causes of common, polygenic disorders such as depression are likely 

to be rare in the population. Clearly the use of rare variation alone will not solve the power 

issues highlighted by the PGC. However, identifying a rare functional variant (with a large 

effect size) in only a handful of affected individuals can be sufficient to verify that a given 

gene is involved in an illness. Data from the 1000 Genomes Project confirm that rare (<1%) 

variants constitute the vast majority (73%) of polymorphic sites in humans 63. A key factor 

for identification of specific rare functional variants is detecting sufficient copies of that 

variant for statistical inference 64, 65. Pedigree-based studies represent an implicit 

enrichment strategy for identifying rare variants as Mendelian transmissions from parents to 

offspring maximize the chance that multiple copies of rare variants exist in the pedigree. 

Family-based cohorts have substantially greater power than unrelated cases to detect rare 

genetic effects given an equivalent number of sampled individuals 66, 67. For example, genes 

for hypertension have been identified for blood pressure in the general population by 

focusing research efforts on an extended pedigree with a rare form of hypertension 68. 

Indeed, rare deleterious mutations are known to occur in genes that also harbor common 

variants with modest effects on disease risk 69. For example, 11 of 30 genes with common 

variants associated with lipid levels also carry known rare alleles of large effect in 

Mendelian dyslipidemias 70, 71. Furthermore, rare variants may contribute to loci identified 

through common variation 72.

Another issue the PGC highlights in the hunt for depression genes is the possibility that the 

depression phenotypes used in genetic studies are ‘suboptimal’ 30 (p. 9). This observation 

dovetails with the Research Domain Criteria (RDoC) strategy that was recently proposed by 

the NIMH. This strategy encourages researchers to focus their efforts on developing new 

ways of classifying psychopathology by developing a dimension-based taxonomy of 

functioning that encompasses behavior, neuroscience and genetics 73, 74. MDD is typically 

treated as a categorical trait it is assumed that MDD reflects the tail end of an underlying 

normal distribution of mood, and that diagnosis occurs when a threshold for liability is 

crossed. It seems plausible that the genes which moderate behavior at the tail end of the 

distribution are the same as those that underlie the regulation of normal mood 37 and by 

dichotomizing the MDD distribution, we ignore a substantial proportion of variance that 

would contribute to gene-finding efforts. Thus the present paper is in line with the RDoC 

strategy whereby depression is represented as a continuum or dimension and moreover the 

use of a continuous measure of depression derived from a single-factor model of interview 

items versus the analogous dichotomous measure from the same items was shown to be 

more successful in the present study. The notion that continuous models of complex 

disorders derived from commonly used questionnaires can be used in association studies 

represents a significant advancement over studies that rely entirely on a diagnostic endpoint. 

Knowles et al. Page 8

J Affect Disord. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Other studies have examined this notion in detail, and developed multidimensional models 

of depressive symptomatology 75-77. The present work focussed specifically on the MINI 

and as such fewer dimensions were derived (indeed, inspection of the correlations between 

items strongly supports the existence of a single dimension in the data used in the present 

study; Table S1), however the utility of the present study over those published previously is 

the inclusion of genetic data which allowed the identification of possible candidate genes 

(LHPP and CPXM2).

In summary, the present study represents advancement in our understanding in the genetics 

of depression in two ways. First, it confirms the probable involvement of a gene previously 

implicated in illness risk (LHPP) and, through the use of a multiplex MDD pedigree, it 

highlights a novel risk gene (CPXM2), which warrants further investigation. Second, it 

draws attention to an alternative methodology for the hunt for depression genes, which is 

focusing on rare variation in a multiplex MDD pedigree combined with the use of 

dimensional indices of MDD symptomatology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
One-factor confirmatory factor model of all items from the past major depressive episode 

section of the MINI.
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Figure 2. 
Chromosome 10 multipoint plot for the univariate linkages of the continuous depression 

factor score (dark blue) and also the dichotomous measure of depression derived from 

precisely the same items (light blue).

Knowles et al. Page 15

J Affect Disord. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
QTL-specific association analysis within the QTL on chromosome 10 for the continuous 

depression factor score in the entire sample (blue) and the multiplex MDD pedigree (green). 

The top plot shows the linkage signal in the entire sample and the multiplex pedigree. The 

plot below shows the results of association analysis in the same region. Intergenic regions 

are pale gray and genes are represented by the dark gray bars. The top ranked variant in each 

subject group is represented by a diamond and the degree of linkage disequilibrium is 

represented by the color scale.
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Table 1

Descriptive statistics for each item for the past major depressive episode section of the MINI.

When you felt depressed or uninterested: % Responded No h2 SE

Was your appetite decreased or increased nearly every day? Did your weight decrease or increase without 
trying intentionally? .663 .270 .074

Did you have trouble sleeping nearly every night? .659 .203 .087

Did you talk or move more slowly than normal or were you fidgety, restless or having trouble sitting still 
almost every day? .725 .177 .243

Did you feel tired or without energy almost every day? .691 .290 .074

Did you feel worthless or guilty almost every day? .730 .193 .224

Did you have daily difficulty concentrating or making decisions? .744 .245 .100

Did you repeatedly consider hurting yourself, feel suicidal, or wish that you were dead? .840 .339 .153
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